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The Nicotiana tabacum L. plant, a medicinal resource, holds significant potential
for benefiting human health, as evidenced by its use in Native American and
ancient Chinese cultures. Modern medical and pharmaceutical studies have
investigated that the abundant and distinctive function metabolites in tobacco
including nicotine, solanesol, cembranoid diterpenes, essential oil, seed oil and
other tobacco extracts, avoiding the toxic components of smoke,mainly have the
anti-oxidation, anti-lipid production, pro-lipid oxidation, pro-insulin sensitivity,
anti-inflammation, anti-apoptosis and antimicrobial activities. They showed
potential pharmaceutical value mainly as supplements or substitutes for
treating neurodegenerative diseases including Alzheimer’s and Parkinson’s
disease, inflammatory diseases including colitis, arthritis, sepsis, multiple
sclerosis, and myocarditis, and metabolic syndrome including Obesity and
fatty liver. This review comprehensively presents the research status and the
molecular mechanisms of tobacco and its metabolites basing on almost all the
English and Chinese literature in recent 20 years in the field of medicine and
pharmacology. This review serves as a foundation for future research on the
medicinal potential of tobacco plants.
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1 Introduction

Tobacco (Nicotiana tabacum L.), of the genus Nicotiana in the Solanaceae family, is an
important economic crop and scientific research model plant. In recent years, beyond the
cigarette industry, the innovative use of tobacco plants has inspired much research into
organic fertilizers, biological pesticides, polymer biomaterials, food, feed, daily chemicals,
and most notably, the medical field. Tobacco was first documented in human use at the end
of the 15th century because of its medicinal value. Native Americans regard tobacco as a
“holy herb” or “God’s remedy” used to treat a variety of diseases such as bronchitis,
toothache, sore throat, pleuritis, jaundice, epilepsy, rhinitis, gastroenteritis, diarrhea,
headache, otitis, whooping cough, syphilis, arthritis, dermatitis, colds, burns, abscess
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festering, and mosquito bites, and also applied for stopping bleeding,
reducing fever, anti-fatigue, and whitening teeth (Sanchez-Ramos,
2020). In China, tobacco plants are also recorded as a characteristic
medicinal resource. The Chinese Materia Medica documents the
medicinal role of tobacco, including promoting “Qi” (vital energy)
and relieving pain, eliminating dampness, detumescence,
detoxicating and killing insects. It is mainly used to treat fullness
with food stagnation, Qi stagnation with pain, arthralgia, carbuncle,
furuncle, scabies, eczema, snakebite, sprain and contusion. The
Compilation of National Chinese Herbal Medicine describes
tobacco’s efficacy as warming, sweet, and toxic, with effects
related to detumescence, detoxification, and insecticidal. It is
primarily employed in treating furuncle, tinea capitis, psoriasis,
alopecia, and snakebites, as well as diseases such as neck
carbuncle, back carbuncle, wind phlegm, and crane knee,
including bone tuberculosis and chronic suppurative knee arthritis.

The global smoking-banning campaign in the modern era also
restricted investigation into the medicinal value of tobacco plants to
a great extent. Only in the late 20th century, researchers turned their
attention to diseases affecting brain and nerve development,
especially neurodegenerative diseases with a high incidence
among the elderly, such as Alzheimer’s disease and Parkinson’s
disease. The medical value of tobacco was increasingly recognized
and efforts to promote it are growing. As proposed by Professor
Anne Charlton of Manchester University, we should put aside the
prejudice caused by the adverse effects of smoking and, instead,
systematically analyze tobacco plants to explore substances with
medical treatment value (Charlton, 2004).

With advancements in pharmacology, the biological activity
mechanisms of many medicinal plants and their metabolites have
been clarified. In many cases, individual constituents are used for
treatment after extraction and purification. About a quarter of the
prescription drugs originate from plants (Goldstein and Thomas,
2004), such as the antimalarial drug artemisinin (Price, 2000),
anticancer drug paclitaxel (Zhu and Chen, 2019), and
cardiovascular drug ginkgolide (Tian et al., 2017). At present, the
main medicinal constituents brought into focus in tobacco plants
include the alkaloid nicotine, phenolic substances such as rutin,
apigenin and quercetin, phenolic acids such as chlorogenic acid,
ferulic acid and caffeic acid, organic acids such as citric acid and
malic acid, terpenoids such as solanesol and cembranoid diterpenes,
and tobacco essential oils such as α- and β-ionone. In recent years,
with the popularization of metabolomics, other metabolites with
pharmacological activity in tobacco plants, such as vitamin E,
vitamin K1, scopolamine, mesmine, and ferruloyltyramine, have
also been identified and isolated (Xia et al., 2014). In addition, it is
worth mentioning that polysaccharides, polypeptides and sterols
from plants also have important biological functions in the medical
field. For example, plant polysaccharides can effectively regulate the
balance of blood lipids and blood sugar in the human body, mediate
immune activity, exert anti-cancer effects, and activate cell
antioxidant activity (Jiao R. et al., 2016). Plant polypeptides
exhibit antioxidant, antiviral and metabolic syndrome regulatory
effects, especially blood pressure lowering effects (Chai et al., 2021).
Phytosterols are effective in reducing cholesterol levels (Yuan, 2020).
Besides, tobacco is rich in sugars (constituting 25%–50% of dry
weight) and proteins (26%–29% of dry weight at the seedling stage
and 12%–15% of dry weight at the mature stage), as well as

phytosterols such as β-sitosterol, stigmasterol, and rape sterols.
Therefore, tobacco will be an important plant resource for drug
development in the future.

This review will focus on the status of the pharmacological
research on the main and abundant functional substances of tobacco
plants in recent 20 years. These include the alkaloid nicotine,
terpenes (including solanesol and cembranoid diterpenes), as well
as extracts from tobacco leaves and seed.

2 Nicotine

Nicotine (C10H14N2) is the main addictive substance in tobacco
smoke, and belongs to the pyridine and pyrrole alkaloids,
accounting for about 5% of the weight of tobacco and 90%–95%
of the total alkaloids in tobacco. It mainly exists in tobacco, but is
also found in a small amount in other solanaceous species. Alkaloids
are nitrogen-containing compounds with remarkable anti-tumor,
anti-microbial, anti-inflammatory and analgesic effects (Jiang et al.,
2016). Nicotine, as an agonist of nicotinic acetylcholine receptor
(nAChR), can act on the vagal pathway and its collateral branch and
the anti-inflammatory pathway mediated by the nicotinic
acetylcholine receptor, which is the main mechanism of
nicotine’s pharmacological activity (Author Anonymous, 2014;
Onor et al., 2017). The complex communication between the
nervous system and immune system provides nicotine with a
wide range of pharmacological activities and great potential for
disease treatment. However, nicotine can be a double-edged sword.
High-dose nicotine is toxic, while low-dose nicotine may have
different positive effects, just like most clinical drugs. The
negative effects of low-dose nicotine can be counteracted by
other drugs (Barreto et al., 2014). Hereby, we introduce the
application value of nicotine in the medical field, mainly focusing
on neurodegenerative diseases, inflammation, and obesity metabolic
disorders (Figure 1).

2.1 Positive effect of nicotine on
neurodegenerative diseases

Neurodegenerative diseases are diseases of the nervous system
caused by the selective degeneration and loss of neurons. Patients
with these diseases will experience a decline in normal viability,
resulting in problems with independent mobility, as well as memory
and cognitive decline. Alzheimer’s disease and Parkinson’s disease
are the two most common neurodegenerative diseases, which
increases steadily with age and affect tens of millions of people
worldwide (Erkkinen et al., 2018). Alzheimer’s is the most prevalent
dementia disease worldwide, causing 60%–80% of all dementia
cases. The pathogenesis of Alzheimer’s is complex. The neuronal
damage and neurotoxicity caused by intracellular neurofibrillary
tangles formed by β-amyloid protein (Aβ) deposition and abnormal
phosphorylation of tau protein are the most important pathological
features of Alzheimer’s (Alhowail, 2021). The pathogenesis of
Parkinson’s mainly involves the loss or degeneration of
dopamine neurons or dopamine-producing neurons in the
substantia nigra of the midbrain (Barber et al., 2001). Nicotine
administration can improve the cognitive impairment in
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Alzheimer’s, and the motor impairment andmemory impairment in
Parkinson’s, thus protecting nerve cells.

