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Objective: Subcutaneous Immunotherapy (SCIT) is the long-lasting causal
treatment of allergic rhinitis (AR). How to enhance the adherence of patients
tomaximize the benefit of allergen immunotherapy (AIT) plays a crucial role in the
management of AIT. This study aims to leverage novel machine learning models
to precisely predict the risk of non-adherence of AR patients and related local
symptom scores in 3 years SCIT.

Methods: The research develops and analyzes two models, sequential latent-
variable model (SLVM) of Stochastic Latent Actor-Critic (SLAC) and Long Short-
TermMemory (LSTM). SLVM is a probabilisticmodel that captures the dynamics of
patient adherence, while LSTM is a type of recurrent neural network designed to
handle time-series data by maintaining long-term dependencies. These models
were evaluated based on scoring and adherence prediction capabilities.

Results: Excluding the biased samples at the first time step, the predictive
adherence accuracy of the SLAC models is from 60% to 72%, and for LSTM
models, it is 66%–84%, varying according to the time steps. The range of Root
Mean Square Error (RMSE) for SLAC models is between 0.93 and 2.22, while for
LSTM models it is between 1.09 and 1.77. Notably, these RMSEs are significantly
lower than the random prediction error of 4.55.

Conclusion: We creatively apply sequential models in the long-term
management of SCIT with promising accuracy in the prediction of SCIT
nonadherence in AR patients. While LSTM outperforms SLAC in adherence
prediction, SLAC excels in score prediction for patients undergoing SCIT for
AR. The state-action-based SLAC adds flexibility, presenting a novel and effective
approach for managing long-term AIT.
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1 Introduction

Allergic rhinitis (AR) is characterized by allergen-specific IgE-
mediated inflammation in upper respiratory inflammation with a
prevalence of up to 30% worldwide (Meltzer, 2016). In addition to
allergen avoidance as the superior criterion, allergen-specific
immunotherapy (AIT) aims to induce specific allergen immune
tolerance, consequently achieving a status of clinical symptom
remission. The repeatable intake of the specific unmodified or
chemically modified allergens (allergoids) was the key to
maintaining the symptoms. Among these approaches of AIT,
subcutaneous immunotherapy (SCIT), sublingual immunotherapy
(SLIT), and lymphatic immunotherapy (LIT) are demonstrated as
the mainstream treatments regarding efficacy, safety, and side
effects. Compared to the SLIT, SCIT is a clinic-dependent
treatment in which the patient accepted an allergen extract
injection subcutaneously. It is divided into the initial treatment
stage (dose accumulation stage) and the maintenance treatment
stage (dose maintenance stage). The World Allergy Organization
(WAO) recommends that immunotherapy be maintained for three
to 5 years and clinically recommended for at least 2 years. Patient
adherence is a critical factor in ensuring long-lasting efficacy and
sustaining symptom-relieving effects.

Due to the long duration of SCIT, cumbersome process, slow
onset, individual differences in treatment effect, and other factors
fundamentally impact the completeness of therapeutics. From the
reported studies on AIT, the rate of adherence ranged from around
25% to over 90% (Passalacqua et al., 2013). The World health
Organization (WHO) adopted the definition of “adherence” as
“the extent to which a person’s behavior, such as taking
medication, following a diet, or executing lifestyle changes,
corresponds with agreed recommendations from a healthcare
provider” (Eduardo, 2003). In recent European Academy of
Allergy and Clinical Immunology (EAACI) guidelines, it is
highlighted to educate patients on how immunotherapy works
and on explaining the importance of compliance to the regular
doses for 3 years of treatment (Roberts et al., 2018).

The multiple approaches were introduced into the field of
improving adherence and supervising patient outcomes with
systematic and technological interventions to prevent incomplete
discontinuation of the treatment. The intervention from a clinic in
advance running through the whole treatment cycle was approved as
an effective approach. In facing the multitude of personalized data
from patients, how to precisely identify and assess the risk of
upcoming non-adherent behavior, a clinical prediction model is
promising in the application.

