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Introduction: There is a growing interest in studying natural products for the
identification of novel lead compounds for drug development for treating
inflammatory diseases. Although some studies have focused anti-inflammatory
activity of benzophenones and xanthones, exploring additional targets such as
enzymes and cytokines, involved in their inflammatory response could provide
more comprehensive understanding of the compounds’ anti-inflammatory
effects. In this study, four xanthones ananixanthone (1), smeathxanthone A (2),
smeathxanthone B (3), and 1,3,5,8-tetrahydroxy-2-(3-methybut-2-enyl)-4-(3,7-
dimethyloct-2,6-dienyl) xanthone (4); and three benzophenones guttiferone O
(5), guttiferone M (6), and aristophenone A (7) from Garcinia smeathmannii
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(Planch. & Triana) Oliv. were investigated for their effect on nitric oxide production,
cyclooxygenase, lipoxygenase inhibition, and Th1/Th2 cytokines production in
activated RAW 264.7 macrophages.

Methods: The Griess reagent method and the ferrous oxidation-xylenol orange
assay were used to evaluate the inhibition of NO production and the 15-
lipoxygenase activity respectively. Cyclooxygenase activity was assessed using
the fluorometric COX activity assay kit and measurement of Th1/Th2 cytokines
was performed using a flow cytometer.

Results: All the tested compounds exhibited a dose-dependent inhibition of NO
production with varying degrees of inhibitory effects on 15-LOX activity.
Compound (6), displays the best inhibitory effect on COX-1/COX-2 activity. A
general trend of the tested compounds on cytokines profiles revealed that
compound (5) showed a pronounced enhancement of anti-inflammatory
cytokines (IL-4 and IL-10).

Conclusion: This observation supports future exploration of ananixanthone (1),
guttiferoneO (5), and guttiferone (6) as potential candidates for the development of
anti-inflammatory drugs.
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1 Introduction

Dysregulated inflammation is a complex biological response
orchestrated by the immune system which can lead to a myriad of
chronic diseases, including autoimmune disorders, cardiovascular
complications, and various cancers (Calhelha et al., 2023). It involves
the activation of immune and inflammatory cells such as macrophages
(Kolliniati et al., 2022). Macrophages play a crucial role in the initiation
and development of multiple inflammatory diseases and could be
activated to release inflammatory cytokines and mediators such as
nitric oxide (NO), interleukins, interferon-γ (IFN-γ), and tumour
necrosis factor-α (TNF-α) (Marrocco and Ortiz, 2022). Additionally,
inflammatory enzymes cyclooxygenase (COX) and lipoxygenase (LOX)
play pivotal roles in the initiation and progression of inflammation (Cui
et al., 2022). Cyclooxygenase, existing in two isoforms (COX-1 and
COX-2), catalyzes the conversion of arachidonic acid into
prostaglandins, while LOX is responsible for the synthesis of
leukotrienes (Smith et al., 2011). Available literature data indicated
that pro-inflammatory enzymes and cytokines play an important role in
the pathogenesis of inflammation via different pathways (Chen et al.,
2018). Hence, the inhibition of these enzymes and other inflammatory
mediators is considered an important target for the management of
inflammation-related diseases.

The current therapeutic strategy for managing chronic
inflammation is largely dominated by synthetic drugs especially
non-steroidal anti-inflammatory drugs (NSAIDs). These drugs are
often accompanied by limited efficacy and unintended side effects
including gastrointestinal complications and immunosuppression
(Ziesenitz et al., 2022; Farah et al., 2023). Therefore, there is a need
to explore safer andmore effective alternatives to overcome painful and
other inflammatory conditions. Hence, there has been an increasing
interest in the exploration of naturally occurring compounds as
potential anti-inflammatory agents (Bakar et al., 2018). Furthermore,
a particular focus has emerged on the study of naturally occurring
benzophenones and xanthones which are compounds abundant in