At the cellular level, nicotine activates the α7-nAChR/Elk
signaling pathway to reduce the oxidative damage caused by
hydrogen peroxide, improve damaged mitochondrial membrane
potential, and inhibit the damage to hippocampal neurons
induced by excessive accumulation of reactive oxygen species
(ROS) (Dong et al., 2020). Nicotine weakens the apoptosis of
primary hippocampal cells induced by Aβ25-35, Aβ1-40 or Aβ40-1
in Sprague-Dawley rats and reduces neurotoxicity by decreasing
caspase-3 activity, clearing ROS and maintaining Ca2+ homeostasis
(Liu and Zhao, 2004). In the Parkinson’s model of neuroblastoma
SH-SY5Y cells induced by picoline ion (MPP+), nicotine
pretreatment can activate α7 nAChR and further inhibit the
cleavage of PARP-1 and caspase-3, resulting in a significant
inhibition of cell death (Lu et al., 2017). In the Alzheimer’s
model of SH-SY5Y cells, nicotine can inhibit the activity of
caspase-3 of apoptotic protein and upregulate the expression of
anti-apoptotic protein BCl2 through the Erk1/2-p38-JNK signaling
pathway, thus protecting them from the neurotoxicity induced by
Aβ25-35 (Xue et al., 2014). Nicotine can also promote the processing
of AβPP non-amyloid protein mediated by α-secretase (ADAM10)
and reduce the accumulation of neurotoxins via activating
Rack1 protein-dependent PKC phosphorylation (He et al., 2020).

Nicotine has played a positive role in several animal models of
Alzheimer’s disease. In Aβ25-35-induced Alzheimer’s mice, nicotine
treatment increased the upregulation of anti-apoptotic protein BCl2
in the hippocampus of mice, while theMorris water maze navigation

test proved that nicotine improved spatial working memory disorder
(Xue et al., 2014). In a rat Alzheimer’s model induced by
chloroindoleamine (CHL), Y maze and radial arm maze tests
confirmed that nicotine significantly improved the spatial
memory deficit, and restored the antioxidant capacity of
superoxide dismutase in the rat hippocampus, showing potential
properties for memory improvement (Hritcu et al., 2017). Through
Y maze, new object recognition and radial arm maze assessment,
nicotine metabolites cotinine and 6-hydroxy-L-nicotine, also
showed cognitive improvement effects, positively regulating the
expression of brain-derived neurotrophic factor (BDNF),
neuronal specificity and postsynaptic memory consolidation
related protein (arc) and proinflammatory factor interleukin one
beta (IL-1β) in Alzheimer’s rats induced by Aβ, exhibiting higher
affinity with α4β2 nAChR and α7 compared to nicotine. Hence,
these metabolites may have greater potential as drug candidates for
promoting cognition, antioxidation and anti-acetylcholinesterase
(Boiangiu et al., 2020).

Nicotine also plays a neuroprotective role in several animal
models with Parkinson’s disease. In 6-hydroxydopamine-induced
Parkinson’s mouse. Nicotine can activate α7 nAChR receptor to play
beneficial roles in motor deficiency, dopaminergic neuron loss,
activation of astrocytes and microglia, and the decrease of
dopamine in striatum via Wnt/β-Catenin signal transduction (Liu
et al., 2017). In 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) Parkinson’s mouse model, nicotine inhibits the activity
of deacetylase SIRT6 or prevents the accumulation of
SIRT6 molecules by mediating the degradation of proteasome,

FIGURE 1
Nicotine function in neuroprotection, anti-inflammatory effect, and weight loss effect.
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thus reducing the accumulation of inflammatory factor TNF-α,
increasing the expression of phosphokinase AKT and signal
transduction, and improving the survival rate of neurons
(Nicholatos et al., 2018). Nicotine pretreatment has a
neuroprotective effect on nigrostriatal injury in PD models, while
the repair after injury has poor effects. This effect involves the
mediation of various nAChR subtypes, including α4β2 nAChR,
α6β2 nAChR and α7 nAChR, and may also involve changes in
different downstream kinases, such as AKT, PI3K, and FGF2,
thereby exerting a preprotective effect on injury (Quik et al.,
2009). Therefore, we posit that the sustained release of a nicotine
transdermal patch may avoid the desensitization readily caused by
nicotine, and may be a healthcare product that can be promoted for
preventing neural degeneration and improving life quality in the
elderly in the future.

2.2 Anti-inflammatory effect of nicotine

The cholinergic anti-inflammatory pathway has been
extensively studied in terms of its immune regulation function
and protective effects on a variety of inflammation-related
diseases, including ulcerative colitis, arthritis, sepsis, skin
inflammation, multiple sclerosis, and myocarditis. The activation
of the cholinergic anti-inflammatory pathway by nicotine verifies its
extensive anti-inflammatory effects.

Ulcerative colitis is a non-transmural colitis disease,
characterized by intermittent attack and remission, abdominal
pain, diarrhea and rectal bleeding. Due to the complex
pathogenesis of ulcerative colitis, available treatment protocols
are limited and often fail to achieve satisfactory efficacy
(Baumgart, 2009). According to epidemiological analysis, smokers
have lower possibility of suffering from ulcerative colitis than non-
smokers. The combination of nicotine patches for percutaneous
treatment of cholinergic anti-inflammatory pathways with
conventional treatment has shown better clinical effect than the
single treatment (Kannichamy et al., 2020). However, the clinical
sample size is small and the data is not sufficient. In animal models,
subcutaneous injection, intraperitoneal injection and dietary
nicotine can stimulate nAChR receptors, mainly the α7-subunit,
but also the α3-, α5-, β2-and β4-subunits, inhibit proinflammatory
cytokines such as IL-6, TNF-α, IL-1β, IL17 and IFN-γ produced by
immune cells through the AMPK/mTOR/NF-κB/
Stat3 inflammatory signaling pathway and AMPK-mTOR-
P70S6K autophagy pathway, to alleviate ulcerative colitis induced
by different inducers such as dextran sodium sulfate (Snoek et al.,
2010; Lakhan and Kirchgessner, 2011; Gao et al., 2020). In addition,
nicotine improves the integrity of intestinal wall cells (Costantini
et al., 2012) by regulating cell tight junction proteins MAdCAM-1,
occludin and ZO-1, thus accelerating wound healing. Due to the lack
of specificity of nicotine in ulcerative colitis, nicotine clinical trials
were halted. Hence, more preclinical research data on nicotine in
ulcerative colitis is needed to determine the target and path of action
so as to carry out multi-combination interventions.

Rheumatoid arthritis is characterized by chronic inflammation
and synovial intima hyperplasia, which leads to cartilage
deterioration and bone destruction, often lasting for several
months (Disease et al., 2016). Under normal circumstances, there

is a certain proportion of helper T cells 1 (Th1) and helper T cells 2
(Th2) in the body. The coordination between the two types of cells
maintains the balance of the human immune system. When the
Th1/Th2 ratio increases, indicating a shift towards Th1 immunity,
the immune response produces a series of proinflammatory factors
such as IL-1β, IL-6, IL-17, TNF-α, IFN-γ and IL-8, while the
expression of anti-inflammatory factors such as IL-4, IL-5 and
IL-10 declines, leading to the infiltration of inflammatory cells in
synovial tissue (Gomes et al., 2018). Nicotine can induce the
production of Th2 cells, reduce the level of GATA3, and block
the progression of arthritis in mice after 33 days of collagen
induction. In addition, nicotine can inhibit the immune response
of Th17 cells, the cytokine IL-17 secreted by Th17 and its
transcription factor RORγτ (Wu et al., 2014; Yang et al., 2014),
and suppress cytokine signaling protein SOCS3 (Li et al., 2018),
matrix metalloproteinase MMP9 and angiogenesis factor VEGF
(Arshadi et al., 2020), to control rheumatoid factor (RF) and
C-reactive protein (CRP), and reduce pannus formation and joint
destruction in rheumatoid arthritis. The NF-κB and STAT-mediated
intracellular anti-inflammatory signaling pathway and the vagus
nerve play a key mediating role in the improvement of rheumatoid
arthritis by nicotine (Li et al., 2010; Zhou et al., 2012).

Sepsis is a life-threatening organ dysfunction caused by the
host’s maladjusted response to infection. If it is not identified or
treated in a timely manner, it may lead to septic shock, multiple
organ failure and even death (Singer et al., 2016). Through in vivo
research, Wang et al. (Wang et al., 2004) first found that nicotine can
reduce the mortality rate of mice with multimicrobial peritonitis
from 84% to 51%, even when drug is administered to the mice after
the occurrence of clinical disease. Nicotine could inhibit the
activation of the NF-κB anti-inflammatory pathway through
stimulating α7 nAChR and suppressing the secretion of high
mobility group protein B (HMGB1), thereby inhibiting the
production of proinflammatory cytokine plasminogen activator
inhibitor-1 (PAI-1) as well as the microcirculation damage
caused by sepsis. In septic mice infected by Escherichia coli or
lipopolysaccharide injection, nicotine simultaneously reduced the
proinflammatory factors of TNF-α, IL-6 and IL-1β in peritoneal
lavage fluid and plasma and maintained the activities of serum
enzymes AST and ALT of hepatic function so as to prevent liver
failure and improve the survival rate by 40% (van Westerloo et al.,
2005; Zhou et al., 2011). In acute sepsis induced by cecal ligation and
perforation combined with lipopolysaccharide, the intraperitoneal
injection of nicotine also actively reduces mortality in a short time
through increasing intracellular calcium concentration by
stimulating a7 nAChR and activating the anti-inflammatory
signal pathways of PI3K/Akt/NFκB-Nrf2/HO-1 and JAK2/PI3K/
STAT3. Nicotine has the capacity to reduce the oxidative damage of
organs and tissues and it also prevents systemic inflammation and
organ failure by regulating the oxidative stress system (Ozdemir-
Kumral et al., 2017). In the treatment with nicotine, the splenic
branch of the vagus nerve plays an indispensable role in the anti-
inflammatory pathway (Huston et al., 2006; Rosas-Ballina et al.,
2008). Microsomal prostaglandin E synthetase-1 gene (mPGES-1)
and the PGE2 produced in the spleen are the key factors connecting
the immune and nervous systems affected by nicotine
(Revathikumar et al., 2018). Because sepsis, especially acute
sepsis, only needs short-term treatment, concern that the long-
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term use of nicotine will adversely affect the nervous system is less
significant here.

