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Cardiovascular diseases are among the leading causes of mortality
worldwide, with dietary factors being the main risk contributors. Diets rich
in bioactive compounds, such as (poly)phenols, have been shown to
potentially exert positive effects on vascular health. Among them,
resveratrol has gained particular attention due to its potential antioxidant
and anti-inflammatory action. Nevertheless, the results in humans are
conflicting possibly due to interindividual different responses. The gut
microbiota, a complex microbial community that inhabits the
gastrointestinal tract, has been called out as potentially responsible for
modulating the biological activities of phenolic metabolites in humans.
The present review aims to summarize the main findings from clinical
trials on the effects of resveratrol interventions on endothelial and
vascular outcomes and review potential mechanisms interesting the role
of gut microbiota on themetabolism of this molecule and its cardioprotective
metabolites. The findings from randomized controlled trials show contrasting
results on the effects of resveratrol supplementation and vascular biomarkers
without dose-dependent effect. In particular, studies in which resveratrol was
integrated using food sources, i.e., red wine, reported significant effects
although the resveratrol content was, on average, much lower compared
to tablet supplementation, while other studies with often extreme resveratrol
supplementation resulted in null findings. The results from experimental
studies suggest that resveratrol exerts cardioprotective effects through the
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modulation of various antioxidant, anti-inflammatory, and anti-hypertensive
pathways, and microbiota composition. Recent studies on resveratrol-derived
metabolites, such as piceatannol, have demonstrated its effects on biomarkers
of vascular health. Moreover, resveratrol itself has been shown to improve the
gut microbiota composition toward an anti-inflammatory profile. Considering
the contrasting findings from clinical studies, future research exploring the
bidirectional link between resveratrol metabolism and gut microbiota as well as
the mediating effect of gut microbiota in resveratrol effect on cardiovascular
health is warranted.
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1 Introduction

Cardiovascular disease (CVD) is the leading cause of death in
the world and it has been estimated to cause more than 23.6 million
deaths by 2030 (GBD, 2019 Diseases and Injuries Collaborators,
2020). Hypertension is one of the strongest risk factors for most
cardiovascular outcomes alongside obesity and other metabolic
abnormalities (Oliveras and de la Sierra, 2014). Thus, it is
important to understand the pathogenic mechanisms as well as
the effective strategy to prevent and manage cardiovascular-related
disorders (Golia et al., 2014). Vascular and systemic inflammation
seems to represent the culprit for the establishment of endothelial
dysfunction (Goswami et al., 2021). Several inflammatory pathways,
such as protein kinase B (PKB/Akt), transcription factor nuclear
factor-kappa B (NF-κB), mitogen-activated protein kinase p38, and
extracellular signal-regulated kinases (ERK)1/2 may alter the
functionality of nitric oxide synthase (NOS) and lead to
abnormal expression of adhesion molecules, such as intercellular
adhesion molecule-1 (ICAM-1) and vascular cell adhesion protein-1
(VCAM-1) (Figueiredo et al., 2023).

Several risk factors, such as genetics, environmental and dietary
factors may play a role as immune modulators and be involved in
CVD onset (GBD, 2019 Risk Factors Collaborators, 2020).
Concerning dietary factors, plant-based dietary patterns have
been shown to be associated with a lower risk of CVD (Angelino
et al., 2019; Tieri et al., 2020; Martini et al., 2021). Among the many
components of plant-based dietary patterns, fruits and vegetables
are rich in bioactive compounds, such as (poly)phenols, that have
been demonstrated to potentially exert health benefits on the
cardiovascular system (Micek et al., 2021; Laudani et al., 2023).
(Poly)phenols are characterized by a great variety of chemical
structures, some of them responsible for their putative effects in
humans (Tsao, 2010), through the regulation of oxidative stress
(Arrigoni et al., 2023), inflammation (Jantan et al., 2021), and gut
microbiota (Iqbal et al., 2022). Extensive epidemiological data
support the notion that a diet rich in (poly)phenol-containing
fruits, vegetables, cocoa, and beverages offers protection against
the onset of CVD and type 2 diabetes (Grosso et al., 2017; Angelino
et al., 2019; Veronese et al., 2019).

Among the most studied compounds, resveratrol has gained great
interest in research over the last few decades (Pyo et al., 2020; Repossi
et al., 2020). Resveratrol is a low-molecular-weight polyphenolic
compound belonging to the stilbenoid family, which consists of
hydroxylated derivatives of stilbene present in a variety of plant

sources like grapes and berries, as well as in peanuts and red wine
(Tian and Liu, 2020). This molecule has been widely studied because of
its antioxidant and anti-inflammatory activities as well as potential
protective effects against different diseases, such as cancer,
cardiovascular, metabolic and neurodegenerative diseases (Baur and
Sinclair, 2006; Li et al., 2012; Springer and Moco, 2019). Although
extensively studied in both in vitro and in vivomodels, the evidence on
its potential effects in humans is not univocal (Khorshidi et al., 2021).
Due to its hydrophobic properties and low plasma bioavailability, there
is some skepticism concerning its real efficacy in humans, while studies
focusing on the role of gut microbiota in its transformation, absorption,
and more bioavailable metabolites production may provide the
rationale to explain the interindividual responses and the consequent
heterogeneity of results from clinical trials (Man et al., 2020). The aim of
this study was to review the evidence concerning the effects of
resveratrol on vascular outcomes: specifically, the article provides (i)
an overview of existing RCTs on resveratrol supplementation and
vascular and endothelial outcomes; (ii) a summary of potential
molecular mechanisms through which resveratrol may exert its
effects; and (iii) a discussion the effects of resveratrol-gut microbiota
derivedmetabolites on the such outcomes as new potential mechanisms
related to gut microbiota.