various plants, and renowned for their diverse biological activities (Xue
et al., 2020). Due to their interesting scaffolds and great
pharmacological importance, some benzophenone and xanthone
compounds have been investigated as potential anti-inflammatory
drug candidates (Huang et al., 2020). The ability of several
benzophenones and xanthones derivates compounds to alleviate
inflammation has been demonstrated so far, with several studies
pointing out inhibition of COX enzymes and inflammatory
mediators as the main anti-inflammatory mechanisms. 1,3,5,6-
tetrahydroxyxanthone (3) and guttiferone E (7) were reported as
potential inhibitors of NO production and 15-LOX activity
(Dzoyem et al., 2015). In the study of Folquitto et al. (2022), some
benzophenones analogs including 2′-hydroxy-4′-benzoylphenyl-β-D-
glucopyranoside, 4-hydroxy-4′-methoxybenzophenone and 4′-(4″-
methoxybenzoyl) phenyl-β-D-glucopyranoside showed interestig
values of Glide Score in COX-2 docking evaluation and selectively
inhibited COX-2 and COX-1 in an vitro enzymatic assay (Folquitto
et al., 2022). Malik et al. (2022) showed the ability of some
benzophenone derivatives to inhibit pro-inflammatory mediators
including IFN-γ, TNF-α, IL-1β, IL-6, GM-CSF, IL-2and nitric oxide
(NO) (Dzoyem et al., 2015; Folquitto et al., 2022; Malik et al., 2022;
Saikia et al., 2023). Another study reported the potential of
hydroxyxanthone derivatives to inibit COX-2 enzyme (Dzoyem
et al., 2015; Folquitto et al., 2022; Malik et al., 2022; Saikia et al.,
2023). Despite these previous work, the full anti-inflammatory potential
of the great diversity of benzophenones and xanthones has not yet been
fully investigated, exploring additional targets such as enzymes and
cytokines, involved in their inflammatory response could provide more
comprehensive understanding of the compounds’ anti-inflammatory
effects. Therefore, new anti-inflammatory agents having multitarget
mechanisms with improved safety profiles that prevent the release of
prostaglandins, leukotrienes, and Th1/Th2 cytokines are needed.
Therefore, this work was undertaken to investigate seven naturally
occurring benzophenones and xanthones derivatives isolated from
Garcinia smeathmannii (Planch. & Triana) Oliv. as potent anti-
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inflammatory agents with a different probable mechanism of action.
Although several studies have demonstrated the ability of some
benzophenones and xanthones to modulate various targets involved
in the inflammatory response, detailed evaluation of ananixanthone,
smeathxanthones A and B, 1,3,5,8-tetrahydroxy-2-(3-methybut-2-
enyl)-4-(3,7-dimethyloct-2,6-dienyl) xanthone, guttiferone O and M,
and aristophenone in modulating key mediators of inflammation such
as LOX, COX and cytokines has not been carried out. In order to
explore the role of the abovementioned benzophenones and xanthones
in managing inflammation associated with various diseases, this study
was designed to investigate in vitro effect on nitric oxide production,
COX/15-LOX inhibition and Th1/Th2 cytokines production in
RAW264.7 activated macrophages.

2 Materials and methods

2.1 Natural products

2.1.1 Plant material
The stem bark of Garcinia. smeathmannii (Planch. & Triana)

Oliv. was collected from Cheffou-Baham (5° 20′9.33″N, 10°

23′34.84″E), western province, Cameroon in April 2010 and was
identified by Victor Nana of the Cameroon National Herbarium
(CNH), Yaoundé, where a voucher specimen (35169/HNC) has
been deposited.

2.1.2 General experimental procedures
Melting points were determined on a Büchi-540 melting point

apparatus. IR spectra were determined on Nicolet 380 Fourier
Transform IR spectrometer. UV spectra were determined on a
Spectronic Unicam spectrophotometer. The 1H, 13C, and DEPT
NMR spectra, as well as two-dimensional experiments (COSY,
NOESY, HSQC, HMBC using pulsed field gradients), were
recorded on a Bruker DRX 500 FT-NMR spectrometer, operating
at 500 MHz (1H) and 125 MHz (13C) and Avance 600 FT-NMR
spectrometer, operating at 600 MHz (1H) and 150 MHz (13C) in
CDCl3, C3D6O or DMSO-d6 with TMS as internal standard.

EI Mass spectra and accurate mass spectra were recorded with a
LC linear ion trap instrument (Esquire 3000) using electrospray
ionization in the negative or positive mode and Sector field mass
spectrometer (Autospec X). Vacuum Liquid Chromatography
(VLC) was carried out using Merck Silica Gel 60 GF254
(230–400 mesh), column chromatography using Silica Gel 60
(230–400 mesh, 70–230 mesh), TLC analysis was performed on
Silica Gel plates (Merck kieselgel 60 GF254, 0.25 mm, 20 × 20 cm)
with different mixtures of petrol ether, cyclohexane,
dichloromethane, ethyl acetate, and acetone and methanol as
eluents; spots were visualized under UV lamps (254 nm) and
(365 nm) or by MeOH–H2SO4 reagent. Solvent evaporation was
done using Rota vapor (laborota 4000; Heidolph).

2.1.3 Isolation and identification of compounds
The air-dried, powdered stem bark of G. smeathmannii (2.5 kg)

was extracted at room temperature for 3 days using distilled
methanol (12 L). The crude methanol extract (207 g) obtained
was partitioned with petroleum ether (88 g; 2.5 L),
dichloromethane (20.4 g; 1.5 L), and ethyl acetate (32 g; 2 L).

The petroleum ether fraction (80 g) was subjected to flash
column chromatography using silica gel (230–400 mesh; 800 g)
eluted with pure petroleum ether, petroleum ether-EtOAc (9: 1),
petroleum ether-EtOAc (7.5: 2.5), petroleum ether-EtOAc (1: 1),
EtOAc and EtOAc-MeOH (7.5: 2.5) to give five main fractions
labeled A (27 g), B (22 g), C (14 g), D (17 g), and E (6.4 g),
respectively.