Skin inflammation is a general term that encompasses skin
inflammatory diseases that are caused by various internal and
external infections or non-infectious factors, and is not an
independent disease. Due to its complex etiology and diverse
clinical manifestations with repeated attacks, its clinical treatment
is more difficult. The use of ultraviolet radiation exposure is a
common and characteristic method to induce skin inflammation.
An early intervention study in 1997 showed that a nicotine patch
inhibited the skin’s inflammatory response to sodium dodecyl
sulfate and ultraviolet radiation (Mills et al., 1997). By regulating
α7 nAChR and SOCS3, oral administration of nicotine for 6 weeks
significantly reduces the production of IL-1β in the skin of female
rats exposed to ultraviolet light and skin redness and swelling were
alleviated (Osborne-Hereford et al., 2008). Subcutaneous or
intraperitoneal injection of nicotine in male Wistar rats increased
the level of serum corticosterone and inhibited the increase of nitric
oxide produced by polymorphonuclear leukocytes (mainly TNF-α),
thus inhibiting the plasma exudation caused by passive skin reaction
(Kubo et al., 2003; Kubo et al., 2004). Nicotine significantly reduced
IL-8, IL-6 and VEGF levels in keratinocytes and endothelial cells co-
cultured with the serum of Bechet patients (Kalayciyan et al., 2007),
indicating that nicotine has therapeutic potential in reducing
systemic vascular inflammation.

Multiple sclerosis is an autoimmune demyelinating disease
characterized by inflammation of the central nervous system,
demyelination and neurodegeneration, which is manifested by
vertigo and weakness. The etiology of multiple sclerosis is still
unknown and there is no method of complete cure. In a Swedish
population-based study (7,883 cases, 9,437 controls), it was found
that nicotine reduced the risk of multiple sclerosis in different
subjects who received snuff, suggesting that nicotine plays an
anti-inflammatory and immunomodulatory role in multiple
sclerosis. Nicotine has a protective effect in the experimental
autoimmune encephalomyelitis animal model of multiple
sclerosis. Nicotine patch allows ependymal cells to proliferate in
the inflammatory region by reducing the expression of nestin
protein in neuroepithelial stem cells. It also has an obvious
influence on the activity, activation and function of microglial
cells, and can increase the number of mature anti-inflammatory
M2 microglial cells (NG2+ and CC1+ subtype) so as to promote
disease recovery (Gao et al., 2014; Gao et al., 2015). Nicotine also
reduces the levels of pro-inflammatory factors IL-1, TNF-α and
IFNγ and increases the levels of anti-inflammatory factor IL-10 in
spleen cells, thereby improving the neurophysiological indexes.
When nicotine is administered in combination with
mesenchymal stem cells in rats, the efficacy is better than with
the single treatment without nicotine (Khezri et al., 2018). It is worth
noting that nAChRα7, α9 and β2 may play different roles under the
action of nicotine. In clinical applications, it may be necessary to set
specific inhibitors to make nAChR play a specific role, and the
detailed mechanism needs to be further verified (Simard et al., 2013;
Liu et al., 2017).

Myocarditis may cause symptoms from mild dyspnea or chest
pain to cardiogenic shock and sudden death, and it can also be
relieved without specific treatment. Myocarditis is usually caused by
viral infection and, to date, there is no special treatment available

(Cooper, 2009). In the myocarditis mouse model infected by
coxsackie B3 virus, the injection of high concentration nicotine
(1.2 mg/kg, i. p.) downregulated the expression levels of
inflammatory factors IL-1β, IL-17A, TNF-α, IL-1 and IL-6 based
on STAT3 activation, improved the damage to left ventricular
function, and alleviated myocardial injury, increasing the survival
rate by 35% (Cheng et al., 2014; Li-Sha et al., 2015; Li-Sha et al.,
2016). Nicotine can also reduce the release of proinflammatory
factors in the heart by regulating the proportion of immune cells
Th1 and Th17 in the spleen (De-Pu et al., 2018). The nicotine-
mediated reduction of coxsackie B3 virus replication and the anti-
apoptosis effect on myocardial cells involve α7 and α3β4 nAChR,
which further enhance cardiac function through upregulating the
expression of survivin via the α3β4 nAChR/PI3K/Akt signaling
pathway (Li et al., 2019). It is necessary to clarify the role of the
vagus nerve’s integrity in this process.

Apart from the conditions mentioned above, nicotine plays an
active role in many other inflammatory diseases, including
pancreatitis, allergic inflammation, nasal eosinophilic
inflammation, muscle inflammation, uveitis, anorexia/cachexia
syndrome, and systemic lupus erythematosus. The effect of
nicotine is more significant in inflammatory diseases with
complex pathogenesis, which are difficult to cure and with
recurrent attacks. Its advantage in multi targets may enhance its
efficacy and improve individual survival rate, but it also suffers the
problem of poor specificity. Therefore, the treatment of
inflammatory diseases with nicotine depends on detailed studies
on the acetylcholinergic anti-inflammatory pathway, the vagus
nerve, the central nervous system regulation and the interaction
with immune cells. Considering the addictive properties of nicotine,
it is also critical to control the dosage. According to the approximate
dosage range of nicotine tartrate (0.4–1.2 mg/kg per day) for
intraperitoneal injection in mice, we calculated that the safe
dosage range of nicotine salt for subcutaneous injection in
humans is about 7.2–28.8 mg/kg per day in our previous report
(Zhang et al., 2022). Currently, there are three concentrations of
nicotine patches for smoking cessation treatment, namely, a 24-h
patch with dosages of 21, 14, and 7 mg. Nicotine patches may be a
potential choice for chronic recurrent inflammation (Zhang
et al., 2022).

2.3 Weight loss effect of nicotine

Obesity has become a global public health problem. It is
characterized by chronic low-grade inflammation, which can
readily lead to nonalcoholic fatty liver disease, insulin resistance,
cardiovascular disease, depression and other complications.
Epidemiological studies have shown that there is a strong
relationship between smoking and weight. In different ages, the
weight of non-smokers is often higher than that of smokers. Quitting
smoking may result in weight gain (Audrain-McGovern and
Benowitz, 2011), which highlights the weight loss effect of
nicotine from another perspective.

Nicotine has been shown to improve obesity mainly through
four mechanisms. Firstly, nicotine regulates energy intake and
reduces appetite by acting on hypothalamic neurons and the
neuropeptide system related to food intake. Low-concentration

Frontiers in Pharmacology frontiersin.org05

Zhang et al. 10.3389/fphar.2024.1372456

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1372456


nicotine (100–1,000 nM) has a regulatory effect on anorexic POMC
neurons, NPY neurons, and secretin/orexin neurons in the
hypothalamus, and can mediate neuropeptide Y, leptin, orexin
and its receptors and uncoupling proteins, as well as the level
and activity of neurotransmitters such as dopamine and
monoamine, with the effect of controlling food intake and
reducing obesity (Li et al., 2000; Huang et al., 2011). However,
different nicotine intake methods will complicate its effectiveness.

Secondly, nicotine can reduce the size of fat cells and fat content
by regulating fat decomposition and synthesis, and it can also raise
the heat production of brown fat and transfer fat storage from
adipose tissue to muscle utilization. In male Sprague-Dawley rats,
after subcutaneous micro-pump injection of nicotine for 1 week, the
body weight of rats was reduced by 37%, while fat pad reduction was
21%, and fat decomposition increased by 78%. Nicotine reduces the
activity of lipoprotein lipase (LPL) in adipose tissue and increases
the activity of LPL in muscle. This means that the intake of
triglycerides in adipose tissue is reduced, the decomposition is
increased, and the cells become smaller, while the consumption
of triglycerides in myocardium and skeletal muscle is increased
(Sztalryd et al., 1996). When CD-1® IGS male mice were fed with
feed containing nicotine, the mice exhibited body weight loss
(19.7%), increased physical stamina and decreased respiratory
exchange rate under the condition of no change in food intake,
which also induced the decomposition of triglycerides in adipose
tissue and weight loss. The most obvious change is that the weight of
epididymal fat pad and the size of fat cells have significantly
decreased while the heat production of brown fat has increased
(Liu et al., 2018). The high expression of UCP1 protein and the
increased binding of guanine nucleoside 5′-hydrogen phosphate in
brown fat indicate that the metabolic rate of fat increases after
nicotine injection (Arai et al., 2001), which confirms that nicotine
acts directly on weight loss without the side effects of two-way
regulation.