2 Clinical studies on resveratrol and
vascular outcomes

A summary of randomized controlled trials (RCTs) with
resveratrol supplementation for vascular outcomes is presented in
Table 1. Among clinical intervention studies administering higher
doses of resveratrol through tablets or capsules, an open-label,
controlled, RCT involving 57 patients with type 2 diabetes mellitus
(aged between 30 and 70 years) treated with oral hypoglycemic agents
and 250 mg/day of resveratrol (intervention group) or only with oral
hypoglycemic agents (control group) for 6 months, revealed a
significant reduction in SBP after resveratrol supplementation
compared to baseline (139.71 ± 16.10 vs. 131.14 ± 9.86 mmHg;
p = 0.01) and a significant reduction of SBP (4.31 ± 12.26 mmHg
vs −8.57 ± 17.29 mmHg, p = 0.008) and DBP (6.20 ± 8.90 mmHg vs
0.85 ± 9.71 mmHg, p = 0.02) comparing treatment group to control
(Bhatt and Nanjan, 2013). Similarly, another double-blind, parallel
RCT investigated the effects of 1 g/day of resveratrol capsules
compared with placebo in 66 patients with type 2 diabetes mellitus
(mean age of 52 years). After 45 days of treatment, the intervention
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TABLE 1 Main characteristics of the randomized controlled trials evaluating the effects of resveratrol supplementation on cardiovascular risk factors.

Author, year
of
publication,
country

Study
design

Population
characteristics

Intervention
duration

Intervention
type

Resveratrol
dose (daily
intake)

Control
type

Main findings

Timmers et al.
(2011), Netherlands

Double-
blind,
placebo-
controlled,
crossover

11 healthy obese men
(52 years)

2 × 30 days
(4 weeks washout)

Resveratrol
capsules

150 mg resveratrol Placebo capsule SBP (p = 0.006) and
mean arterial BP
(p = 0.02) decreased
significantly after
resveratrol
supplementation,
when compared to
placebo. However,
no significant
changes were
observed for DBP.

Bhatt and Nanjan
(2013), India

Open-label,
controlled

57 patients with
T2DM (50 years)

6 months Resveratrol
capsules
(+ hypoglycemic
agent)

250 mg resveratrol Hypoglycemic
agent

SBP decreased
significantly after
the intervention
period (p = 0.01) in
participants who
received resveratrol.
SBP (p = 0.008) and
DBP (p = 0.02)
decreased in the
intervention group
compared to the
control

Movahed et al.
(2013), Iran

Double-
blind,
placebo-
controlled

66 patients with
T2DM (52 years)

45 days Resveratrol
capsules

1,000 mg
resveratrol

Placebo capsules
(inert
microcellulose)

SBP significantly
decreased (p <
0.0001) after
resveratrol
supplementation.
Similarly, SBP
decreased (p <
0.0001)
significantly when
comparing
intervention group
to control

Wong et al. (2013),
Australia

Double-
blind,
placebo-
controlled,
crossover

28 healthy obese adults
(61 years)

2 × 6 weeks Resveratrol
capsules

75 mg trans-
resveratrol

Placebo capsules Intervention led to
a significant
increase in FMD
(p = 0.021), when
compared to
placebo

Anton et al. (2014),
United States of
America

Double-
blind,
placebo-
controlled

32 overweight older
adults (73 years)

90 days Resveratrol
capsules

(i) 1,000 mg
resveratrol; (ii)
300 mg resveratrol

Placebo capsules
(microcrystalline
cellulose)

No significant
changes in BP were
observed

Faghihzadeh et al.
(2015), Iran

Double-
blind,
placebo-
controlled

50 patients with
NAFLD (resveratrol
group: 44 years;
placebo group:
46 years)

12 weeks Resveratrol
capsules

500 mg resveratrol Placebo capsules
(edible paraffin)

BP did not change
in the pre-post
treatment, however
changes in SBP
significantly
differed between
the intervention
and the control
group

Van der Made et al.
(2015), Netherlands

Double-
blind,
placebo-
controlled,
crossover

45 overweight and
obese individuals
(61 years)

2 × 4 weeks
(4 weeks washout)

Resveratrol
capsules

150 mg resveratrol Placebo capsules A significant
increase in DBP
(p = 0.044) and HR
(p = 0.0.025) was
detected after
resveratrol
supplementation,
but no changes

(Continued on following page)
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TABLE 1 (Continued) Main characteristics of the randomized controlled trials evaluating the effects of resveratrol supplementation on cardiovascular risk
factors.

Author, year
of
publication,
country

Study
design

Population
characteristics

Intervention
duration

Intervention
type

Resveratrol
dose (daily
intake)

Control
type

Main findings

were observed in
SBP comparing end
of trial to baseline.
No significant
changes in other
endothelial
function markers
were reported

Bo et al. (2016), Italy Double-
blind,
placebo-
controlled

192 patients T2DM
(65 years)

6 months Resveratrol
capsules

(i) 500 mg
resveratrol; (ii)
40 mg resveratrol

Placebo capsules
(inert
microcellulose)

No significant
changes were found
in BP after the
intervention, when
comparing to
control

Timmers et al.
(2016), Netherlands

Double-
blind,
placebo-
controlled,
crossover

17 patients with
T2DM (55 years)

2 × 30 days
(30 days washout)

Resveratrol
capsules

150 mg resveratrol Placebo capsules Although a
tendency in SBP
reduction (p = 0.09)
was observed after
resveratrol
supplementation,
no changes in DBP
were noted.
Echocardiography
revealed a marginal
reduction in left
ventricular end
systolic diameter
after resveratrol
intervention
(p = 0.04)

Imamura et al.
(2016), Japan

Double-
blind,
placebo-
controlled

50 patients with
T2DM (~58 years)

12 weeks Resveratrol tablet 100 mg resveratrol
(oligo-stilbene
27.97 mg)