In healthcare, machine learning, especially sequential models,
stands at the forefront of innovation, providing new ways to analyze
complex medical data and improve patient treatments. Previous
research primarily concentrated on non-sequential prediction
methods for adherence (Ruff et al., 2019; Wang et al., 2020;
Mousavi et al., 2022; Warren et al., 2022). This approach
presents a significant limitation in treatment processes,
particularly for immunotherapy that often spans extended
periods, such as 3 years. These non-sequential methods tend to
predict only the overall outcome, overlooking the intricacies of
intermediate time steps. To facilitate earlier intervention, a
sequential model capable of making predictions at any given time

step would be markedly more beneficial. While some subsequent
studies have introduced sequential models (Hsu et al., 2022; Singh
et al., 2022; Schleicher et al., 2023), their scope was restricted to
predicting adherence alone. Our study enhances this approach by
incorporating a state-action model, which can predict both
adherence and score/state. This advancement allows for more
precise and detailed management of AR patients by allergologists.
These models excel in processing and analyzing time-dependent
data, making them ideal for predicting patient adherence to
treatments like SCIT for AIT. By effectively using sequential data,
these algorithms uncover temporal patterns and correlations,
leading to more accurate and personalized treatment plans.

In this study, in order to introduce the appropriate prediction
model into long-period immunotherapy to customize the
management of interventions and incorporate patient feedback,
we have selected and evaluated two specific sequential models
tailored to this scenario. Our findings demonstrate that these
models are not only effective in predicting patient adherence to
medical treatments but also invaluable in enhancing treatment
strategies, thereby making a significant contribution to patient-
centered healthcare.

2 Methods

2.1 Study design

The study design is a critical component that shapes the
direction and reliability of our research. It includes a systematic
approach to selecting the study population, the treatment methods
applied, and the evaluation criteria (see Figure 1).

2.1.1 Population
A retrospective analysis including 205 AR patients who started

SCIT treatment between August 2018 and September 2019 in the
Immunotherapy Center at the First People’s Hospital of Foshan was
performed. According to the Guidelines for the Diagnosis and
Treatment of Allergic Rhinitis (2015 Edition), the recruit criteria
were formulated: Patients with skin index (SI) of skin prick test
(SPT) ++ or above, or specific Immunoglobulin E (sIgE) level in
serum to dermatophagoides pteronyssinus (Der p) and/or
dermatophagoides farinae (Der f) i. e., Der p/Der f ≥ 0.35 kU/L,
which exposure to dust mites was confirmed as the major
allergen by allergen tests, including: 1) Patients with mild to
moderate asthma; 2) Patients with moderate to severe persistent
rhinitis; 3) Mild to moderate asthma with allergic rhinitis (and/or
allergic conjunctivitis); 4) Patients with mild to moderate asthma
and eczema. Exclusion criteria included: 1) severe or uncontrolled
bronchial asthma with continuous monitoring of Forced Expiratory
Volume in one second (FEV1) <70% per of the expected value; 2)
Patients with asthma whose symptoms or reduced lung function
continue to fail to be controlled with grade 4 or 5 treatment; 3)
Patients sensitized to other allergens such as pet furs, pollens or
molds; 4) Patients who are taking beta-2 blockers or angiotensin-
converting enzyme inhibitors; 5) Patients with serious underlying
diseases, including cardiovascular and cerebrovascular diseases,
autoimmune diseases and immunodeficiency diseases, malignant
diseases, and chronic infectious diseases; 6) Patients with serious
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mental illness, lack of compliance, or inability to understand the
risks and limitations of treatment. The patients data were
anonymized before use.

The study protocol was approved by the Ethics Committee of the
First People’s Hospital of Foshan, Foshan, China. All methods were
performed in accordance with the relevant guidelines and regulations.

2.1.2 SCIT treatment and evaluation
Before administering SCIT to enrolled patients, they will first

perform a routine physical examination, inquire about related
information since the last injection (including allergy symptoms),
and post-injection, patients are observed for 30 min in case of the
occurrence of side effects. Standardized adsorbed Der p and Der f
allergen extracts (Allergopharma, Reinbeck, Germany) were used
for SCIT. According to the manufacturer’s instructions, in the dose
accumulation phase with weekly injections of allergen extracts with
a gradually increased concentration from 100 SQ-U/mL to
10,000 SQ-U/mL, respectively injected 0.2, 0.4, 0.8 mL; after
reaching the maintenance dose, 100,000 standardized quality
units was used. In the maintenance phase, an injection interval of
6 ± 2 weeks was carried out according to the manufacturer’s
recommendations.