Thirdly, nicotine regulates insulin levels induced by obesity and
glucose production (Seoane-Collazo et al., 2021). Nicotine fed with
the diet increases the insulin level of mice 4.3-fold and improves the
blood glucose level, without affecting insulin sensitivity (Liu et al.,
2018). The plasma glucose level of male obese Zucker rats also
decreased significantly after long-term oral administration of
nicotine with drinking water, and the glycogen content, glycogen
synthase activity and gluconeogenesis in the liver were significantly
lower than those in the control group, indicating that nicotine can
reduce insulin resistance in obese diabetic rats by reducing the
release of glucose in the liver, thus reducing the level of blood sugar
to some extent (Liu et al., 2003). Nicotine also significantly reduced
the hyperglycemia level and incidence of type 1 diabetes in a mouse
model, and prevented the insulin level from falling, which is closely
related to nicotine’s effect on the expression profile from Th1 to
Th2 cytokine and the amelioration of pancreatitis (Mabley
et al., 2002).

Fourthly, nicotine alleviates steatohepatitis induced by adipose
tissue inflammation and obesity. Nicotine can not only reduce body
weight by stimulating triglyceride decomposition in adipose tissue
and heat production in brown adipose tissue (Seoane-Collazo et al.,
2014; Liu et al., 2018), but also significantly inhibits adipose tissue
inflammation, and ameliorates the steatohepatitis of obese mice
induced by genetic obesity and high-fat diet (Lakhan and

Kirchgessner, 2011; Wang et al., 2011). In C57BL/6J (B6) obese
mice induced by genetic obesity (db/db) and high-fat and high-sugar
diet, nicotine inhibited the increase of F4/80 in obesity-induced
inflammation and the levels of proinflammatory cytokines such as
TNF-α, IL-6, IL-1β and iNOS in serum (Wang et al., 2011).
Furthermore, in isolated Kupffer cells of the liver, nicotine could
alleviate steatohepatitis by inhibiting the ERK/NF-κB/iκB signaling
pathway by interacting with α7 nAChR (Zhou et al., 2015a; Zhou
et al., 2015b; Chen et al., 2016; Li et al., 2016). As for Sprague-Dawley
obese rats fed a high-fat diet, nicotine ameliorated liver damage and
reduced lipid inflammatory indicators in the liver such as PPARγ,
TNF-α and IL-6 by reducing endoplasmic reticulum stress (Seoane-
Collazo et al., 2014). The regulatory effect of α7 nAChR on the action
of immune factors MCP-1 and KC has been confirmed in stearic
acid (C18:0) or TNF-α-induced 3T3-L1 adipocytes (Jiao et al., 2016)
and α7 nAChR−/− deficient mice (Wang et al., 2011). Nicotine
osmotic pump was effective in alleviating steatohepatitis in
Wistar rats induced by L-amino acid. Apart from the
proinflammatory factors of TNF-α, IL-6, IL-1β, nicotine inhibits
hepatocyte apoptosis by regulating apoptosis proteins Bax and
caspase-3. In addition, the acetylcholine anti-inflammatory
pathway involved in the hepatic branch of the vagus nerve is one
of the essential links for nicotine to alleviate nonalcoholic
steatohepatitis (Kanamori et al., 2017).

3 Solanesol

Solanesol (C45H74O) is a long-chain triple sesquiterpenoid
primary alcohol composed of nine isoprene units. Its special all-
trans chain structure has lipid antioxidant activities and strong free
radical absorption abilities. Additionally, solanesol also has
antibacterial, anti-inflammatory and anti-ulcer biological activities
(Figure 2). It is the raw material for the preparation of ubiquinone
drugs such as vitamin K2, coenzyme Q10 (CoQ10) and N-solanesyl-
N, N′-bis(3,4-dimethoxybenzyl) ethylenediamine, an anticancer
agent synergiser. Tobacco is the most abundant source of plant
solanesol, accounting for about 1%–4% of the dry weight. Due to the
complex synthesis of solanesol, it is currently mostly extracted from
tobacco (Yan et al., 2019a).

3.1 Antioxidant and anti-inflammatory
activities of solanesol

Solanesol has many non-conjugated double bonds in its
structure, which possess strong free radical absorption ability and
antioxidant activity. Free radicals are products of respiration and
metabolism in the human body. Under normal circumstances, the
generation and elimination of free radicals are in a state of dynamic
balance. Free radicals play an indispensable role in the normal
growth of cells, energy metabolism and internal environment
stability. However, when excessive free radicals are generated in
the human body, they cause oxidative stress damage to cells, tissues
and organs, induce various diseases, and accelerate the aging of the
body. Under pathological conditions, excessive free radicals further
aggravate diseases through oxidative stress. More than 95% of free
radicals in the human body are oxygen free radicals including O2

• -,

Frontiers in Pharmacology frontiersin.org06

Zhang et al. 10.3389/fphar.2024.1372456

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1372456


HO2
•, LO•, LOO•, NO• and HO•. Of these, the hydroxyl free radical

(HO•) displays the strongest activity (Droge, 2002).
In vitro studies show that in the pyrogallol autoxidation

system and Fenton reaction system, solanesol scavenges O2
•-

and HO•, with an equivalent scavenging effect to vitamin C
(Vc) and antioxidant Trolox (Ma et al., 2011; Bai et al., 2014). The
Vc/Fe2+ excitation system and microsome model of lipid
peroxidation in vitro have shown that lipid peroxidation can
be inhibited by solanesol (IC50 = 2.5 mM) (Ma et al., 2011). In
lipopolysaccharide (LPS)-induced inflammatory injury in
RAW264.7 macrophages of mice, solanesol enhances the
transcriptional level of Nrf2 by activating Akt and
p38 signaling pathways, which further upregulates the
expression level and the activity of heme oxygenase-1 (HO-1),
and improves the antioxidant capacity of cells. It can also trigger
the anti-inflammatory pathway and reduce the expression of
inflammatory factors TNF-α, IL-6 and IL-1β, thus inducing
autophagy and alleviating cell inflammation (Yao et al., 2017).

In vivo antioxidant models, solanesol has a protective role in
aging mice and inflammatory mice based on its antioxidant
effect. In the D-galactose-induced aging mouse model,
solanesol increases the activity of superoxide dismutase (SOD)
in brain tissue and serum, and decreases the content of
malondialdehyde (MDA) and nitric oxide in serum. This
shows that solanesol protects the brain, which is particularly
vulnerable to oxygen free radicals, and has a certain ability to
remove nitrogen free radicals (Ma et al., 2011). In the
periodontitis rat model established by ligation of bilateral
maxillary second M by silk thread combined with viscous

high-sugar diet for 4 weeks, solanesol shows no obvious effect
on reducing alveolar bone loss or inhibiting the activation of
osteoclasts, but it significantly increases the activities of SOD and
glutathione peroxidase (GSH-Px) in plasma and reduces the
content of MDA. Furthermore, it significantly lowers the
expression level of inflammatory factors TNF-α, IL- 1β and
PGE2 in plasma (Zhang, 2016).

In addition, the fat solubility of solanesol is more conducive
to its exerting free radical scavenging ability in the lipid part of
the skin. Excessive production of free radicals in the skin can
cause pigmentation, resulting in reduced skin elasticity, skin
aging and even cancer. Under the external stimulator of
ultraviolet light, solanesol exhibits an inhibitory rate of more
than 90%. By applying solanesol to fresh pig skin, solanesol
alleviates the degree of skin atrophy and browning, and has
whitening and anti-aging effects by inhibiting the activity of
tyrosine kinase that induces skin melanin production (Bai
et al., 2014).

3.2 Liver protective activity of solanesol

The induction of HO-1 by solanesol in different cells may be a
universal mechanism. In human liver LO2 cells with ethanol-
induced oxidative damage, solanesol alleviated hepatotoxicity by
activating Keap1/Nrf2/HO-1 and HSF1/Hsp70 signaling pathways,
significantly inhibiting the activities of lactate dehydrogenase (LDH)
and AST in injured hepatocytes, and blocking ethanol-induced
upregulation of MDA and ROS levels and downregulation of

FIGURE 2
Solanesol has a wide range of biological activity including liver protection, anti-inflammatory effect, antioxidant effect, anticancer effect,
neuroprotective effect and antibacterial effect.
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glutathione (GSH) levels. Solanesol could further inhibit cell
apoptosis by inhibiting the morphological damage of the nucleus
and the mature shear of apoptotic protein caspase-3 and PARP,
suggesting that solanesol may have liver protective effects in
alcoholic fatty liver (Yao et al., 2015). However, it is worth
noting that LO2 cells are contaminated with Hela tumor cells,
and the results obtained as an induction model are questionable
(Shao and Chen, 2023).