Placebo tablet After resveratrol
supplementation,
SBP and CAVI (p <
0.05) decreased
significantly. CAVI
decrease (p < 0.01)
was observed also
when comparing
treatment group
with control.
However, no
significant changes
in SBP and DBP
were observed,
when comparing
intervention group
to control

Kjaer et al. (2017),
Denmark

Double-
blind,
placebo-
controlled

66 middle-aged
community-dwelling
men (49 years)

16 weeks Resveratrol tablet (i) 1,000 mg
resveratrol; (ii)
150 mg resveratrol

Placebo tablet No significant
effects on BP were
observed after
resveratrol
supplementation

Khodabandehloo
et al. (2018), Iran

Double-
blind,
placebo-
controlled

45 subjects with
T2DM (resveratrol
group: 56 years;
placebo group:
61 years)

8 weeks Resveratrol
capsules

800 mg resveratrol Placebo capsules
(inert
microcellulose)

SBP (p < 0.001) and
DBP (p = 0.001)
decreased
significantly in the
intervention group,
when comparing
end of trial to
baseline. Also, a
significant
reduction in SBP
(p = 0.002) and

(Continued on following page)
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group showed a significant reduction in SBP compared to the baseline
values (from 129.03 ± 14.91 mmHg to 121.45 ± 10.26 mmHg; p <
0.0001), as well as a significant reduction compared to control group
(1.37 ± 4.98 mmHg vs −7.58 ± 8.04 mmHg, p < 0.0001) (Movahed
et al., 2013). In a double-blind, crossover RCT, 11 healthy obese men
(mean age of 52 years) were supplement for 30 days with 150 mg/day
of resveratrol: at the end of the treatment, results revealed a significant
reduction in mean arterial pressure (94.9 ± 2.9 v. s 97.9 ± 2.7 mmHg;
p = 0.02) and in SBP (124.7 ± 3.1 vs. 130.5 ± 2.7 mmHg; p = 0.006)
after resveratrol supplementation compared to placebo (Timmers
et al., 2011), while no significant changes in DBP were observed.
Another 12-week double-blind crossover RCT compared the effects of
resveratrol capsules (providing 75 mg trans-resveratrol) or placebo on
28 healthy obese adults aged between 40 and 75 years: at the end of the
study, a relative increase of 23% in FMD was reported compared to
baseline levels (95% CI: 0.22, 2.54; p = 0.021) but no significant
changes in BP after daily resveratrol treatment (p > 0.05) were
observed (Wong et al., 2013). A double-blind, crossover RCT
included 45 overweight and obese subjects (mean age 61 years)
supplemented with 150 mg of resveratrol or a placebo for 4 weeks,
spaced by a 4-week washout period: at the end of the trial, DBP (84 ±
9 mmHg vs. 86 ± 9 mmHg; p = 0.044) and heart rate (64 ± 8 BPM vs.
67 ± 8 BPM; p = 0.025) increased significantly in the resveratrol
supplementation group but no significant changes were reported in
SBP when comparing to baseline values, also no changes in other
endothelial markers were observed between the groups (van derMade
et al., 2015). Another double-blind, crossover RCT tested the effects of
150 mg/day of resveratrol in 17 patients with type-2 diabetes mellitus
(40–70 years) leading to a significant reduction in left ventricular end
systolic diameter (p = 0.04). Although a tendency in SBP reduction

(p = 0.09) was observed after resveratrol supplementation, no changes
in DBP were noted (Timmers et al., 2016). A double-blind, placebo-
controlled RCT including 50 patients with type-2 diabetes mellitus
(mean age 58 years) supplemented with 100 mg/day of resveratrol for
12 weeks, reported a decrease in SBP (−5.5 ± 13.0 mmHg; p < 0.05)
and in cardio-ankle vascular index (CAVI) (−0.4 ± 0.7; p < 0.05) in the
intervention group when compared end of trial to baseline values.
Although a significant decrease in CAVI (p < 0.01) was observed
comparing intervention group with control was observed, no
significant differences between the groups were noted for SBP and
DBP (Imamura et al., 2017). A double-blind placebo-controlled RCT
was conducted on 45 subjects with type-2 diabetes mellitus to
investigate the daily intake of 800 mg of resveratrol or placebo
capsules for 8 weeks showed a significant decrease in SBP
(−10.42 ± 8.40 mmHg vs. −1.475 ± 8.72 mmHg; p = 0.002) and
DBP (−5.6 ± 6.50 mmHg vs. 1.50 ± 8.75 mmHg; p = 0.006) in the
resveratrol group compared to the placebo group (Khodabandehloo
et al., 2018). In a double-blind, placebo-controlled, RCT 46 patients
with type-2 diabetes mellitus (aged between 30 and 70 years) were
recruited to evaluate the effects of 2-month supplementation of
800 mg/day of resveratrol reporting a significant reduction in SBP
(p = 0.000) and DBP (p = 0.000) in the intervention group when
comparing end of trial results to baseline. Also, a significant reduction
in SBP (−10.2 ± 8.5 vs. −1.3 ± 10.8 mmHg, p = 0.002) andDBP (−7.3 ±
6.8 vs. 1.1 ± 9.0 mmHg, p = 0.000) when comparing intervention
group to placebo was observed (Seyyedebrahimi et al., 2018). Another
double-blind, RCT recruited 50 patients with non-alcoholic fatty liver
disease (18 years and older) to test resveratrol supplementation (a
capsule a day of 500 mg of pure trans-resveratrol) for 12 weeks on BP
leading to no significant changes in BP, although changes in SBP

TABLE 1 (Continued) Main characteristics of the randomized controlled trials evaluating the effects of resveratrol supplementation on cardiovascular risk
factors.