Patients receive regular treatment evaluations, including
symptom scores and medication scores. The symptom score
recorded a total of nasal symptoms (nasal itching, sneezing,
rhinorrhea, nasal congestion), ocular symptoms (ocular itching,
lacrimation), and pulmonary symptoms (shortness of breath,
tightness in chest, perennial cough, wheezing), and assessed
symptom severity using the visual analogue scale (VAS). In the

VAS symptom score, the score of each symptom is from 0 to
10.0 indicates that the patient has no discomfort and 10 indicates
that the patient is extremely uncomfortable. The patient gives the
score of each symptom according to the actual situation, and the
sum of all symptom scores is the symptom score. Medication score
recorded the use of current adjuvant medication within 1 month to
reach symptom relief. The use of oral antihistamines,
antileukotrienes, and bronchodilators were recorded as one point,
local glucocorticoids as two points, oral glucocorticoids or combined
medication (hormones and β2 receptor agonists) as three points,
and the total cumulative score was the medication score. Symptom
scores and medication scores were assessed once at registration of
SCIT and then thereafter.

Due to the separated injection regimen within 16 weeks and
thereafter, all the chosen patients completed the 4 months of
SCIT, we chose the fourth month as the starting point of the
observation. According to our previous experience, 1 year after
the start was the peak of the withdrawal, so we added a time point
at 18 months to further assess and follow up on the related
symptom score and individual status. The data collection spans
six time steps: at 0, 4, 12, 18, 24, and 36 months. This approach is
standard in medical treatment, although for optimal model
performance, an equal distribution of time intervals would be
preferable.

2.1.3 Data collection
Data were collected from patient records in hospitals, and the

following information was extracted for analysis: patient age, gender,
distance to clinic, ratio of AIT cost to family income, allergen test

FIGURE 1
Flowchart on 205 patients treated with SCIT for Der p/Der f allergy during a 36-month treatment period. The adherence was assessed with
sequential latent variable models focusing on patient’s demographic characteristics and clinical follow-up data.
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results, etc., as well as patient VAS system score and medication
score information, including baseline data of patients before
injection therapy, adverse reactions to SCIT. For the descriptive
analysis, categorical variables were given as numbers and
percentages, and continuous variables were presented using
mean, standard deviation, median, interquartile range (IQR), and
minimum and maximum values. To address missing values, we
tracked every patient, which allowed us to ensure the dataset’s
completeness. We did not remove outliers, aiming to follow real-
clinical scenarios as closely as possible.

2.1.4 Survey methods
Adherence was defined as the accomplishment of 3 years of AIT.

Non-adherence was defined as discontinuation of AIT at random
time points during 3 years. The follow-up contents included 1) the
main reasons for patients’ discontinuation of treatment; 2) the
duration of discontinuation of treatment, and 3) Allergic
symptoms after discontinuation of treatment.

2.2 Sequential models

The focus of our study is the development of sequential models
that can efficiently and accurately predict the progression of
symptoms and adherence in patients undergoing SCIT. This
involves a comprehensive analysis of the data collected,
structured to provide insights into the treatment’s effectiveness
and patient compliance over time. Additionally, we explore and
compare two distinct sequential models.

2.2.1 Data
We have a dataset D, comprising sequences x1, . . . , xT ∈ R11,

y1, . . . , yT−1 ∈ R1, and a corresponding action at ∈ R1. In the
context of healthcare, the observations encompass yt (see
Table 2) whether the patient will cease the treatment in the
interval between the scoring measurements at xt and xt+1. The
actions at represent the ongoing medical procedures for the patient
during the period from xt to xt+1 (see Figure 2). In this context, at is
binary, reflecting whether treatment is given, and is numerically
equivalent to the adherence variable yt. Despite their numerical
equivalence, we maintain a distinction between action at and
adherence yt to enhance model clarity and accommodate future
research expansions, potentially allowing for a wider range of action
values. For each patient, we possess basic information s ∈ R14 which
includes age, gender, commute distance to clinic, ratio of cost to
family income, eosinophils count, eosinophils percentage, nasal
allergen provocation test (change of nasal resistance, ΔNR(%)),
peak nasal inspiratory flow. ΔPNIF(%)), serum total IgE level, sIgE
of Dermatophagoides pteronyssinus (Derp), sIgE of
Dermatophagoides farinae (Derf), skin prick test (Derp, Derf)
(see Table 1 for more details).