3.3 Neuroprotective effect of solanesol

Solanesol has a neuroprotective role by regulating
neuroinflammatory factors TNF-α, IL-1β and IL-10, and the
activity of mitochondrial complexes such as NADPH
dehydrogenase, succinate dehydrogenase (SDH), ATP, and
CoQ10. It also inhibits brain oxidative damage through
enhancing SOD and GSH and reducing MDA and nitrite,
restoring the levels of neurotransmitters acetylcholine and
acetylcholinesterase (AChE), and regulating brain diseases by
mediating biochemical indicators in vivo such as dopamine
(Mehan et al., 2018; Sharma et al., 2019; Rajdev et al., 2020). In
the combined rat model of intracerebral and ventricular
hemorrhage, solanesol significantly ameliorated behavior and
movement disorders, oxidative damage and neuroinflammation,
and restored the activity of mitochondrial complexes (I, II, and V)
in hemorrhagic rats after 35 days of treatment, indicating that
solanesol has multiple-target activities in various cellular and
molecular cascade reactions. When solanesol is combined with
standard drug treatments (donepezil, memantine, celecoxib, and
pregabalin) to treat symptoms after intracerebral hemorrhage in
rats, it has a synergistic effect (Rajdev et al., 2020). In an
experimental model of autism induced by propionic acid
injection into the lateral ventricle, solanesol restored the
complex enzyme levels in the mitochondrial electron transport
chain. Long-term treatment can benefit the recovery of memory
and the decrease in the level of neuroproinflammatory factors, and
restore neurotransmitter levels, slow down oxidative stress,
improve dopamine levels, enhance exercise ability and exhibit
antidepressant activity (Sharma et al., 2019). In the
experimental model of Huntington’s disease induced by 3-
nitropropionic acid, low-concentration solanesol improved the
function of mitochondria and acted on the striatum, cortex and
hippocampus of the brain to promote the recovery of brain energy,
enhance the level of acetylcholine, improve memory and motor
ability, strengthen the antioxidant defense system of the brain, and
alleviate Huntington’s disease (Mehan et al., 2018). A recent study
also shows that solanesol can ameliorate ouabain-induced bipolar
disorder by activating the SIRT-1 signaling pathway (Rajkhowa
et al., 2022). Data demonstrate that solanesol can increase the level
of SIRT-1 in cerebrospinal fluid, plasma and brain homogenates
samples and regulate apoptosis markers (Caspase-3, Bax and Bcl-
2), mitochondrial complexes I, II, IV, V and CoQ10. It can also
reduce inflammatory cytokines TNF-α and IL-1β to
simultaneously restore the level of neurotransmitters, including
serotonin, dopamine, glutamate and acetylcholine, and reduce the
markers of oxidative stress, thereby limiting the severity of this
chronic mental disease. Hence, solanesol has the effect of

alleviating neuroinflammation and improving neuronal memory
and motor dysfunction. It can also change neurochemical
reactions and enhance the cerebral antioxidant defense in a
neuroprotective role.

3.4 Antibacterial activity of solanesol

Based on in vitro bacteriostasis experiments using the agar
diffusion method and double dilution method, solanesol exhibits
significant inhibitory effects on E. coli, Mycobacterium phlei,
Pseudomonas aeruginosa and Staphylococcus aureus. However, it
has a poor inhibitory effect on Bacillus circulans and Bacillus subtilis
(Chen et al., 2007).

3.5 Pharmacological activities of solanesol
derivatives

3.5.1 Anticancer effects of solanesol derivatives
Many natural products enjoy a reputation as promising anticancer

agents. A number of compounds based on dietary isoprenoids have
attracted attention due to their chemopreventive and anti-proliferative
properties. Some little-known isoprenoid derivatives have gradually been
applied inmainstream chemotherapy (Newman andCragg, 2016). As an
isoprenoid compound, solanesol was recognized by molecular dynamics
analysis to be an inhibitor of focal adhesion kinase (FAK) protein to
block its binding to ATP. The FAK protein participates in cell adhesion,
invasion,migration, proliferation and apoptosis and is involved in tumor
occurrence, development and prognosis (Daneial et al., 2017).

A derivative of solanesol, N, N′-bis(3,4-dimethoxybenzyl)-
N-solanesyl ethylenediamine has been screened with multiple
tumor cell lines. It is not only toxic to tumor cells, but can also
mediate the multidrug resistance protein p-gp glycoprotein to
restore sensitivity of tumor cell lines to the anticancer drugs
vinblastine and doxorubicin (Sidorova et al., 2002). Trans-N, N′-
bis(3,4-dimethoxybenzyl)-N-solanyl 1,2-diaminocyclohexane (N-
5228) can also completely reverse the effect of human bladder
cancer drug-resistant cell line KK47/TX30 on paclitaxel by
mediating p-gp (Enokida et al., 2002).

Solanesol can also be utilized to modify traditional anti-cancer
drugs to enhance anti-tumor activity, improve the bioavailability
and precision targeting ability of insoluble drugs, and reduce the
toxicity of anti-cancer drugs to normal cells. The 12 synthesized
derivatives of the dibasic acid solanesol alkyl 5-fluorouracil diester
inhibited the proliferation of human lung cancer cell A549 and
colon cancer cell HCT1169 to varying degrees, and solanesol itself
presents certain inhibitory effects on tumor cell proliferation (Xiao
et al., 2012). Recently, the research team of Henan University
reported amphiphilic solanesol derivatives of methyl poly
(ethylene glycol) (mPEG) with solanesyl thiosalicylate (mPEG-
STS), solanesyl thiosalicylate hydrazone (mPEG-HZ-STS),
solanesyl dithiodipropionate (SPDP), solanesyl succinate
(SPGS), and the solanesyl thiosalicylic acid (STS) polymer (HA-
STS) designed with hyaluronic acid (HA) as the basic skeleton,
which exhibit inhibitory effects on breast cancer and liver cancer
cells. The micelles loaded with doxorubicin, which were more
active than those loaded with blank micelles, displayed significant
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antihepatoma activity in H22 tumor-bearing mice. Among them,
SPDP, mPEG-HZ-STS and HA-STS loaded with doxorubicin
present the highest effects (Qin et al., 2017; Xiong et al., 2019;
Yu, 2019).

3.5.2 Solanesol as raw material for drug synthesis
Solanesol is the key raw material for the synthesis of ubiquinone

drugs including CoQ10 and vitamin K2. CoQ10 plays a pivotal role
in mitochondrial oxidative phosphorylation and acts as a lipid-
soluble antioxidant. It is involved in fatty acid, pyrimidine and
lysosomal metabolism and directly mediates the expression of many
genes, including those involved in inflammation. CoQ10 can be used
to treat hypertension, and neurodegenerative, cardiovascular and
other diseases, and is applied as a dietary supplement for patients
with type 2 diabetes, heart failure, chronic kidney disease and liver
disease (Hargreaves et al., 2020). Vitamin K2 is a lipid-soluble
vitamin implicated in bone metabolism, which plays an active
role in the prevention and treatment of osteoporosis. In addition,
it can promote blood coagulation and prevent vascular calcification
(Schwalfenberg, 2017).

4 Tobacco cembranoid diterpenes

Cembranoids are natural diterpenes possessing 14-membered
macrocyclic rings substituted by an isopropyl residue at C-1 and

three symmetrically disposed methyl groups at positions C-4, C-8,
and C-12 (El Sayed and Sylvester, 2007). The earliest discovered
natural cembranoid was the (+)-cembrene from pine oleoresin, later
it was found that the leaf and flower cuticular wax of most Nicotiana
species afforded high amounts of the cembranoids, and they are the
main source of tobacco aroma substances (Mudhish et al., 2022).
Most useful bioactive cembranoids are intentionally broken down
during commercial tobacco fermentation to produce some unique
flavor, in fact, these natural cembranoids have shown several
biological potentials, including antitumor, neuroprotective and
antibacterial activity. Here, we mainly reviewed two major
valuable substances that have been continuously updated
(1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol (β-CBT-diol)
and (1S,2E,4S,6R,7E,11E)-2,7,11-cembratriene-4,6-diol (α-CBT-
diol) (Figure 3).

4.1 Anti-tumor activities

α-CBT-diol and β-CBT-diol mainly played a role in inhibiting
the growth, invasion and recurrence of tumor cells in breast cancer,
liver cancer and prostate cancer. α-CBT-diol could control invasive
and metastatic breast malignancies mainly through angiogenesis
inhibition (Ebrahim et al., 2016; Hailat et al., 2017).