Author, year
of
publication,
country

Study
design

Population
characteristics

Intervention
duration

Intervention
type

Resveratrol
dose (daily
intake)

Control
type

Main findings

DBP (p = 0.006)
was found in the
resveratrol group
compared to the
placebo group

Seyyedebrahimi et al.
(2018), Iran

Double-
blind,
placebo-
controlled

46 patients with
T2DM (50 years)

2 months Resveratrol capsule 800 mg resveratrol Placebo capsules
(microcellulose)

A significant
reduction in SBP
(p = 0.000) and
DBP (p = 0.000)
was observed in the
intervention group
after the treatment
compared to
baseline. Also, a
significant
reduction in DBP
(p = 0.000) and SBP
(p = 0.002) was
observed
comparing
intervention and
placebo groups

Abbreviations: BP, blood pressure; CAVI, cardio-ankle vascular index; d, day; DBP, diastolic blood pressure; FMD, flow-mediated dilatation; HR, heart rate; mo, month; NAFLD, non-alcoholic

fatty liver disease; RCT, randomized controlled trial; RGC, red grape cell powder; SBP, systolic blood pressure; T2DM, type 2 diabetes mellitus; wk, week; y, year.

Frontiers in Pharmacology frontiersin.org05

Godos et al. 10.3389/fphar.2024.1368949

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1368949


significantly differed between the intervention and the control group
(Faghihzadeh et al., 2015).

However, another group of studies with similar investigation
design led to null results. A 90-day double-blind, placebo-controlled,
RCT investigated the effects of resveratrol in a group of
32 overweight older adults (65 years or older) randomized into
three groups: (i) 1,000 mg/day of resveratrol (high dose), (ii)
300 mg/day of resveratrol (moderate dose), or (iii) placebo: after
the treatment period, no significant results were reported in terms of
SBP and DBP either for end of trial versus baseline value comparison
or between the groups comparison (Anton et al., 2014). A 6-month
double-blind, RCT 192 patients with type 2 diabetes mellitus (mean
age about 65 years) were involved and supplemented with capsules
containing different doses of resveratrol (500 mg/day or 40 mg/day)
or with a placebo: at the end of the study, no significant results were
reported in terms of BP improvement (Bo et al., 2016). Finally, a
double-blind, parallel RCT investigated the effects of resveratrol
supplementation (1,000 mg of resveratrol, 150 mg of resveratrol, or
placebo tablets) in 66 middle-aged community-dwelling men (mean
age 49 years) for 16 weeks: at the end of the trial, the results showed
no significant differences in SBP and DBP after resveratrol treatment
(Kjær et al., 2017).

3 Molecular mechanisms in vascular
health and disease

The endothelium is a cellular monolayer covering the blood
vessel wall which is important in maintaining organ health and
homeostasis. Endothelium exerts numerous functions spacing from
the maintenance of vascular tone to the supply of antioxidant,
antithrombotic, and anti-inflammatory interfaces (Xu et al.,
2021). Nitric oxide (NO) is the endothelium-relaxing derived
factor produced by L-arginine from the endothelium nitric oxide
synthase (eNOS) that uses tetrahydrobiopterin (BH4) as a cofactor
(Förstermann and Münzel, 2006). The production of NO is
regulated by different mechanisms that respond to
mechanosensors/mechanosensitive complexes on the surface of
endothelial cells (Chatterjee, 2018). The endothelium produces
also vasoconstrictor molecules such as endothelin-1 (ET-1),
angiotensin II (Ang-II), thromboxane A2 (TxA2), thrombin, and
other molecules involved in many other functions such as
coagulation, and platelet activity (Miller, 2006; Sharma et al.,
2018). Endothelium integrity is essential to maintain the
semipermeable barrier between the vascular smooth muscle and
the vascular lumen (Abdelsalam et al., 2019). Different
microstructures have been identified as essential for endothelial
cell integrity that together are known as endothelial glycocalyx
(Harding et al., 2019) that is important in regulating endothelial
function such as the flow-dependent NO synthesis (Ebong et al.,
2014; Harding et al., 2018), and regulate endothelial permeability
(Singh et al., 2007). Different studies demonstrate that glycocalyx
alteration led to increased permeability (Puerta-Guardo et al., 2019;
Biering et al., 2021) and a reduction in NO synthesis (Kang
et al., 2020).

Endothelial dysfunction linked to oxidative stress,
inflammation, and correlated damages is the main cause of
CVD onset (Figure 1). Oxidative stress can be induced by