2.2.2 Sequential latent variable model
In our research, we use the Stochastic Latent Actor-Critic

(SLAC) model (Lee et al., 2020). Our application differs from the
original use of SLAC which is typically associated with
reinforcement learning. Instead, we use its sequential latent-
variable model (SLVM) without Actor-Critic. This approach
aligns with similar methodologies found in other works
(Krishnan et al., 2015; Karl et al., 2016; Gregor et al., 2018). The
choice of the SLAC model was motivated by its ability to facilitate
more efficient learning and superior generalization in intricate
environments.

The SLVM is fundamentally a framework that processes
information in a step-by-step manner, capturing the dynamics of
an environment or process over time. It constructs a latent
representation of the data that it identifies and uses underlying
patterns or structures within the dataset that probably are not
immediately obvious. This capability makes it exceptionally
suitable for tasks where understanding temporal relationships is
crucial, such as predicting patient adherence in allergen
immunotherapy. The model operates by generating a sequence of
predictions, each informed by the data received up to that point,
thereby enabling it to adapt and refine its understanding as more
information becomes available. This methodological choice allows
our research to use the strengths of SLAC in a novel context,
applying it to the predictive modeling of patient behaviors in a
healthcare setting.

TABLE 1 Demographic and clinical data of the patients under subcutaneous
immunotherapy. In the rows from Age to Cost/Family income, values
indicate the number of patients (percentage, if available). Other rows
represent the median and IQR. p-values are omitted due to their large
values.

Variables Patients

total adherent non-
adherent

age ≤ 12 96 (46.7) 40 56

13–17 30 (14.6) 10 20

≥ 18 79 (38.7) 23 56

gender Female 62 (30.2) 22 40

Male 143 (69.8) 51 92

distance to
clinic (km)

≤ 10 136 (66.3) 56 80

> 10 69 (33.7) 17 52

cost/family
income (%)

< 30 107 (52.4) 37 70

30–50 77 (37.4) 32 45

> 50 21 (10.2) 4 17

EOS(×109/L) 0.37; 0.41 0.36; 0.52 0.38; 0.36

EOS % 0.05; 0.04 0.05; 0.05 0.05; 0.05

ΔNR (%) 16.67;
59.70

30.00; 92.80 14.80; 50.00

ΔPNIF(%) 11.90;
34.50

12.70; 39.30 11.10; 28.80

total IgE (kU/L) 286; 543 340; 487 226; 555

sIgE of Der p
(kU/L)

30.80;
68.480

31.30; 74.40 30.40; 67.80

sIgE of Der f (kU/L) 40.00;
68.20

40.60; 75.10 37.10; 65.70

Der p SPT SI 1.04; 0.58 1.00; 0.59 0.82; 0.55

Der f SPT SI 1.00; 0.50 0.82; 0.51 0.80; 0.45
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After training the model, given the historical data up to step
t − 1, the model is capable of generating a patient’s next scores from
time step t to T directly from the latent space,

i.e., p(xt: T | x0: t−1, a0: t−1). Similarly, it can predict the adherence
of step t: T − 1 at time step t, p(yt: T−1 | x0: t, a0: t−1). See details of
the model and the training process in Supplementary Appendix S1.

FIGURE 2
Histogram of scores across six time steps. Score value (horizontal axis) vs. count (vertical axis).

TABLE 2 Detailed reasons for withdrawal from SCIT at different time points.

Reasons for SCIT withdrawal Number of non-adherent patients

5–12 months 13–18 months 19–24 months 25–36 months total by reason

no clinical improvement 18 11 8 21 58

medical issue 3 1 2 0 6

improved efficacy 0 0 0 24 24

schooling 3 3 0 5 11

side effects 2 1 1 2 6

COVID-19 9 7 3 1 20

personal issue 0 3 0 4 7

total by time period 35 26 14 57 132
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2.2.3 LSTM
As an alternative, Long short-termmemory (LSTM) is a classical

sequential neural-network model (Hochreiter and Schmidhuber,
1997). Given the historical data, in our implementation, an
LSTM predicts the score xt+1 and adherence yt in parallel. The
LSTM’s autoregressive feature allows us to iteratively input its
current predictions to predict subsequent outcomes, covering
prediction from xt+1 to xT and yt to yT−1. Implementation
details and the reasons for the model choice can be found in
Supplementary Appendix S2.