Fraction A (25 g) was then subjected to column chromatography
(5 × 100 cm) on silica gel (600 g, 230–400 mesh) and eluted by a
petroleum ether-EtOAc mixture of increasing polarity (20: 1–3: 1). A
total of 90 fractions of ca. 300 mL each were collected, concentrated
and combined based on TLC to give five subfractions indexed
A1 to A4. The subfraction A3 (1.9 g) was further subjected to
column chromatography (4 × 30 cm) on silica gel (25 g,
70–230 mesh) and eluted with petroleum ether-EtOAc (18: 2)
to yield compound 4 (8 mg, ≥98% purity). The subfraction A4
(19.2 g), after column chromatography (5 × 50 cm) on silica gel
(350 g, 70–230 mesh), yielded a mixture of polyprenylated
benzophenones. Fractions were then mixed again and
submitted to LH-20 Sephadex column chromatography (1.5 ×
150 cm), eluted with a mixture of DCM-MeOH (1:1) to afford
compound 5 (13.5 mg, ≥95% purity) and 6 (24 mg, ≥98% purity).

Fraction B (20 g) was also subjected to column chromatography
(5 × 100 cm) on silica gel (600 g, 230–400 mesh) and eluted with a
petroleum ether-EtOAcmixture of increasing polarity (20: 1–3: 1). Fifty
fractions of ca. 300 mL each were collected and regrouped into three
subfractions, B1 to B3, based on their TLC profile. Subfraction B1
(1.8 g) was subjected to column chromatography (4 × 30 cm) on silica
gel (20.0 g, 70–230mesh) and eluted with amixture of petroleum ether-
EtOAc (17: 3) to give compound 3 (5.0 mg, ≥99% purity). Subfraction
B2 (8.0 g) was subjected to column chromatography (4 × 30 cm) on
silica gel (20 g, 70–230 mesh) and eluted with a mixture of petroleum
ether-EtOAc (13: 7) to yield compounds 1 (25.0 mg, ≥97% purity).
Subfraction B3 (2.6 g) was also subjected to column chromatography
(4 × 30 cm) on silica gel (30 g, 70–230 mesh) and eluted with a mixture
of petroleum ether- EtOAc (12: 8) to afford compounds 7
(15.0 mg, ≥98% purity) and 2 (22.5 mg, ≥98% purity).

Ananixanthone (1): pale colorless amorphous, mp 107-171
(MeOH); UV (MeOH) λmax (logε) 253.3 (4.19), 269.6 (4.19), 332.8
(3.74); UV (MeOH+NaOH) λmax (logε) 269.6 (4.23), 285 (4.13) sh, 348
(3.62); UV (MeOH + NaOAc) λmax (logε) 269.6 (4.27), 285 (4.15) sh,
338.3 (3.62); UV (MeOH + AlCl3) λmax (logε) unchanged. IR (KBr)
νmax: 3377, 2919, 2852, 1648 cm

−1 (Bayma et al., 1998).
Smeathxanthone A (2): Yellow crystals, mp. 216°C–218°C; UV

(EtOH) λmax (logε): 408 (0.32), 338 (0.21), 337 (0.78), 297 (2.63), 223
(1.27), 205 (5.00); IR (KBr) νmax: 3315, 2891, 2350, 2200, 1962, 1869,
1579, 1440, 1290, 1193, 1084, 936, 822, 784 cm−1 (Komguem et al., 2005).

Smeathxanthone B (3): Yellow powder; mp. 187°C–189°C; [α]22D
+ 30.3 (c, 0.02 MeOH); UV (EtOH) λmax (logε): 408 (0.32), 338
(0.21), 337 (0.78), 297 (2.63), 223 (1.27), 205 (5.00); IR (KBr) νmax:
3727, 3414, 2965, 2359, 2262, 2062, 1987, 1636, 1586, 1346, 1052,
1000, 935, 862, 774 cm−1 (Komguem et al., 2005).

1,3,5,8-tetrahydroxy-2-(3-methybut-2-enyl)-4-(3,7-dimethyloct-
2,6-dienyl) xanthone (4): yellow powder, mp 172°C–173°C; UV
(MeOH) λmax (logε): 283 (4.6), 325 (4.2),350 (4.3) 400 (3.8) nm;
IR (solid) νmax: 2919, 2851, 1627, 1617, 1580, 1485, 1463, 1314, 1217,
1176, 1099, 1007, 967, 830, 809, 719, 704, 618, 589 cm−1 (Fouotsa
et al., 2015).
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Guttiferone O (5): Yellow powder; mp: 103°C; [α]20D : +45 (c
0.17,CH3COCH3); UV(MeOH): λ(logε) = 281 (3.03), 229 (3.04), 297
(2.50) nm; IR (KBr): νmax = 3360, 1725, 1642, 1627 cm−1 (Lannang
et al., 2010).