exposure to different factors such as oxLDL (Gradinaru et al.,
2015), high plasma glucose, free fatty acids (Sun et al., 2019),
trimethylamine-N-oxide (TMAO) (Piotrowska et al., 2018; Brunt
et al., 2020), and other agents (Yan et al., 2017; Mongiardi et al.,
2019). Reactive oxygen species (ROS) are produced by different
enzymes like xanthine oxidase, NADPH oxidases, dysfunctional
mitochondria, and uncoupled eNOS (Schulz et al., 2014). eNOS is
well known for its role in the production of NO from L-arginine.
However, uncoupled eNOS switch to the production of superoxide
anion (O2-) (Karbach et al., 2014) that not only causes a reduction
of NO production but also superoxide anion can react with NO
forming peroxynitrite anion which further reduces the
bioavailability of NO contributing to endothelial dysfunction
(Xu et al., 2016; Daiber and Chlopicki, 2020). Different factors
can contribute to eNOS uncoupling including L-arginine and
BH4 deficiency, oxidative disruption of the zinc-sulfur complex
(ZnCys4) of the eNOS dimer, S-glutathionylation of eNOS, and
phosphorylation of eNOS at Thr495 and Tyr657 (Daiber et al.,
2019; Wu et al., 2021). Another factor involved in endothelial
dysfunction is inflammation. Endothelial inflammation plays a
pivotal role in the progression of atherosclerosis and CVD (Haybar
et al., 2019) leading to the production of proinflammatory
mediators such as interleukin (IL)-8, chemokines, monocyte
chemoattractant protein-1 (MCP-1), intercellular adhesion
molecule-1 (ICAM-1), P-selectin, E-selectin, vascular adhesion
molecule-1 (VCAM-1), and other inflammatory factors that
attract monocyte and neutrophils which penetrate the arterial
wall initiating the inflammatory process of atherogenesis
(Chistiakov et al., 2018). The transcriptional factor NF-kB is
strongly implicated in vascular inflammation by increasing
proinflammatory factors such as TNF-a, IL-6, MCP-1, and IL-
1b (Zhang et al., 2016). Endothelial-to-mesenchymal transition
(EndoMT) is another factor implicated in endothelial dysfunction.
It is characterized by the loss of endothelial morphology and the
acquisition of a mesenchymal-like morphology accompanied by
gene expression patterns (Chen and Simons, 2016) that involve
TGF-beta. TGF-beta activation leads to the expression of
transcription factors such as zinc finger E-box homeobox 1,
Smads, Snail, and Slug promoting the expression of
mesenchymal markers like smooth muscle protein 22a, a-SMA,
collagen 1A1, vimentin, fibronectin, matrix metalloproteinase
(MMP)-2, MMP-9, and FSP1 (Gonzalez and Medici, 2014;
Pérez et al., 2017). EndoMT is driven by different factors such
as hypoxia, chronic inflammation, oxidized lipids, hyperglycemia,
and ROS production (Evrard et al., 2016) and could be considered
as a link between atherosclerosis initiating factors and disturbed
blood flow and plaque formation (Chen and Simons, 2016).

4 Potential pharmacological effects of
resveratrol and mechanisms of action

Resveratrol is largely known for its antioxidant activity. In vitro
studies demonstrated that this (poly)phenol can directly scavenge a
variety of oxidants, including hydroxyl radical, superoxide, and
hydrogen peroxide (Xia et al., 2017). Resveratrol treatment
showed to improve the levels of glutathione (GSH), glutathione
reductase (GR), superoxide dismutase (SOD), catalase (CAT), and
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FIGURE 1
An overview of endothelial dysfunction. Different oxidative factors can contribute to eNOS uncoupling leading to the production of ROS and the
reduction of NO bioavailability. Abbreviations; Ang-II, Angiotensin II; AT1, angiotensin one receptor; BH4, tetrahydrobiopterin; ET1, endothelin-1; ETA,
endothelin A receptor; NO, nitric oxide; NOX, nicotinamide adenine dinucleotide phosphate oxidase; O2-, superoxide anion; ONOO-, peroxynitrite;
ROS, reactive oxygen species.

FIGURE 2
Main mechanisms by which resveratrol exerts its cardioprotective effects. Resveratrol activates AMPK/Sirt1/PGC-1 pathway resulting in the
deacetylation/phosphorylation of PGC-1. As a coactivator, PGC-1 results in the activation of downstream genes, comprising multiple genes involved in
regulation of mitochondrial function. AMPK and SIRT1 activation results in the nuclear translocation of FOXO and upregulation of eNOS. Resveratrol
modulates the Nrf2/KEAP1 pathway through Nrf2 dissociation from KEAP1 and its translocation into nucleus that in turn activates ARE, which
modulates the transcription of antioxidant enzymes. AMPK, AMP kinase; ARE, antioxidant response element; CAT, catalase; eNOS, endothelial nitric oxide
synthase; FOXO, Forkhead box O; Keap1, Kelch-like ECH-associated protein 1; NAD, nicotinamide adenine dinucleotide; Nrf2, nuclear factor (erythroid-
derived 2)-like 2; PGC-1, peroxisome proliferator-activated receptor gamma coactivator 1; SIRT1, sirtuin 1; SOD2, superoxide dismutase 2.
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acetylcholinesterase (AchE) (Ibrahim et al., 2022) as well as a 14-fold
increase of SOD function that, by reducing superoxide, restores
mitochondrial function (Diaz-Gerevini et al., 2016) (Figure 2). Due
to the hydrophobic properties of resveratrol, it is likely that its
activity is mediated by binding to hydrophobic pockets in proteins.
There are around 20 proteins that have been identified to interact
directly with resveratrol (Britton et al., 2015). Among them, an
important target of resveratrol is a particular subpopulation of
estrogen receptor alpha (ER-α) associated with caveolae in the
endothelial plasma membrane and coupled with eNOS via G
protein (Wyckoff et al., 2001). Another important target of
resveratrol is the protein sirtuin 1 (SIRT1). The cardioprotective
effects of resveratrol have been historically attributed, as for many
other (poly)phenol compounds, to its reactive oxygen species (ROS)
scavenger activity (Xia et al., 2017). Resveratrol can increase nitric
oxide (NO) bioavailability through direct ROS scavenging via Akt/
endothelial NOS (eNOS) signaling which increases NO production
or cellular-enzymatic antioxidant defense (Meng et al., 2009; Park
et al., 2015; Li T. et al., 2017). Furthermore, resveratrol can
downregulate the expression of different enzyme-generating ROS
products such as nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase 1 (NOX1), NOX2, NOX4, p22phox, and
p47phox as well the NOX complex activity (Csiszar et al., 2006;
Addabbo et al., 2009). Moreover, in vitro studies demonstrated that
resveratrol also reduces the oxidative stress in endothelial progenitor
cells (EPCs) and prevents their apoptosis through peroxisome
proliferator-activated receptor (PPAR)-gamma/heme oxygenase-1
(HO-1) pathways (Shen et al., 2016). Similar results demonstrated
that resveratrol can inhibit ROS-induced cell death by stimulating
AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/
peroxisome proliferator-activated receptor-gamma coactivator-1
(PGC-1) alpha pathway (Li et al., 2017a; Huang et al., 2021).
Recent studies have demonstrated that resveratrol can exert its
cardioprotective role through the modulation of the SIRT1/c-Jun
N-terminal kinase (c-JNK)/p53 pathway (Ibrahim et al., 2022) or
through the indirect activation of SIRT1 modulating different
pathways such as the inhibition of phosphodiesterase (PDE) and
subsequent elevation of cellular nicotinamide adenine dinucleotide
(NAD+) (Park et al., 2012), by enhancing the binding of SIRT1 to
lamin A (Liu et al., 2012) or by the upregulation of SIRT1 expression
(Csiszar et al., 2009; Xia et al., 2013). Resveratrol can directly interact
with SIRT1 (Howitz et al., 2003; Hubbard et al., 2013) as well as
increase its activity by rising the intracellular NAD + concentration,
which is dependent on phosphodiesterase (PDE) inhibition, leading
to the phosphorylation of AMPK (Park et al., 2012), or enhancing
the binding of SIRT1 to lamin A (Liu et al., 2012; Park et al., 2012;
Alexander et al., 2015). AMPK can also be activated by resveratrol
and other polyphenols likely through the inhibition of
mitochondrial ATP generation (Zheng and Ramirez, 2000).
AMPK leads also to an increase in cellular NAD levels indirectly
stimulating SIRT1, which utilizes NAD as a substrate (Cantó et al.,
2009). Furthermore, SIRT1 activation can protect cells against
oxidative stress through its deacetylating activity on different
transcription factors that control the expression of many genes,
such as superoxide dismutase 2 (SOD2) (Milne and Denu, 2008).
SIRT1 activation led also to the downregulation of thrombosis-
related markers P-selectin, P-selectin glycoprotein ligand 1 (PSGL-
1), and Von Willebrand factor (vWF) (Lou et al., 2017). Another