3 Results

A total of 205 patients were enrolled in this study. The mean age
was 17.57 ± 11.68 years, children and adolescents represented the
major population (61.3%) in AIT treatment. Males (70%) were
predominantly represented. The population with a commute
distance to the clinic within 10 km was 66 percent. Due to a
great portion of juveniles from the cohort, the ratio of cost to
family income instead of personal income was evaluated. The
patients who undertook AIT cost less than 30% of monthly
family income and account for half the distribution of the
population, while 12.9% non-adherent patients undertook the
50% financial burden in AIT treatment.

The change of nasal resistance (NR) and peak nasal inspiratory
flow (PNIF) after nasal allergen provocation (NPT) was used to
evaluate the severity of symptoms by combining the symptom score.
The change of NR after NPT from the adherent group was higher
than the non-adherent group (30 % vs 14.8 %). The laboratory tests
such as total IgE, sIgE of Der p and Der f, and SPT did not exhibit a
significant difference between the two groups. For detailed
characteristics of patients see Table 1.

The observed total non-adherence rate at the end of 3 years was
35.4% and the median of the SCIT duration was 18 months in the
study. The rate of dropout in the third year (43.0%) was highest in
comparison to the end of the first year (26.5%) and the second year
(30.0%). The reason for the withdrawal from the patients included
the concern of COVID-19, especially at the beginning of
2020 accounting for a 25% portion of the non-adherent patients
in the first year. The most influential reason for the withdrawal was
unreached expectations for clinical improvement (43.9%). Medical
issues including pregnancy status during the treatment period and
other physical disorders were collected from patients leading to the
withdrawal of SCIT (4.5%). The significantly improved symptoms
contributed to the reason for dropout, especially after 2 years SCIT
treatments (18.2%). The recorded cases from side effects accounted
for 4.5%, comprising the local and systematic adverse reactions
(see Table 2).

We have a total of 205 samples, which we have randomly divided
into a test dataset comprising 20%, i.e., 41 samples. For our analysis,
we employ a five-fold cross-validation approach. Additionally, we
apply zero-mean and unit standard deviation (STD) normalization
to the variables x and s.

The Root Mean Square Error (RMSE) metric is used to evaluate
the precision of our medical score predictions. Furthermore, to
assess the adherence predictions, we use a comprehensive set of
metrics including accuracy, precision, recall, and the F1 score, each

offering a unique perspective on the performance of our predictive
models. Most of the figures in this study are presented
using boxplots.

In all results in this study, the uncertainties for both models are
calculated using five-fold cross-validation. In addition, as SLAC is a
probabilistic model, we also perform 100 samples from the latent
space to compute its uncertainty.

3.1 One-step prediction

In this experiment, our focus is on predicting the immediate
next step. Within the SLVM, the prediction of yt is based on the
sequence x1: t and actions a1: t− 1. Additionally, we forecast the
subsequent state xt+ 1 using the sequence x1: t along with actions
a1: t. In contrast, for LSTM, the predictions for both yt and the next
state xt+ 1 are derived from x1: t and y1: t− 1.

As illustrated in Figure 3, SLVM surpasses LSTM in
performance beginning at time step two. The figure indicates
that with an increased amount of historical data (additional time
steps), SLVM achieves greater RMSE. Both SLAC and LSTM
demonstrate considerably better over random prediction
methods. Further insights are provided in Figures 4, 5, which
provides detailed representations of each feature. In the
prediction of specific local symptoms score, SLVM performs
an improvement in error after step two with all parameters
compared to LSTM. The results from RMSE in nasal and
ocular symptoms display relatively high values compared to
those for lower respiratory tract symptoms. This can be
attributed to the fact that the majority of patients in the
cohort predominantly exhibited nasal and ocular symptoms,
which presented a wide range of scores.