Guttiferone M (6): yellow oil; [α]24D : −29.8 (MeOH; c 0.15); UV
(MeOH) λmax (logε) 230 (sh), 280 (3.80), 355 (sh) nm; IR (KBr) νmax:
3425, 2936, 1715, 1641, 1225, 1060 cm−1 (Masullo et al., 2008).

Aristophenone A (7): yellow cubes (CHCl3); mp. 82°C; [α]25D +58°

(c 0.1, CHCl3); UV (EtOH) λ max (log?) 280 (4.21) and 228 (4.34)
nm; IR (KBr) ν max 3350, 1730, 1715, 1644, 1220, 1151 cm

−1 (Cuesta-
Rubio et al., 2001).

2.2 Chemicals

Lipopolysaccharide (LPS) from Escherichia coli 0111:B4 was
obtained from Sigma-Aldrich, Darmstadt, Germany. Penicillin/
streptomycin/fungizone (PSF), Dulbecco’s modified Eagle’s medium
(DMEM), and fetal calf serum (FCS) were purchased from Highveld
Biological Products (South Africa). Whitehead Scientific (South Africa)
provided trypsin and phosphate-buffered saline (PBS). 3-(4, 5-
dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) and
quercetin were provided by Sigma-Aldrich St. Louis,MO,United States.
Linoleic acid was purchased from Merck (Darmstadt), xylenol orange
from Searle (England), and sodium carbonate from Holpro Analytic
(South Africa). Tris (hydroxymethyl) aminomethane was purchased
from Sigma, (Switzerland) while 15-lipoxygenase from Glycine max,
ferrous sulfate, indomethacin, and sodium nitrite were obtained from
Sigma (Germany).

2.3 Nitric oxide inhibitory activity in LPS-
activated RAW 264.7 macrophages

2.3.1 Cell culture and maintenance
Murine macrophage RAW 264.7 cell line obtained from the

American Type Culture Collection (Rockville, MD, United States)
was maintained in DMEM supplemented with 10% fetal calf serum
(FCS) and 1% penicillin/streptomycin/fungizone (PSF) under
standard cell culture conditions at 37°C and 5% CO2 in a
humidified environment.

2.3.2 Cytotoxicity assay
The cytotoxic effect of compounds on RAW 264.7 cells was

assessed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl
tetrazolium bromide (MTT) assay as established by Mosmann
(Mosmann, 1983) with slight modifications. Briefly, cells were
seeded at a density of 1 × 105 cells/mL (100 µL) in 96-well
microtitre plates and incubated at 37°C and 5% CO2 in a
humidified environment. After 24 h incubation, 100 µL of
compounds (at concentration ranged from to 250 μM–1.95 µM)
were added to the wells containing cells and further incubated for
48 h in a CO2 incubator. A suitable control (untreated cells) was
included and doxorubicin was used as a positive reference.
Thereafter, the medium in each well was aspirated from the cells,
which were then washed with PBS, and finally fresh medium
(200 µL) was added to each well. Then, 30 µL of MTT (5 mg/mL
in PBS) was added to each well and the plates were incubated at 37°C

for 4 h. The medium was aspirated from the wells and DMSO was
added to solubilize the formed formazan crystals. The absorbance
was read at 570 nm (SpectraMax 190, Molecular devices). The
percentage of cell inhibition was calculated with reference to the
control (untreated cells taken as 100% viability). Then, the IC50

values of plant compounds showing more than 50% cell growth
inhibition were calculated by plotting the percentage inhibition
against the concentration.

2.3.3 Inhibition of nitric oxide (NO) production in
LPS-activated RAW 264.7 macrophages

The RAW 264.7 macrophage cells were seeded in 96 well-
microtitre plates (2 × 105 cells/mL). They were activated by
incubation in a medium containing 1 μg/mL LPS alone (control)
or lipopolysaccharide, and compounds at concentration of 3.12 µM,
6.25 µM, 12.5 µM and 25 µM dissolved in DMSO. Quercetin served
as a positive control NO inhibitor for the reduction of NO
production. After 24h, the amount of nitric oxide released from
macrophages was determined using the Griess reagent as previously
described (Dzoyem and Eloff, 2015).

2.4 Soybean 15-LOX inhibition assay

The assay was performed according to a previously described
procedure (Pinto et al., 2007) with slight modifications. The assay is
based on measuring the formation of the complex Fe3+/xylenol
orange in a spectrophotometer at 560 nm. 15-LOX from G. max was
incubated with compounds or standard inhibitors at 25°C for 5 min.
The concentration range of the samples were from 250 μM to
1.95 µM. Then linoleic acid (final concentration, 140 µM) in Tris-
HCl buffer (50 mM, pH 7.4) was added and the mixture was incubated
at 25°C for 20 min in the dark. The assay was terminated by the addition
of 100 µL of FOX reagent consisting of sulfuric acid (30 mM), xylenol
orange (100 µM), iron (II) sulfate (100 µM) in methanol/water (9:1).
For the control, only LOX solution and buffer were pipetted into the
wells. Blanks (background) contained the enzyme LOX during
incubation, but the substrate (linoleic acid) was added after the FOX
reagent. Quercetin was used as a reference compound for the inhibition
of 15-LOX activity (Sadik et al., 2003). The LOX inhibitory activity was
evaluated by calculating the percentage of the inhibition of
hydroperoxide production from the changes in absorbance values at
560 nm after 30 min at 25°C. % inhibition =
[(Acontrol – Ablank) – (Asample – Ablank)/(Acontrol – Ablank)] x100.
Where Acontrol is the absorbance of control well, Ablank is the
absorbance of blank well and Asample is the absorbance of sample well.