target of resveratrol is Nrf2 that, after nucleus translocation, binds to
the promoter sequence of antioxidant response element (ARE) and
controls the expression of different antioxidant enzymes including
glutathione reductase and HO-1 (Ungvari et al., 2010; Kweider et al.,
2014; Xia et al., 2014). At the endothelial level, resveratrol can
increase NO production through different mechanisms that can
include the prevention of NO degradation (Morrison and Pollock,
1990), the upregulation of endothelial NO synthase (eNOS), the
enhancement of eNOS activity or the prevention of eNOS
uncoupling (Xia et al., 2014). The interaction between resveratrol
and SIRT1 leads to the activation of Forkhead box O (FOXO)
factors, downstream targets of SIRT1, which in turn can upregulate
the expression of eNOS (Xia et al., 2013). The activation of
SIRT1 induces an upregulation of GTP cyclohydrolase 1 (GCH1)
increasing the biosynthesis of tetrahydrobiopterin (BH4) (Li et al.,
2019) which is a eNOS cofactor that prevents eNOS uncoupling
(Förstermann and Münzel, 2006; Li and Förstermann, 2013;
Förstermann et al., 2017). Furthermore, resveratrol seems to increase
eNOS phosphorylation in vitro (Klinge et al., 2005; 2008) leading to an
increased activity of this enzyme with consequently increased NO
production (Fleming, 2010; Heiss and Dirsch, 2014). Additionally,
resveratrol increases eNOS activity by inducing SIRT1-mediated
deacetylation of eNOS and by upregulating the enzyme
dimethylarginine dimethylaminohydrolase (DDAH) that is involved
in the degradation of the eNOS inhibitor asymmetric dimethylarginine
(ADMA) (Maas et al., 2009; Frombaum et al., 2011). Resveratrol also
exhibits anti-inflammatory properties. Endothelial cells acquire two
activated phenotypes during the inflammatory process. Type
1 phenotype is a rapid and transitory response while type
2 phenotype is a steady response that promotes the expression of
inflammatory cytokines and adhesion molecules (Gimbrone and
García-Cardeña, 2016). Lysophosphatidylcholine (LPC) is thought to
be associated with coronary artery inflammation and the increase of
pro-inflammatory cytokines (Strowig et al., 2012) that could be
inhibited by resveratrol through Toll-like receptor-4 (TLR-4)/
Myeloid differentiation primary response 88 (MyD88)/NF-kB
signaling pathways (Sheldon et al., 2014; Yanez et al., 2019).
Resveratrol could increase the expression of Krüppel-like factor-2
(KLF2), involved in the prevention of atherosclerosis, which led to a
reduction in pro-inflammatory cytokines (Chu et al., 2018) and various
adhesion molecules including vascular cellular adhesion molecule-1
(VCAM-1), intercellular adhesionmolecule 1 (ICAM-1), E selectin, and
monocyte chemoattractant protein-1 (MCP-1) (SenBanerjee et al.,
2004; Chu et al., 2018). Another mechanism mediated by resveratrol
on endothelial cells is the downregulation of endothelin-1 (ET-1), a
potent vasoconstrictor (Nicholson et al., 2008) implicated in the
development of vascular disease and atherosclerosis (Corder et al.,
2001). Furthermore, different studies have demonstrated the effects of
resveratrol on vascular remodeling. Smooth muscle cell (SMC)
proliferation is essential for the maintenance and repair of the
vasculature, on the other hand, excessive proliferation due to
vascular injury promotes the development of atherosclerosis,
restenosis, and pulmonary hypertension (Thompson et al., 2014;
Wang et al., 2018). In vitro studies have shown that resveratrol
treatment can inhibit SMC proliferation likely through the inhibition
of the phosphoinositide 3-kinases (PI3K)/Akt/mTOR pathway
(Mnjoyan and Fujise, 2003; Poussier et al., 2005; Brito et al., 2009).
Furthermore, resveratrol treatment also prevents arterial stiffness likely
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by the activation of SIRT1 which exerts anti-inflammatory properties
through the inhibition of NF-kB and the downregulation of VCAM-1
and p47phox (Fry et al., 2016).