In one breast cancer research, α-CBT-diol showed a strong
affinity with VEGFR2 at its ATP binding pocket in silico. Both

FIGURE 3
The mechanism effect of cembranoid diterpenes mainly including α-CBT-diol and β-CBT-diol in neuroprotective effect, anti-tumor activities and
antimicrobial activities.
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in vitro in TNBC MDA-MB-231 cells and in vivo in the implanted
orthotopic MDA-MB-231 cells xenograft in athymic nude mice, α-
CBT-diol significantly downregulated the activated VEGFR2-
paxillin-FAK axis. Also, in vivo, it showed statistically significant
reduction in tumor size, CD31 value, and markedly more active than
in vitro because of the longer half-life, stability and the more active
metabolites with allylic hydroxylation at C-19 and/or C-20 methyl
carbons. Furthermore, the formation of blood vessels in matrigel
injected in mice showed α-CBT-diol significantly reduced
hemoglobin concentration (about 80% reduction) values when
compared with vehicle-treated control, indicating α-CBT-diol is
an effective angiogenesis inhibitor and would be useful to control
of VEGF-dependent breast malignancies in the future (Hailat et al.,
2017). The same group also found that α-CBT-diol has the
antiproliferative, anti-migratory and anti-invasive effects against
multiple breast cancer cell lines which the c-Met overexpressing
MDA-MB-231 breast cancer cells are the most sensitive, indicating
that α-CBT-diol may be a novel c-Met inhibitors for the c-Met
dependent malignancies therapy (Ebrahim et al., 2016).

In liver cancer, α-CBT-diol inhibited the proliferation of HepG2,
SMMC-7721 and HL-7702 tumor cells, reduced the formation of
carcinoma cell clones, disrupted the cell cycle by significantly
increasing S phase, induced cell apoptosis by regulating p53-
PUMA, PI3K-Akt, and IL-1-NF-κB-IAP pathways (Yuan et al.,
2019). But the genes involved in the pathways in the study were
identified using Illumina sequencing in HepG2 cells, the
differentially expressed genes need further verification in vivo.

In prostate cancer, β-CBT-diol showed its advantage in several
pathways for the treatment of prostate cancer, especially for its
higher recurrence. Earlier in the 2008, in PC-3M prostate cancer
cells, β-CBT-diol has been proven to inhibit cell invasion inMatrigel
assay, through reducing transepithelial resistance, enhancing
paracellular permeability, producing a tighter intercellular barrier
and enhancing the cell-cell adhesion (El Sayed et al., 2008). A recent
study in 2022 further verified anti-prostate cancer activity of β-CBT-
diol in multiple cell lines, tumor model, and biomarkers analysis
(Mudhish et al., 2022). β-CBT-diol inhibited the viability of five
prostate cancer cell lines PC-3M、PC-3、CWR-R1ca、DU-
145 and CWR-22rv1, reduced their migration and colony
formation. β-CBT-diol reduced heme-containing enzymes
IDO1 and TDO2 expression in the PC-3M cell line which has a
higher metastatic potential compared to other prostate cancer cell
lines, indicating its important roles in cancer cell motility and
immune escape. In vivo, β-CBT-diol inhibited PC-3M cells
locoregional recurrences after primary tumor surgical excision
and tumor distant recurrence, and reduced the levels of plasma
kynurenine and the recurrence protein marker PSA in mice
(Mudhish et al., 2022). β-CBT-diol, as a small-molecule natural
product suitable for the control of hormone-independent prostate
cancer recurrence, may have a broader application scope.

4.2 Neuroprotective effect

In the past 20 years from the year 2001–2022, the study on the
neuroprotective effects of cembranoids has not stopped (Ferchmin
et al., 2001; Ferchmin et al., 2005; Ferchmin et al., 2014; Martins
et al., 2015; Hu et al., 2017; Fu et al., 2022). Since tobacco

cembranoids were firstly discovered that they can be as the
noncompetitive inhibitors to block the sensitization of nicotine
by blocking agonist-induced ion current mediated by three
distinct human AChR subtypes α4β2, α3β4, α1β1γδ-AChR
(Ferchmin et al., 2001), β-CBT-diol not α-CBT-diol was later
found to play a major role in neuroprotection by protecting
acute hippocampal slices against neurotoxicity induced by
N-methyl-D-aspartate and against the toxic organophosphorus
compounds paraoxon and diisopropylfluorophosphate (Ferchmin
et al., 2005; Eterović et al., 2013; Ferchmin et al., 2014). β-CBT-diol
protected hippocampal sections from excitatory neurotoxicity
induced by N-methyl-D-aspartate by modulating α4β2-CAMK-
PI3K-Akt-GSK3β pathway, different from the cell-signaling
pathways α4β2-PI3K-Erk-PKC underlying the neuroprotection
provided by nicotine (Ferchmin et al., 2005). β-CBT-diol also
ameliorated the damage caused by diisopropylfluorophosphate in
the hippocampal area CA1 in rats, as a concrete manifestation of the
decreased number of dead neurons by half when injected 1 h before
or 24 h after diisopropylfluorophosphate and the significantly
decreased number of activated astrocytes, by Fluoro-Jade B and
amino cupric silver staining and nestin expression measurement
(Ferchmin et al., 2014).

β-CBT-diol also decreased brain damage in rodent ischemic
stroke models (Martins et al., 2015). β-CBT-diol treatment
significantly reduced infarction size by more than half in brain
ischemic stroke in mouse 10 min before permanent middle cerebral
artery occlusion and rats after at 1 h after reperfusion, indicating β-
CBT-diol may play a huge role in treating and preventing ischemic
stroke. This has something to do with the β-CBT-diol, which can
cross the blood-brain barrier and accumulate in the brain. It was
further found that β-CBT-diol inhibited the expression of ICAM-1
in brain-derived endothelial cells and restored the phosphorylation
of Akt that was stimulated by oxygen-glucose deprivation, thereby
protecting neurons from inflammatory injury and death in
ischemic stroke.

β-CBT-diol improved Parkinson’s disease both in vitro neuro-2a
cell models and in vivo rat models induced by 6-Hydroxydopamine
challenge (Hu et al., 2017). β-CBT-diol treatment improved rat
behavioral deficits by 4 weeks after injection of 6-Hydroxydopamine
by decreasing the depletion of tyrosine hydroxylase in the striatum and
substantia nigra, as indicated by comparing forelimb asymmetry scores
and corner test scores. β-CBT-diol also protected the viability of neuro-
2a cells by activating anti-apoptosis protein p-Akt and HAX-1,
inhibiting pro-apoptosis protein caspase-3, and regulating the NF-
κB/VCAM-1/TNF-α pathway to resist endothelial inflammation in
murine brain-derived endothelial bEND5 cells. Thus, β-CBT-diol
may be a promising therapeutic agent for Parkinson’s disease.

The most recent study in the year of 2022 reported that β-CBT-
diol protected neuronal cells from oxygen-glucose deprivation by
modulating microglial cell activation (Fu et al., 2022), further
provided data support for the study of β-CBT-diol as a drug for
the treatment of ischemic stroke and neurodegenerative diseases. It
has been found that β-CBT-diol exerted anti-inflammatory effects
onmicroglia by regulating theM1/M2 phenotype to protect neurons
from ischemia damage or inflammation. In LPS and oxygen-glucose
deprivation -induced inflammation models of microglia N9 cells, β-
CBT-diol promoted a neuroprotective tilt of microglia activation by
down-regulating levels of NF-κB/iNOS, a marker of
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M1 inflammatory response, and up-regulating levels of Arg-1 and
IL-10, markers of M2 anti-inflammatory activation. At the same
time, β-CBT-diol produced beneficial factors in N9 medium, which
further had a protective effect on oxygen glucose deprivation
-induced Neuro2a cell damage, when the conditioned medium of
β-CBT-diol-treated N9 cells was added to Neuro2a cells and
incubated for 24 h. This study only detected a few markers at the
cellular level, and future neuroprotective studies on β-CBT-diol
require more in-depth exploration of molecular mechanisms at in
vivo, so as to make adequate preparation for clinical application.

4.3 Antimicrobial activity

β-CBT-diol is very promising and has a broader spectrum of
antimicrobial activities than α-CBT-diol (Aqil et al., 2011). β-CBT-
diol showed good activity against the bacteria including S. aureus, B.
subtilis (MTCC 121), E. coli (UP 2566), Staphylococcus typhimurium
(MTCC 98), Shigella dysenteraie, P. aeruginosa, P. vulgaris (ATCC
6380), while α-CBT-diol only inhibited the growth of S. aureus, B.
subtilis (MTCC 121), and P. vulgaris (ATCC 6380) and was weaker
than β-CBT-diol. β-CBT-diol also demonstrated broad-spectrum
antifungal activity, inhibiting the tested fungi including Candida
albicans, Fusarium chlamydosporum, Rhizoctonia bataticola,
Aspergillus niger, and Alternaria alternata, while α-CBT-diol had
a weaker inhibition on C. albicans, F. chlamydosporum, A. niger, and
A. alternata. These findings highlight β-CBT-diol’s potential as
promising antimicrobial scaffolds.