Figure 6 demonstrates that from steps two to four, accuracy in
adherence predictions improves with the inclusion of additional
information. The first step shows a notable bias, as it only includes
data from adherent patients, as detailed in Sec. 2.1.2. Nonetheless,

FIGURE 3
RMSE of the prediction step by step. The red dashed line is the
RMSE of random prediction with Uniform distribution. See Figures 5, 6
for more details.
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both models adeptly manage this bias and achieve high-accuracy
predictions. Prediction for the sixth step is not conducted due to the
cessation of treatment by the hospital. In the fifth step, there is a
decline in accuracy, likely due to the extended time interval of
12 months. In future research, it would be worthwhile to explore
whether adopting a consistent interval for data collection could
enhance the outcomes of longitudinal prediction. Table 3 illustrates
details of the classification for one-step prediction. Initially, both
models exhibit perfect performance in Accuracy, Precision, and
Recall at the first time step, but diverge in subsequent steps. In terms
of Accuracy, LSTM generally outperforms SLVM, particularly
evident at time steps three, four, and five. For Precision, LSTM
again shows superior performance in the later time steps, except
at time step two where SLVM marginally leads. However, in the
Recall metric, SLVM surpasses LSTM from time step two
onwards, indicating its strength in correctly identifying
positive cases. The F1 score, which balances precision and
recall, shows LSTM generally ahead, except at time step two
where SLAC has a slight edge. This metric indicates LSTM’s
balanced capability in both precision and recall, especially in the
later time steps. Overall, while both models start equally strong,
LSTM demonstrates greater consistency and effectiveness across
most metrics and time steps. SLVM, while lagging slightly behind
in accuracy and precision, shows its robustness in recall,
especially in the middle to later time steps.

3.2 Rollouts

In the rollout experiment, our focus extends to a longer-term
prediction. The SLAC prediction of yt: T− 1 and xt+ 1: T are
computed based on x1: t and a1: t− 1. Actions, {ai: i≥ t} are
inferred from the model’s output, yt. Moreover, for time steps
greater than t, we employ a prior in the latent space, which
eliminates the need for the input of xt: T. In the LSTM model,
the predictions for yt: T− 1 and xt+ 1: T are based on x1: t and y1: t− 1.

Figures 7, 8 illustrate the performance of ourmodel inmulti-step
predictions. Similar to one-step predictions, the accuracy generally
improves with the availability of more information, except in the
case of the adherence prediction at the fifth step. The results
demonstrate the model’s proficiency in making long-term
predictions.

3.3 Model as a simulator

Given the initial condition of a patient, we can assess the
outcomes of various interventions. Clinically, if the patient’s
adherence to treatment significantly impacts the prognosis (and
there is a possibility of non-adherence), it becomes imperative for
the doctor to emphasize treatment compliance. Conversely, if
adherence makes little difference, it suggests the therapeutic

FIGURE 4
RMSE of SLAC one-step prediction across various scores and time steps.
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approach may be ineffective for this patient, allowing the doctors to
emphasize adherence efforts.

To evaluate the impact of varying actions on SLAC’s
performance, we analyze how different actions affect the

resulting scores. In the absence of a ground truth with diverse
actions for the same patient, our focus shifts to examining whether
the states are responsive to changes in actions. Considering initial
states x1: 3 and actions a1: 2, we do rollouts with a3: 5, alternating
between one and zero. This controlled alteration reveals that the
average predicted value of x6 under these conditions is −0.20. This
value is computed from the prediction outcomes for actions with
ones minus those for actions with zeros. The result indicates that
our model can be used as a simulator for doctors to see the impact
of different treatments/therapies. Since the LSTM does not have
similar functions (see Section 2.2.3), we only show the
SLAC results.

3.4 Interpretability

Previous models and methods have been developed for
interpreting machine learning algorithms, including SHAP
(Lundberg and Lee, 2017) and Captum (Kokhlikyan et al., 2020).
We opt for Captum, as it integrates more seamlessly with PyTorch-
based code. We perform the measure of the factor importance using
Integrated Gradients of Captum for SLAC (see Figure 9). The
magnitude of features highlights the significance of the model’s
prediction for a specific class. The distance to the clinic significantly
impacts patient adherence, especially if a patient is located far from
the clinic or has relocated, as they are more likely to discontinue

FIGURE 5
RMSE of LSTM one-step prediction across various scores and time steps.