2.5 Evaluation of COX-1 and COX-2 activity

The fluorometric cyclooxygenase activity assay kit (Biovision)
was used to evaluate the activity of COX-1 and COX-2 enzymes.
Raw 264.7 cells were seeded at 2 × 105 cells/mL in a 48-well
microplate, and allowed to adhere for 24 h, then treated with LPS
0.1 μg/mL and compounds (1), (5) and (6) at 20 µM against Raw
264.7 cells. After 24 h the cyclooxygenase enzyme (COX-1 and
COX-2) activity assay was performed. Cells were detached with
TNE buffer (Tris 40 mM, NaCl 150 mM, EDTA 1 mM) and washed
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with PBS (1x), then re-suspended in 1 mL PBS (1x), transferred into
1.5 mL tube, and centrifuged at 500 x g for 3 min. The pellet was
then re-suspended in 0.5 mL of lysis buffer with a protease inhibitor
cocktail, vortexed, and incubated at 4°C for 5 min. The cell lysate was
centrifuged at 12000 x g for 3 min and the supernatant was collected
for COX activity assay. The COX activity was assessed using the
fluorometric cyclooxygenase activity assay kit (Biovision) following
the manufacturer’s instructions. The assay includes COX-1 and
COX-2 specific inhibitors to differentiate the activity of COX-1 and

COX-2 as well as other peroxidases. Indomethacin (10 µM) was used
as a standard drug and appropriate controls were also included.

2.6 Measurement of Th1/Th2 cytokines

Raw 264.7 cells were seeded at 2 × 105 cells/mL in a 48-well
microplate and allowed to adhere for 24 h, then treated with LPS
0.1 μg/mL and with compounds (1), (5) and (6) at 20 µM. Untreated

FIGURE 1
Chemical structures of naturally occurring benzophenones and xanthones. ananixanthone (1), smeathxanthone A (2), smeathxanthone B (3),
1,3,5,8-tetrahydroxy-2-(3-methybut-2-enyl)-4-(3,7-dimethyloct-2,6-dienyl) xanthone (4), guttiferone O (5), guttiferone M (6), and aristophenone A (7).
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cells and indomethacin (10 µM) were used as controls. After 24 h of
incubation, the supernatant was collected and the amount of pro-
inflammatory Th1 cytokines (IFN-γ, TNF-α, and IL-2) and anti-
inflammatory Th2 cytokines (IL-4, IL-6, and IL-10) released
measured. The experiment was performed according to the
manufacturer’s instructions using BD™ Cytometric Bead
Array (CBA) Human Th1/Th2 Cytokine Kit (BD-Biosciences),
and data were acquired on a BD LSR Fortessa™ cell analyzer
flow cytometer.

2.7 Statistical analysis

The data are presented as the mean ± standard deviation (SD) of
three independent experiments or triplicate (n = 3). Differences
between the means of each group were assessed by a one-way
analysis of variance followed by Sidak’s multiple comparisons test
using GraphPad Prism 9.

3 Results

3.1 Isolation and structural elucidation
of compounds

Extensive column chromatography on methanol (MeOH) extract
of the stem bark of Garcinia Smeathmannii (Planch. & Triana) Oliv.
using silica gel and Sephadex LH-20 led to the isolation of seven
known compounds (1–7). Their structures were established through
spectroscopic (1D, 2D NMR) data, spectrometric analysis (MS), and
by comparison with literature data. Isolated compounds were
identified by comparison of their spectroscopic data with literature
values. They are Ananixanthone (1), Smeathxanthone A (2),
Smeathxanthone B (3), 1,3,5,8-tetrahydroxy-2-(3-methybut-2-
enyl)-4-(3,7-dimethyloct-2,6-dienyl) xanthone (4), Guttiferone O
(5), Guttiferone M (6), Aristophenone A (7) (Figure 1).

3.2 Cytotoxicity of compounds against RAW
264.7 macrophages

In order to assess the safety of the investigated compounds
towards the RAW 264.7 cells and to select the sub-inhibitory

FIGURE 2
Cytotoxic effect of seven naturally occurring benzophenones
and xanthones from Garcinia smeathmannii on RAW264.7 cells. Data
are the mean from three independent experiments. Sidak’s multiple
comparisons test using one-way ANOVA was performed:
ppppp < 0.0001 for compounds versus reference drug
doxorubicin (Doxo).