Some reports showed that β-CBT-diol attenuated HIV
neurotoxicity by reducing glutamate release independently of
viral replication and inflammation. Furthermore, β-CBT-diol
could be used to resist HIV virus replication, HIV-associated
neurocognitive disorders and HIV virus-induced inflammation
(Andrew Ferchmin et al., 2012; Yan et al., 2019b). Due to the
lack of more detailed information, the application of HIV and
HIV- related diseases needs to be carefully verified.

5 Tobacco extracts

There are few studies in modern pharmacology on tobacco plant
extracts, and most focus on the extraction and purification of the
active substances such as nicotine and solanesol. In fact, apart from
inhaled tobacco smoke, the early external use of tobacco leaves and
their juice in disease treatment has been the inspiration for the
application of tobacco extracts in modern medicine in anti-
inflammatory, analgesic, bacteriostatic and hemostatic
applications. For example, chewing green tobacco leaves in your
mouth can help with oral mucositis. A heated mixture of tobacco
and salt was crushed and applied to the root of the cervical gland to
treat bacteriostasis, hemostasis and inflammation. Tobacco powder
can also be applied to locally cure cuts or burns. The external
application of tobacco can also treat the bites of toxic reptiles and
insects, skin molds and ulcers (Charlton, 2004; Sanchez-Ramos,
2020). The medical significance of tobacco extract in modern
medical research is mainly manifested in the continuation and

FIGURE 4
Tobacco plant extracts including acidic ethyl acetate extract, seed oil, essential oil, and tobacco blend have biological activities in antibacterial and
hemostatic effects, anxiolytic effect, antimicrobial activity, lipid reducing activity, antioxidant activities, anti-inflammatory activities, whitening activities,
and weight loss effect.

Frontiers in Pharmacology frontiersin.org11

Zhang et al. 10.3389/fphar.2024.1372456

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1372456


in-depth proof of early records, as demonstrated in the following
sections (Figure 4).

5.1 Antibacterial and hemostatic effects of
tobacco acidic ethyl acetate extract

The acidic ethyl acetate extract of tobacco has strong broad-
spectrum antibacterial and rapid hemostatic effects (Chen, 2017). In
vitro bacteriostasis experiments based on the filter paper method,
96 well plate micro broth dilution method and minimum
bactericidal concentration determination show that acidic ethyl
acetate tobacco extracts have inhibitory effects, in the order from
strong to weak, on Dysentery Bacilli, Streptococcus, C. albicans,
Microsporus canis, Trichophyton rubrum, Microspore gypsum and
A. niger, with the minimum inhibitory concentration and minimum
bactericidal concentration of 1.56 mg/mL and 3.12 mg/mL,
respectively. After the extract was intragastrically administered to
mice for 1 week, the coagulation time of mice was observed after tail
cutting. The coagulation time of the mice in the acidic ethyl acetate
extract (0.4007 g/kg) group was about 154 s, which was 37.4%
shorter than that of the blank control group, and close to that of
the Yunnan Baiyao positive group. Its effective constituents include
β-sitosterol, 3-O-β-D-glucopyranosyl-stigmasterol, anisodamine,
quercetin, 7-hydroxy-6,6′-dimethoxy-3,7′-O-bis-coumarin, gallic
acid, caffeic acid, chlorogenic acid, kaempferol 3-O-rutinoside,
p-hydroxybenzoic acid and rutin after analysis by NMR and
mass spectrometry. Of these constituents, chlorogenic acid,
scopolamine and rutin may play a major role.

5.2 Tobacco seed oil

5.2.1 Lipid reducing activity of tobacco seed oil
Tobacco seed oil is an excellent vegetable oil resource. The

average oil content of tobacco seeds is about 39.4% and the content
of unsaturated fatty acids is high (87.8%–89.4%), which is
7.5–8.5 times higher than that of saturated fatty acids. The
content of linoleic acid is high (71.6%–75.36%), and its fatty acid
composition is close to that of grape seed oil. The content of essential
amino acids is higher than that of olive oil (Su, 2016; Yang et al.,
2019). Su et al. (Su, 2016) systematically studied the toxicology and
lipid-lowering activity of tobacco seed oil and found that the LD50 of
tobacco oil for mice was more than 21,500 mg/kg, and no
genotoxicity was found in a Salmonella Typhimurium test, bone
marrow cell micronucleus test or chromosome aberration test.
When tobacco oil (5, 10 and 20 g/kg) is added to the feed, there
is no observed adverse effect on rats in the long-term feeding
experiment (30 days), suggesting that tobacco oil is a vegetable
oil without acute or chronic toxicity or mutagenicity to animals.
Further research has been conducted on hyperlipidemia in Sprague-
Dawley male rats models. The intragastric administration of tobacco
seed oil (2, 4 and 6 mL/kg per day) has the ability to reduce
triglycerides, low-density lipoprotein cholesterol and increase
high-density lipoprotein cholesterol in serum, as well as decrease
atherosclerosis index and ameliorate steatosis of liver cells. Hence,
tobacco seed oil is expected to become an oil product with health

benefits, especially for patients with hyperlipidemia, or
cardiovascular disease.

5.2.2 Antioxidant, anti-inflammatory, and
whitening activities of tobacco seed oil

Seed oil of tobacco strain NC89 and BS4 are rich in
polyunsaturated fatty acids (NC89: 74.98%; BS4:72.84%) that
much higher than the values reported for other important food
oils such as olive oils (25%), soybean oils (50.59%), and sesame oils
(46%). Linoleic acid is the most abundant polyunsaturated fatty acid
in NC89 and BS4. These two kinds of oil exerted the 1) antioxidant
activity by scavenging ABTS, OH-, O2- radical, inhibiting ROS
accumulation and enhancing SOD, CAT activities and GSH in
H2O2-induced HepG2 cells 2) anti-inflammatory activity by
inhibiting the expressions of NO, TNF-α, IL-1β, and IL-6 in LPS-
induced RAW.264.7 cells through down-regulating the p-ERK,
p-JNK, p-p38, and 3) whitening activity by inhibiting tyrosinase
activity and cellular melanin production in melanoma B16 cells (Gu
et al., 2022). These indicate that tobacco seed oil is a valuable and
advantageous oil resource in food and cosmetic applications.

5.3 Weight loss effect of tobacco blend

Tobacco blend feeding can alleviate obesity and obesity-linked
metabolic disorder in mice. When 27.46 g/kg of tobacco blend was
added to the basic diet, after 2 weeks of feeding, the weight of mice was
decreased by 16.3%, and the weight of epididymal fat and brown fat
decreased by 67.6% and 42%, respectively, without inflammation. The
increase in physical activity and the decrease of respiratory exchange
rate inmice suggest that tobacco feeding can induce triglyceride lipolysis
of adipose tissue to provide fatty acids. Without changing insulin
sensitivity, the insulin level in plasma increases 3.6-fold and the
blood sugar content decreases (Liu et al., 2018). Theophilus et al.
(Theophilus et al., 2012; Theophilus et al., 2015) carried out feeding
experiments lasting for 90 days and 2 years, with feeds including basic
diet, tobacco blend mixed feed, tobacco blend water extract mixed feed
and nicotine. Results indicate that plasma nicotine concentration in the
middle and low dose groups is about 10–37 ng/mL, and that in the high
dose group reaches 89 ng/mL, which is close to that in the plasma of
smokers (10–50 ng/mL). The long-term tracking results show that the
feed utilization rate of rats and mice is also decreased and, compared
with obese mice, their weight is also significantly reduced (13%–28%),
with decreased weights of organs such as brain, testis, salivary glands,
adrenal glands, epididymis, pituitary gland and liver. After clinical
observation, ophthalmological examination, toxicity dynamic analysis,
clinical pathology, gross pathology and histopathological analysis, there
was no increase in toxicity or carcinogenicity. During the 2-year feeding
process, in addition to spontaneous and concomitant diseases, the
incidence of malignant uterine cancer in female mice and malignant
mesothelioma of the epididymis in male mice increases significantly.
However, a decreasing tendency was observed in benign breast
adenoma (female mice fed with tobacco), malignant skin basal cell
carcinoma (female mice fed with water extract of tobacco blend), and
benign thyroid follicular cell adenoma (male rats fed with water extract
of tobacco blend). The incidence of tumors is also related to the genetic
background and age of themice, which require additional investigation.
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Regarding tobacco plant extracts, on the premise of avoiding the
toxic and carcinogenic substances ingested by smoking, the
abundant medicinal substances in tobacco could exert safe and
effective function in anti-inflammation, anti-bacteria, and fat and
weight reduction. In the future, this smokeless tobacco product has
the potential to play an important role in human healthcare and
could also serve as a viable strategy to quit smoking.