FIGURE 6
Accuray of the prediction step by step. The red dashed line is the
accuracy of random prediction with Uniform distribution. See Table 3
for more details.
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their visits. Following the distance, SPT of Der f and sIgE of Der f
greatly influence the adherence. In contrast,ΔNR(%), EOS(%), and
the cost/family income(%) have minimal impacts.

4 Discussion and conclusion

The reported adherence rates of SCIT ranged from around
23%–90%, due to the non-uniform follow-up duration
(2–4 years) (Passalacqua et al., 2013; Lemberg et al., 2017;
Yang et al., 2018; Lee et al., 2019). Poor adherence in the
three to 5-year time span of AIT is an obstacle to reaching
allergen tolerance and symptom remission. Recently
“adherence and persistence in AIT (APAIT)” checklist was
proposed to assists researchers in assessing adherence or
persistence to AIT treatment (Pfaar et al., 2023). The present
study is the first research regarding the application of machine
learning models in the adherence prediction of SCIT in AR

patients. From our study, the accomplishment rate of the 3-
year treatment cycle was relatively low (35.4%), while the dropout
rate after 2 years accounts for half (42.8%) in the whole non-
adherence cohort. Several researchers focus on these variables
impacting adherence to medical behaviors to enhance the
intervention approach to reduce the withdrawal caused by
disease-unrelated reasons. Even though the COVID-19
pandemic affected the adherence of the majority of the
patients in the 3-year cycle, the first year since the pandemic’s
outbreak appears to have fundamentally built a barrier to
patients, similar to the finding from Liu et al. (2021) that 11%
dropouts in the 2 years SCIT was observed caused by COVID-19.
We excluded the patients who dropped out in the dose buildup
phase within 4 months to minimize the dose-origin impact. Due
to the uncovered cost from the public healthcare system and
commercial insurance, financial burden accounts for a non-
negligible factor in influencing the patient’s decision-making.
A similar finding from Lourenço et al. (2020) indicated that

TABLE 3 Comparison of LSTM and SLAC over different time steps. The results are expressed as a mean ± standard deviation. The better results are
highlighted in bold.

Metric Model Time step 1 Time step 2 Time step 3 Time step 4 Time step 5

accuracy LSTM 1.00 ± 0.00 0.66 ± 0.03 0.80 ± 0.04 0.84 ± 0.05 0.74 ± 0.02

SLVM 1.00 ± 0.01 0.70 ± 0.06 0.72 ± 0.04 0.71 ± 0.04 0.60 ± 0.06

precision LSTM 1.00 ± 0.00 0.72 ± 0.01 0.86 ± 0.06 0.90 ± 0.05 0.62 ± 0.03

SLVM 1.00 ± 0.00 0.75 ± 0.03 0.74 ± 0.03 0.71 ± 0.03 0.44 ± 0.05

recall LSTM 1.00 ± 0.00 0.86 ± 0.06 0.83 ± 0.05 0.82 ± 0.08 0.61 ± 0.03

SLVM 1.00 ± 0.01 0.87 ± 0.06 0.90 ± 0.03 0.86 ± 0.04 0.70 ± 0.10

F1 score LSTM 1.00 ± 0.00 0.79 ± 0.03 0.84 ± 0.03 0.85 ± 0.05 0.62 ± 0.03

SLVM 1.00 ± 0.00 0.81 ± 0.04 0.81 ± 0.02 0.78 ± 0.03 0.54 ± 0.06

FIGURE 7
RMSE of the rollout prediction. The first time step in each subplot represents the beginning of the rollout time step.
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economic reasons contributed to the most frequent cause of
SCIT cessation.

Recently, as the presented studies focusing on the medication
adherence prediction of non-communicable diseases such as
diabetes, hypertension, cancer, and chronic respiratory diseases
regarding machine learning models were introduced into the
application, the systematic monitoring of patients’ adherence
behaviors remarkably re-tailored the disease management and
enhanced medical decision-making (Kanyongo and Ezugwu,
2023) Due to the multidimensional variables in the prediction of
adherence collected for analysis, machine learning models exhibit

advantages in automatic feature selection, interaction effects,
scalability, robustness, and so on compared to traditional
regression analysis.