FIGURE 3
Inhibitory activities of seven naturally occurring benzophenones and xanthones fromGarcinia smeathmannii onNOproduction in LPS-stimulated in
RAW 264.7 macrophages. Quer: quercetin.
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concentration for further experiments, a cytotoxicity assay was
conducted and the results are presented in Figure 2. It appears
from this Figure 2 that, compounds (1), (3), and (7) exhibit relatively
higher IC50 values. These values are above 100 μM, suggesting that
they might have lesser cytotoxic effects on RAW264.7 cells
compared to the other compounds. Compounds (5) and (6) have
the lowest IC50 values (64.54 µM and 61.25 µM respectively),
indicating greater potency in inhibiting cell growth or inducing
cell death in RAW264.7 cells. Doxorubicin, a known
chemotherapeutic drug with cytotoxic properties, serves as a
reference. It exhibits an IC50 value of 4.63 µM, which is lower
than all the compounds tested. Based on these data, sub-
inhibitory concentration of 25 µM was chosen for NO assay.

3.3 Nitric oxide (NO) production inhibition
and cell viability

The ability of compounds obtained from G. smeathmannii, to
inhibit NO production in the RAW 264.7 cell line after stimulation
with lipopolysaccharide (LPS) was evaluated and results are shown
in Figure 3. All the tested compounds exhibited a dose-dependent
inhibition of NO production. At the highest concentration (25 µM),
guttiferone O (5), and guttiferone M (6) exhibit the most potent
inhibitory activities reducing the amount of NO produced from
6.08 µM in untreated and stimulated control to 0.3 µM and 0.54 µM
respectively.

3.4 Inhibition of 15-lipoxygenase activity

Figure 4 presents the inhibitory effects of the seven naturally
occurring benzophenones and xanthones on 15-Lipoxygenase (15-
LOX) activity, expressed in terms of IC50 values. These results

suggested that the evaluated compounds possess varying degrees
of inhibitory effects on 15-LOX activity. The IC50 values obtained
ranged between 45.01 μM and 160.73 μM. Ananixanthone (1),
Guttiferone O (5) and Guttiferone M (6) demonstrated IC50

values of 63.91µM, 45.01 µM and 52.97 µM, respectively, which
appears to be the most effective among the seven tested compounds,
as compared to quercetin, a well-studied flavonoid, used as a positive
control which showed an IC50 value of 64.35 µM.

3.5 Inhibition of cyclooxygenase
enzyme activity

The results of the inhibitory effect of three selected naturally
occurring benzophenones and xanthone on COX-1 & COX-2
enzyme activity are provided in Figure 5. A perusal of this figure
reveals that all three compounds exhibited some levels of
inhibition on COX-1/COX-2 activity. Compared to the
untreated controls, all the compounds significantly inhibit the
activity of COX-1 (p < 0.0001) reducing the activity of the
enzyme from 85.19 µU/mg to 52.55 µU/mg, 32.28 µU/mg, and
5.13 µU/mg for compound (1), (5) and (6) respectively.
Compound (6), guttiferone M displays the best inhibitory
effect on COX-1 with a value (15.13 µU/mg). Likewise, all the
compounds significantly inhibit the activity of COX-2 (p <
0.0001 for compounds (1) and (6), p < 0.01 for compound
(5)). The activity of COX-2 was reduced from 99.85µU/mg in
untreated control to 59.33 µU/mg, 88.10 µU/mg, and 43.84 µU/
mg for compounds (1), (5) and (6) respectively.

3.6 Modulation of Th1/Th2 cytokines

In this work, the effects of compounds (1), (5), and (6) on the
production of human Th1/Th2 cytokines were evaluated. The
cytokines measured include pro-inflammatory Th1 cytokines
(IFN-γ, TNF-α, IL-2, IL-6) and anti-inflammatory Th1 cytokines
(IL-4, IL-10). Results presented in Figure 6 indicated that the
compounds tested exhibit diverse effects on the production of the
pro- and anti-inflammatory cytokines.

The stimulated and untreated control groups had different levels
of pro-inflammatory cytokines viz, 0.84 pg/mL for IFN-γ,
4356.86 pg/mL for TNF-α, and 0.88 pg/mL for IL-2; while the
levels of anti-inflammatory cytokines were 1.01 pg/mL, 175.96 pg/
mL, and 0.88 pg/mL for IL-4, IL-6, and IL-10, respectively. Upon
treatment, compound (1) indicated a moderate decrease in IFN-γ
and IL-2 production (0.43 pg/mL and 0.90 pg/mL respectively) but
had a minimal effect on TNF-α (3854.61 pg/mL) compared to the
stimulated and untreated control. This demonstrated a potential
anti-inflammatory effect, though not as pronounced as seen with
indomethacin.