5 Role of resveratrol gut-microbiota
derived metabolites on CVD

The human microbiome is the term used for the trillions of
microorganisms that cohabit in and on us (Ursell et al., 2012).
Microbiome research has surged with remarkable speed in the last
20 years, unveiling the numerous ways in which these tiny inhabitants
influence our everyday existence. It has become evident that the
microbiota plays a pivotal role in shaping human health, affecting
disease outcomes, and governing host physiology (Cryan et al., 2019).
Themost representative phyla are Firmicutes andBacteroidetes, followed
by Proteobacteria and Actinobacteria (Jin et al., 2019). Among factors
influencing microbiota composition, diet plays a pivotal role as it
provides the substrates that facilitate the proliferation of specific taxa
over others. Clearly, variations in microbiota composition also impact
the metabolites produced, which can either positively or negatively
influence the host’s health status (Gentile and Weir, 2018; Fan and
Pedersen, 2021). Many studies demonstrated that alteration in the gut
microbiota composition and relative metabolites are associated with
different conditions, such as neurodegenerative disease (Cryan et al.,
2019), diabetes (Patterson et al., 2016), cancer (Park et al., 2022) and
CVD (Rahman et al., 2022). One of themainmetabolites correlated with
increased cardiovascular disease was trimethylamine-N-oxide (TMAO).
This metabolite is produced in the liver from the microbial-derived
trimethylamine (TMA), metabolized by nutrients abundant in the
Western diet such as lecithin, choline, and carnitine (Witkowski
et al., 2020). Furthermore, the Western diet leads to the proliferation
of bacterial species characterized as pro-inflammatory. The
establishment of a pro-inflammatory state also results in alterations
to the intestinal barrier (leaky gut), promoting the translocation of
harmful molecules (Christovich and Luo, 2022) and the
establishment of a low-grade chronic inflammatory state (van den
Munckhof et al., 2018), one of the main risk factors for different
pathologies, including CVD (Munger et al., 1996; Rauchhaus et al.,
2000). Various studies have investigated the possible interaction between
gut microbiota dysbiosis and CVD. An increase of Prevotella and
Klebsiella genera and a reduction of Faecalibacterium, Oscillibacter,
Roseburia, Bifidobacterium, Coprococcus, and Butyrivibrio have been
observed in hypertensive and pre-hypertensive participants (Li et al.,
2017b). Similarly, decreased abundance of Faecalibacterium prausnitzii
and Lachnospiraceae family and increased levels of Ruminococcus,
Prevotella, Hungatella, and Succinclasticum genera were reported for
participants with heart failure (Oniszczuk et al., 2021).

In food products, resveratrol is primarily present in its glycosylated
form, known as piceid and polydatin (Chaplin et al., 2018). Once
ingested, resveratrol travels through the gastrointestinal tract, with an
estimated 70% absorption rate (Gambini et al., 2015). Within the
intestine, resveratrol binds different nutrients which influence its
absorption capacity (Gambini et al., 2015). However, the free form
of resveratrol reaches low concentration in the blood as it is metabolized
mainly in the liver through processes of glucuronidation and sulfation
(Walle, 2011). Resveratrol-3-sulfate and resveratrol-3-glucuronide have
been detected in different organs and tissues such as the liver, adipose

tissue, and heart (Andres-Lacueva et al., 2012; Bresciani et al., 2014).
Moreover, resveratrol could be metabolized in other derivatives, such as
piceatannol and dihydroresveratrol (Potter et al., 2002; Menet et al.,
2017). Piceatannol is produced through hydroxylation of resveratrol in
the liver (Potter et al., 2002), while dihydroresveratrol through the gut
bacteria metabolism (Menet et al., 2017). The importance of the gut
microbiota in resveratrol metabolism is becoming increasingly evident.
In particular, it was observed that gut bacteria can hydrolyze the
glucoside form of resveratrol, piceid, producing resveratrol and vice
versa (Chaplin et al., 2018). Bifidobacteria infantis and Lactobacillus
acidophilus have been identified as bacteria involved in the synthesis of
resveratrol from piceid (Wang et al., 2011; Basholli-Salihu et al., 2016;
Theilmann et al., 2017). Resveratrol and its precursors could be
metabolized by gut microbiota producing resveratrol metabolites.
The first resveratrol-derived metabolite identified was
dihydroresveratrol, which is produced by Slackia equolifaciens and
Adlercreutzia equolifaciens, followed by 3,4′-dihydroxy-trans-stilbene
and 3,4′-dihydroxybibenzyl (lunularin) (Bode et al., 2013).
Furthermore, additional studies demonstrated that other bacteria,
such as Bacillus cereus, B. infantis, and L. acidophilus, are responsible
for piceid production (Cichewicz and Kouzi, 1998; Wang et al., 2011;
Basholli-Salihu et al., 2016). Gut bacteria could also metabolize piceid to
produce dihydropiceid and dihydroresveratrol (Wang et al., 2011).