5.4 Tobacco essential oils

As an important aromatic plant, tobacco contains more than
3,000 compounds and much more than other natural products
(Mookherjee and Wilson, 1990). Tobacco essential oils may be
the constituents that responsible for treating mental health
problems such as anxiety and depression in the clinic (Berlowitz

FIGURE 5
Summary of medical and pharmaceutical value of tobacco plant and its functional components. The tobacco and its components including
nicotine, solanesol, seed oil, leaf extracts have neuroprotective, anti-inflammatory diseases and metabolic syndrome regulation effects through anti-
oxidation, anti-lipid production, pro-lipid oxidation, pro-insulin sensitivity, anti-inflammation, anti-apoptosis and antibacterial activities. The main
pathways of AMPK/mTOR/NF-κB/Stat3, PI3K/Akt/NFκB-Nrf2/HO-1, α4β2, α6β2, α7 nAChR/AKT/PI3K, α7 nAChR/ERK/NF-κB/iκB, Akt-p38/Nrf2/HO-
1 and target proteins including the inflammatory factors IL-6, TNF-α, IL-1β, IL17, IFN-γ, IL-8, IL-4, IL-5, IL-1, IL-10, and PGE2, and the apoptosis markers
bax, caspase-3, Bcl-2, and PARP are involved in their roles in regulating diseases.
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et al., 2020). Recent research has also found that it has antimicrobial
effects (Stojanovic et al., 2000; Palic et al., 2002; Popova et al., 2015).

5.4.1 Anxiolytic effect
Anxiety disorder is a prevalent and highly disabling mental

health condition; however, there is still a lack of desirable therapeutic
outcome, affecting up to 6% of the population during their lifetime
(Maron and Nutt, 2017). According to the first report, the unique
aroma of tobacco essential oils mainly contained neophytadiene and
solanone, followed by megastigmatrienone and trans-beta-
damascenone, which have an anxiolytic effect. Both Yunnan
tobacco essential oil and Zimbabwe tobacco essential oil on male
ICR mice in the light-dark box test and the maze test via inhalation
and transdermal administration showed the anxiolytic effect
through improving behavior and salivary corticosterone levels.
Moreover, oral toxicity evaluation demonstrated that the
concentrations of these oils were considered safe (Xie et al.,
2021). However, we should carefully analyze the composition of
essential oils to ensure that no toxic constituents are present,
especially excessive nicotine residues which may have potential
harmful effects. Purifying the main constituent for the future
medical applications will be the most basic requirement.

Neophytadiene is the most noteworthy active metabolite in
tobacco essential oil. In addition to tobacco, neophytadiene is
also a major constituent of many plant essential oils, including
Jatropha curcas L (Euphorbiaceae), Acalypha segetalis, Zea mays
(Konstantopoulou et al., 2004; Aboaba et al., 2010; Adeosun et al.,
2017). The anxiolytic-like, antidepressant-like, anticonvulsant,
sedative effects and the anti-inflammation of neophytadiene
(Bhardwaj et al., 2020; Gonzalez-Rivera et al., 2023) in the
neuropharmacological actions may be the key point for tobacco
essential oil, which has the effect not only on anxiolytic effect but
also on the other mental diseases.

5.4.2 Antimicrobial activity
Early reports showed that tobacco essential oil mainly

containing neophytadiene and solanone in the middle leaves of
Otlja and Prilep showed greater activity against the microorganisms
E. coli, S. aureus and P. aeruginosa than that in the upper leaves or
than the CO2 extracts (Stojanovic et al., 2000; Palic et al., 2002).

6 Conclusion

Worth noting, this study is not intended to promote commercial
tobacco smoking because it will never change the fact that tobacco
smoke and its combustion products possess tobacco-specific
carcinogens, which induce several malignancies. What we really
advocate is that recognizing fresh tobacco bioactive metabolites is
adding pharmaceutical value to this economically significant
agricultural crop. The development of modern medicine and
pharmacology, advances in compound separation, extraction and
identification technology, and cross-disciplinary communication
have been in step with research into and changing attitudes
towards the tobacco plants. Effective functional metabolites of
tobacco including nicotine, solanesol, seed oil containing high
unsaturated fatty acids and linoleic acid, and leaf extracts mainly
containing chlorogenic acid, kaempferol 3-O-rutinoside,

p-hydroxybenzoic acid and rutin have emerged in many disease
fields, especially in some difficult diseases: cranial nerve diseases
including Alzheimer’s disease, Parkinson’s disease, Huntington’s
disease, intracerebral and ventricular hemorrhage, autism, and
bipolar disorder; inflammatory diseases including rheumatoid
arthritis, ulcerative colitis, septicemia, multiple sclerosis,
myocarditis, and periodontitis; antibacterial activity including the
elimination of E. coli, M. phlei, P. aeruginosa, S. aureus, Dysentery
Bacilli, Streptococcus, C. albicans, M. canis, T. rubrum, M. gypsum,
and A. niger. They exert the function of anti-oxidation, anti-lipid
production, pro-lipid oxidation, pro-insulin sensitivity, anti-
inflammation, anti-apoptosis and antibacterial activities by
regulating the main pathways of AMPK/mTOR/NF-κB/Stat3,
PI3K/Akt/NFκB-Nrf2/HO-1, α4β2, α6β2, α7 nAChR/AKT/PI3K,
α7 nAChR/ERK/NF-κB/iκB, Akt-p38/Nrf2/HO-1 and target
proteins of inflammatory factors IL-6, TNF-α, IL-1β, IL17, IFN-γ,
IL-8, IL-4, IL-5, IL-1, IL-10, PGE2 (Figure 5). Thus, tobacco has
become a medicine and treatment choice to improve quality of life,
and even prolong life span.

The tobacco plant should be a good resource for drug
development. However, biomedical research data on the efficacy
of tobacco is limited, probably due to the following reasons. At
present, the development and use of tobacco are mainly focused on
the cigarette industry. Government funding and support are
insufficient for scientific research institutions working in this new
field. Furthermore, public attitudes towards tobacco are still dictated
by the harmful effects of smoking. Acceptance of the potential role of
the tobacco plant in healthcare will require positive publicity.
Considering the current development direction of the cigarette
industry, tobacco is not attractive to talents in the biomedical
and multi-disciplinary fields, and the vitality of scientific and
technological innovation is relatively low. In this emerging field,
reports on the structural identification of bioactive tobacco plant
metabolites, and efficacy and safety studies, are scarce. Furthermore,
extract separation and purification are challenging, resulting in a
high cost for highly pure products. Pharmacological studies are
mostly conducted on a limited number of metabolites, such as
nicotine and solanesol, and specific diseases. Insufficient
investigation on molecular mechanisms also leads to the
termination of clinical experiments due to lack of specificity.

In the future, research should focus on drug analysis, separation and
identification to build a molecular library of drugs from tobacco plant
resources. Purification technologies and the purification output of
pharmaceutical compounds should be improved and refined to lay a
solid foundation for drug research and development. Moreover, the
molecular mechanisms should be studied in more depth to thoroughly
understand the pharmacological and toxicological mechanisms and
pharmacokinetics trait of tobacco and itsmetabolites so that the tobacco
plant can play a positive therapeutic role in the treatment of
human diseases.
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Glossary

AMPK AMP-activated protein kinase

Th2 helper T cell 2

mTOR mammalian target of rapamycin

GATA3 GATA binding protein 3

NF-κB nuclear factor kappa B

RORγτ RAR-related orphan receptor gamma

Stat3 signal transducers and activators of transcription 3

SOCS3 suppressor of cytokine signaling 3

PI3K phosphoinositide 3-kinase

MMP9 matrix metallopeptidase 9

Akt protein kinase B

VEGF vascular endothelial growth factor

Nrf2 nuclear factor erythroid 2–related factor 2

CRP C-reactive protein

HO-1 heme oxygenase 1

HMGB1 high mobility group protein B

nAChR nicotinic acetylcholine receptor

PAI-1 plasminogen activator inhibitor-1

ERK extracellular signal-regulated kinase

ROS reactive oxygen species

iκB ikappaB kinase

AST glutamic oxalacetic transaminase

IL-6 interleukin 6

ALT glutamate pyruvate transaminase

TNF-α tumor necrosis factor-alpha

IL-1β interleukin 1β

LPL lipoprotein lipase

IL17 interleukin 17

PPARγ peroxisome proliferator activated receptor gamma

IFN-γ interferon gamma

MCP-1 monocyte chemoattractant protein-1

IL-8 interleukin 8

Bax BCL2 associated X apoptosis regulator

IL-4 interleukin 4

LPS lipopolysaccharide

IL-5 interleukin 5

SOD superoxide dismutase

IL-1 interleukin 1

GSH-Px glutathione peroxidase

IL-10 interleukin 10

MDA malondialdehyde

PGE2 prostaglandin E2

Vc vitamin C

JNK c-Jun N-terminal kinase

GSH glutathione

SIRT6 Sirtuin 6

LDH lactate dehydrogenase

FGF2 fibroblast growth factor 2

SIRT1 Sirtuin 1

P70S6K ribosomal protein S6 kinase beta-1

Bcl-2 B-cell lymphoma 2

MAdCAM-1 mucosal vascular addressin cell adhesion molecule 1

FAK focal adhesion kinase

ZO-1 zonula occluden-1

ATP adenosine triphosphate

Th1 helper T cell 1

p-gp glycoprotein
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