Mousavi et al. (2022) demonstrated the effectiveness of a
hybrid model that combines neural networks and genetic
algorithms for predicting diet adherence. Wang et al. (2020)
explored another hybrid model that integrates neural networks
and support vector machines to predict nonadherence in Crohn’s
Disease patients by streamlining the intervention process in
medicine-taking. Both methods have shown excellent
performance. The deployment of machine-learning algorithms

FIGURE 8
Accuracy of the rollout prediction. The first time step in each subplot represents the beginning of the rollout time step.

FIGURE 9
Importances of the factors.
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in the prediction of adherence in cardiovascular disease including
random forests, support vector machines, and neural networks
showed the accuracy ranged from 0.53 to 0.97 (Mirzadeh et al.,
2022; Zakeri et al., 2022). The ensemble learning model in the
prediction of adherence from the patients who conducted self-
administer injections proposed by Gu et al. (2021) achieved a good
performance and generalization properties based on the fusion of
multiple heterogeneous classifiers. In the field of allergen
immunotherapy, Yao et al. (2023) introduced a machine-
learning model with an improved DFSSA algorithm to predict
the therapeutic efficacy of AIT for asthma using clinical
characteristics and serum allergen detection metrics. However,
these non-sequential methods generally predict only the final
outcome, neglecting the complexities of intermediate stages. A
sequential model that can make predictions at any specific time
step would significantly enhance the ability for early intervention.
Hsu et al. (2022) investigated the advantages of incorporating
patient history into the prediction of medication adherence. They
assessed the performance of temporal neural network models,
particularly LSTM and simple recurrent neural networks, and
compared these with non-temporal neural networks, ridge
classifiers, and logistic regression. To optimize the efficacy of
cognitive training for older adults, Singh et al. (2022) employed
multivariate time series analysis and developed personalized
models for each patient to capture their unique adherence
patterns. However, the sequential data of patients is often
characterized by fluctuating adherence and high dropout rates,
resulting in uneven, unaligned, and missing values in the time
series data. To address this challenge, Schleicher et al. (2023)
applied change point detection to identify phases with varying
dropout rates, presented methods for handling uneven and
misaligned time series, and used time series classification to
predict the user’s phase. These models, however, overlook the
significance of score prediction in SCIT treatment. Our study
advances this methodology by integrating a state-action model
capable of predicting both adherence and score/state. This
enhancement facilitates a more accurate and comprehensive
whole-process management of AR patients in SCIT treatment.

The proposed prediction models can help clinicians
dynamically measure the effectiveness of adherence
interventions including more frequent reminders or engagement
strategies, such that healthcare teams can focus on these
individuals and proactively provide them with additional
support. Moreover, in the surveillance of local symptom scores
and rescue medicine up-take, the models offer a clinical evidence-
based approach to precisely predict the risk of non-adherence in
patient-centered care precisely. Especially for the potential risk of
withdrawal caused by medical issues or related side effects, our
models suggest multidimensional observational parameters for
timely offering medical intervention and increasing patient
engagement by participating in shared decision-making. The
implementation of integration of the models with existing
healthcare workflows is challenging, while the application of
telesystem and online consultation would improve the work
efficacy in immunotherapy centers and facilitate patient’s self-
management.

Our study demonstrates notable findings in the domain of
patient adherence prediction in subcutaneous immunotherapy.

The comparison between the SLAC model and LSTM model
reveals the distinct strengths and limitations of each approach.
Notably, SLAC exhibits greater flexibility, and it outperforms
LSTM in score prediction. This advantage likely stems from its
ability to efficiently learn and generalize in complex
environments. Conversely, the LSTM model shows better
performance in predicting adherence, indicating its potential
usage in scenarios. Both models demonstrate the capability to
handle longer sequences, extending beyond one-step prediction.
This ability is crucial in medical settings where long-term patient
monitoring and prediction are essential for effective
treatment planning.

Overall, the study underscores the importance of selecting the
appropriate model based on the specific requirements of the task,
whether it be flexibility, precision in score prediction, or adherence
prediction. The findings contribute to the growing field of machine
learning applications in healthcare, particularly in enhancing
patient-centered treatment strategies through accurate and
personalized predictions. Future research could focus on
evaluating the SLAC model’s performance in simulating various
actions, further enriching its applicability in clinical settings.
Additionally, the generalization to other diseases or the
application of our models would be an interesting direction for
future research.
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