Various studies have investigated the role of resveratrol-derived
metabolites on cardiovascular outcomes. In an in vitro study conducted
on isolated rat thoracic aorta, it was evaluated the effects of different
metabolites extracted from the rhizome Rheum undulatum (Yoo et al.,
2007). The extract included seven hydroxystilbene components as active
principles (piceatannol, resveratrol, desoxyrhapontigenin,
rhapontigenin, piceid, rhaponticin, and ε-viniferin) (Yoo et al., 2007).
Of these, piceatannol (a resveratrolmetabolite) exhibited themost potent
vascular relaxation effect, which was diminished after the removal of
functional endothelium or by pretreatment of the aortic tissues with
NG-nitro-L-arginine methyl ester (L-NAME), a well known non-
selective nitric oxide synthase inhibitor (Yoo et al., 2007).
Furthermore, in vivo piceatannol administration, in a rat model of
obesity, tended to reduce the heart/body weight ratio, generally used as a
parameter for heart hypertrophy (Hijona et al., 2016). Furthermore, it
was observed that the piceatannol at the dose of 45 mg/kg can increase
significantly ephrin-B1 protein level, a structural protein essential for
cardiac tissue architecture (Hijona et al., 2016). In another in vivo study,
it was evaluated the effects of resveratrol treatment on atherosclerosis
(Chen et al., 2016). Resveratrol supplementation effectively reduced
TMA production, and consequently, derived metabolite (TMAO), and
regulated bile acid metabolism in both C57BL6J and ApoE −/− mice
(Chen et al., 2016) as well as reduced atherosclerotic lesion size, alleviated
hyperlipidemia, ameliorated hepatic lipid accumulation, and promoted
lipid metabolism in ApoE −/− mice (Cheng et al., 2023). The positive
effects of resveratrol supplementation were associated with changes in
the microbiota composition with a significant increase in the abundance
of Bacteroides, Lactobacillus, Bifidobacterium, Verrucomicrobia and
Akkermansia genus (Chen et al., 2016; Cheng et al., 2023). In line,
another experimental study demonstrated that resveratrol
supplementation may influence not only gut microbiome but also
intestinal integrity biomarkers (Chen et al., 2020). Moreover,
resveratrol intake was associated with increased total physical activity
and exercise capacity with enhanced skeletal muscle metabolism and
function in an animal model of heart failure (Sung et al., 2017). In
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another study, fecal transplantation from resveratrol-fed mice donor to
recipient mice was associated with improved glucose homeostasis and
decreased colon inflammation which was also associated with reduced
blood pressure after angiotensin-II infusion (Kim et al., 2018).
Furthermore, it was demonstrated that sterile fecal filtered from
resveratrol-fed mice was sufficient to improve glucose homeostasis in
obese mice (Kim et al., 2018). Animal models of high-fructose diet
during pregnancy and lactation are used to study the hypertension
development in offspring (Tain et al., 2018). Many studies investigated
the effects of resveratrol administration during pregnancy and lactation
on offspring outcomes. Maternal resveratrol supplementation during
pregnancy and post-weaning was shown to exert beneficial effects on
offspring reducing renal oxidative stress, restoringmRNA levels of genes
involved in the nutrient-sensing pathways Prkaa2, Prkag2, Ppara, Pparb,
Ppargc1a, and Sirt4 and prevent hypertension associated with high-
fructose intake modulating the gut microbiota composition and
restoring the Firmicutes to Proteobacteria ratio (Tain et al., 2018).
Similar results demonstrated that resveratrol administration can
protect male offspring from hypertension accompanied by a
significant downregulation of angiotensinogen, renin, prorenin
receptor, angiotensin-converting enzyme (ACE), angiotensin II type
1 receptor (AT1R), but increased ACE2, angiotensin II type 2 receptor
(AT2R) and angiotensin (1–7) receptor MAS (Hsu et al., 2021). The
beneficial effects of resveratrol supplementation were associated with
changes in the microbiota composition with increased abundance of
butyrate-producing genera Akkermansia, Lachnospiraceae and
Ruminococcaceae, as well as Cyanobiaceae and Erysipelotrichaceae
family (Hsu et al., 2021). Concerning short-chain fatty acid (SCFA)-
producing bacteria, different studies demonstrated that resveratrol
administration can increase the abundance of Allobaculum,
Bacteroides and Blautia (Alrafas et al., 2019; Wang et al., 2020).
SCFAs, particularly butyrate, are well known to be inhibitors of
histone deacetylase (HDAC). The protective effects exerted by SCFAs
are likely mediated by their HDAC inhibitory activity on intestinal
macrophages resulting in the suppression of proinflammatory cytokines
production (Evans et al., 2020). Furthermore, SCFAs have been
demonstrated to attenuate cardiac hypertrophy, fibrosis, and
dysfunction in various animal models of CVD (Chen et al., 2015;
Zhang et al., 2017; Patel, 2018). SCFAs also showed the ability to
regulate blood pressure through the interaction with two receptors,
theOlfactory receptor 78 (Olfr78) and theGprotein-coupled receptor 41
(Gpr41), both expressed in smooth muscle cells of blood vessels
(Pluznick, 2014; Miyamoto et al., 2016).

6 Conclusion

The findings from clinical studies on the effects of resveratrol on
cardiovascular disease are difficult to interpret because the effects on
both vascular and endothelial outcomes are inconsistent, and rather
unrelated to the dose. In fact, most studies supplementing red wine,
even dealcoholized type (to eliminate the potential confounding effect of
alcohol) resulted in significant effects although the resveratrol content
was, on average, much lower than tablet supplementation (about
1–3 mg/day vs. 100–300 mg/day), while other studies with often
extreme resveratrol supplementation (i.e., >500 mg/day) resulted in
null findings. The conflicting findings from RCTs could be potentially
explained through the differences in the real exposure to resveratrol

metabolites, in part attributed to the interindividual variations in the
physiological response to resveratrol intake due to differences in gut
microbiota composition. Additionally, the potential interactions,
including accumulating, synergistic, and antagonistic effects, with
other food matrix components cannot be ruled out. Many in vitro
and in vivo studies suggested that resveratrol cardioprotective effects are
mediated by the activation of different antioxidant, anti-inflammatory,
and anti-hypertensive pathways. These are also accompanied by
changes in microbiota composition. In particular, most of the
studies agreed with the increase in the abundance of SCFA-
producing bacteria. SCFAs showed both direct and indirect
cardioprotective effects through the attenuation of cardiac
dysfunction and modulation of the inflammatory state. For these
reasons, it is important to further explore the role of the gut
microbiota in modulating the effects of resveratrol supplementation
and its effects in preventing cardiovascular pathologies.
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