4 Discussion

Nitric oxide (NO) plays a pivotal role in the physiological
process of inflammation and has been involved in endotoxin-
induced tissue injury due to its overproduction (Goncharov,

FIGURE 4
15-Lipoxygenase inhibitory activity of seven naturally occurring
benzophenones and xanthones fromGarcinia smeathmannii. Data are
the mean from three independent experiments. Sidak’s multiple
comparisons test using one-way ANOVA was performed: ppp <
0.01, pppp < 0.001, and ppppp < 0.0001 for compounds versus
reference compound quercetin (Quer).
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2020). Therefore, the inhibition of NO production has been
considered a target for anti-inflammatory therapeutics (Wong
and Lerner, 2015). Many plants of the Garcinia genus containing
benzophenones and xanthones as bioactive constituents have been
traditionally used as anti-inflammatory agents (Espirito Santo et al.,
2020). Among the xanthone derivatives tested, ananixanthone (1)
shows a remarkable inhibitory effect at the highest concentration
(25 µM), suggesting its potential anti-inflammatory activity.
Previous studies have highlighted the ability of these compounds
to modulate inflammatory pathways, including the inhibition of NO
production (Dzoyem et al., 2015). A benzophenone derivative

clusiacyclol A was shown to have a significant NO inhibitory
activity in RAW 264.7 macrophage cells with over 85% inhibition
without obvious cytotoxicity at a final concentration of 100 μM
(Sukandar et al., 2023). Similarly, xanthones derivatives
garcinoxanthones B and C significantly inhibited NO production
with IC50 values of 11.3 μM and 18.0 μM respectively (Liu et al.,
2016). In this study, the observed inhibitory effects suggest that
compounds (1), (5), and (6), may interfere with the inflammatory
cascade by suppressing NO production.

Lipoxygenase (LOX) and cyclooxygenase (COX) are the
enzymes responsible for the conversion of arachidonic acid to

FIGURE 5
Results of COX-1 and COX-2 activity in LPS-stimulated MH-S cell lysate treated with compounds (1), (5) and (6) at 20 µM. The positive control
indomethacin (Indo) was tested at 10 μM. One unit (U) of COX activity is the amount of enzyme that generates 1.0 μmol of resorufin per minute at
pH 8.0°C and 25°C. Data are themean of three independent experiments. Sidak’s multiple comparisons test using one-way ANOVAwas performed: ppp <
0.01, pppp < 0.001, and ppppp < 0.0001 for compounds versus stimulated and untreated control.

FIGURE 6
Effect of compounds (1), (5), and (6) on inflammatory cytokines production in LPS-stimulated Raw 264.7 macrophage cells. Cells were treated for
24 h with compounds (1), (5) and (6) at 20µM, then cytokines secretion levels were measured. Indomethacin (Indo) was tested at 10 µM. Values are the
mean of experiments done in triplicate (n = 3) ± standard deviation. Statistical analysis was performed with Sidak’s multiple comparisons test using one-
way ANOVA. ppppp < 0.0001 between the sample and stimulated and untreated control.
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eicosanoids which are essential to initiate the immunological
response during inflammation (Mukhopadhyay et al., 2023).
Targeting the dual inhibition of COX/LOX is a promising
strategy to develop novel anti-inflammatory agents (Cheng et al.,
2022; Rudrapal et al., 2023). In our continued search for novel, more
efficacious, and safer anti-inflammatory agents having dual
mechanisms that could prevent the release of both prostaglandins
and leukotrienes, benzophenones and xanthones compounds herein
investigated. The compounds were screened for their ability to
inhibit the activity of 15-LOX, then the most potent were
selected and tested for their effect on the inhibition of COX-1
and COX-2 activities. Although not exhaustive, the literature on
benzophenones and xanthones compounds supports the idea that
some of them exhibit anti-inflammatory properties through the
inhibition of LOX enzymes (Yamashita et al., 1990; Santos et al.,
2017; Lončarić et al., 2021). The observed IC50 values provide
insights into the concentration at which these compounds exert
their inhibitory effects, allowing for a better understanding of their
potential therapeutic relevance. From these results, ananixanthone
(1) guttiferone O (5) and guttiferoneM (6)which appear as the most
effective in inhibiting the activity of 15-LOX were selected
emphasized the need for further investigation for their effect on
the activity of COX enzymes. This finding is noteworthy as COX-2 is
often upregulated in response to inflammatory stimuli, and its
inhibition is a key target for anti-inflammatory drugs (Gandhi
et al., 2017). Once more, compound (6) exhibited the most
potent inhibitory effect on COX-2 suggesting its multitarget
potential. Although no previous report focusing on the effect of
compounds (1), (5) and (6) on COX enzyme activity is documented,
the observed inhibitory activity on both COX-1 and COX-2 is
consistent with the broader literature on benzophenones and
xanthones derivatives. The benzophenones and xanthones group
of compounds has been recognized for their anti-inflammatory
potential, and the modulation of COX as the plausible
mechanism underlying their effects (Miladiyah et al., 2017; Qiao
et al., 2021; Dzoyem et al., 2022). The observation that compound
(6) had comparable result with the indomethacin positive controls
was encouraging, as it suggests the potential for developing novel
anti-inflammatory agents. Moreover, some well-known NSAIDs
such as ibuprofen and aspirin (Acetylsalicylic Acid) are non-
selective inhibitors of cyclooxygenase (COX) by reducing the
production of prostaglandins, which are mediators of
inflammation and pain.

Cytokines are endogenous mediators that play an important role
in the pathophysiology of the systemic inflammatory response (Ishii
and Yoshida, 2010). The production of both pro- and anti-
inflammatory cytokines is strictly controlled by complex feedback
mechanisms (Kishen and Muralidharan, 2020). Pro-inflammatory
cytokines are responsible for initiating an effective inflammatory
process against pathogens, whereas their overproduction has been
associated with harmful effects on the body (Cole et al., 2018). In
contrast, anti-inflammatory cytokines are involved in down-
regulating the exacerbated inflammatory response and
maintaining homeostasis (Ishii and Yoshida, 2010; Muzamil
et al., 2021). Cytokines are mainly produced by macrophages and
lymphocytes. In this study we used RAW 264.77 cells as model for
cytokines production after stimulation with lipopolysaccharide
(LPS) from E. coli 0111:B4. The result obtained with compound

(1) corroborated with the increase in the levels of the anti-
inflammatory cytokine IL-4 (1.23 pg/mL). However, its effect was
minimal towards IL-10 (0.971 pg/mL) and there was a reduction in
IL-6 (144.25 pg/mL), indicating instead its potential modulation of
pro-inflammatory responses. To the best of our knowledge, this is
the first study reporting the effect of ananixanthone on cytokine
production. However, several xanthone derivatives have been shown
to regulate various inflammatory activities and signaling pathways
in immune cells, especially macrophages (Ng and Chua, 2019; Feng
et al., 2020). Another xanthone derivative, α-mangostin was shown
to inhibit the production of interleukin (IL)-6 (Ibrahim et al., 2016).
The results of the effect of the two benzophenone compounds tested
showed that compound (5) significantly reduces the production of
IFN-γ, TNF-α, and IL-2 cytokines, similar to the effect of
Indomethacin. This suggests a strong anti-inflammatory impact,
potentially inhibiting the inflammatory response induced by LPS.
Compound (6) exhibited a moderate decrease in IFN-γ and TNF-α
production but had a limited effect on IL-2 compared to the
stimulated and untreated control, indicating a partial anti-
inflammatory effect, with a more substantial impact on IFN-γ
and TNF-α. A substantial increase in the production of both IL-4
(2.25 pg/mL) and IL-10 (2.05 pg/mL) upon treatment with
compound (5) was observed, indicating a robust enhancement of
anti-inflammatory cytokines. Compound (6) had a moderate effect
on IL-4 (0.94 pg/mL) and IL-10 (1.77 pg/mL). A general trend of the
tested compounds on cytokines profiles revealed that compound (5)
showed a pronounced enhancement of anti-inflammatory cytokines
(IL-4 and IL-10), suggesting a potent anti-inflammatory effect while
compound (6) exhibits a moderate effect on anti-inflammatory
cytokines. Previous studies reporting the anti-inflammatory effect
of benzophenones via modulation of cytokines are very scarce.
However, a study by Rachoń et al. showed that benzophenone-2
was able to shift the Th1/Th2 balance toward a Th2 response (lower
IFN-γ production and higher IL-10) (Rachoń et al., 2006). Another
study showed that a 4-aminobenzophenone derivative displayed
potent inhibition against TNF-α and IL-1β in LPS-stimulated
human peripheral blood mononuclear cells (Khanum et al.,
2004). Another benzophenone derivative otogirinin A was
reported to suppress TNF-α generation via blocking the
phosphorylation of MAPK/JNK and degradation of IκBα (Huang
et al., 2020). Overall, the results in Figure 6 highlight the modulatory
effects of the three selected compounds on inflammatory cytokine
production. The observed changes in cytokine levels indicate
potential anti-inflammatory and modulatory properties,
emphasizing the need for further studies to elucidate the
underlying mechanisms and validate the therapeutic potential of
these compounds in the context of inflammatory disorders.

5 Conclusion

In this study, we have shown that compounds (1), (5) and (6)
exerted anti-inflammatory by inhibition of NO, inhibition of the
activity LOX, COX-1, and COX-2, as well as by regulating the
production of cytokines. These data contributed to the growing body
of evidence supporting the anti-inflammatory potential of
benzophenones and xanthones derivatives and the use of natural
compounds in the development of novel anti-inflammatory
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therapeutics. Our findings further support the exploration of
ananixanthone (1), guttiferone O (5), and guttiferone (6) as
potential candidates for the development of anti-inflammatory
drugs. Although this study lacks information on the mechanism
underlying the inhibitory effects of psoralen on the synthesis of
cyclooxygenase enzymes and the studied of other inflammatory
cytokines. Results are promising and further studies, including in
vivo experiments, exploration of the signaling pathways such as NF-
κB and MAPKs, synergistic effects of psoralen with other isolated
compounds, are needed to confirm the efficacy and safety of
psoralen as an anti-inflammatory agent.
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