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IDHwild-type glioblastoma (GBM) intrinsic subtypes have been linked to different
molecular landscapes and outcomes. Accurate prediction of molecular subtypes
of GBM is very important to guide clinical diagnosis and treatment. Leveraging
machine learning technology to improve the subtype classification was
considered a robust strategy. Several single machine learning models have
been developed to predict survival or stratify patients. An ensemble learning
strategy combines several basic learners to boost model performance. However,
it still lacked a robust stacking ensemble learning model with high accuracy in
clinical practice. Here, we developed a novel integrative stacking ensemble
model framework (ecGBMsub) for improving IDH wild-type GBM molecular
subtype classification. In the framework, nine single models with the best
hyperparameters were fitted based on extrachromosomal circular DNA
(eccDNA) molecular profiling. Then, the top five optimal single models were
selected as base models. By randomly combining the five optimal base models,
26 different combinations were finally generated. Nine different meta-models
with the best hyperparameters were fitted based on the prediction results of
26 different combinations, resulting in 234 different stacked ensemblemodels. All
models in ecGBMsub were comprehensively evaluated and compared. Finally,
the stacking ensemble model named “XGBoost.Enet-stacking-Enet” was chosen
as the optimal model in the ecGBMsub framework. A user-friendly web tool was
developed to facilitate accessibility to the XGBoost.Enet-stacking-Enet models
(https://lizesheng20190820.shinyapps.io/ecGBMsub/).
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1 Introduction

Glioblastoma (GBM) is a type of notorious intracranial tumor
with low survival rates and high heterogeneity and recurrence rates.
The standard treatment strategy involves surgery, radiation, and
chemotherapy. While standard treatment can effectively alleviate
symptoms, the overall survival of patients remains unsatisfactory
(Lu et al., 2022; Schaff andMellinghoff, 2023). In past decades, high-
throughput omics data revealed heterogeneous genetic/genomic/
epigenetic landscapes and prompted individual therapies based on
molecular subtypes. In 2010, Verhaak et al. identified four GBM
subtypes, including classical (CL), mesenchymal (MES), neural
(NE), and proneural (PN) (Verhaak et al., 2010). Because PN
contributes to a more favorable outcome while the MES subtype
relates to dismal survival, numerous studies have focused on them
(Yan et al., 2022; Qiu et al., 2023). However, the above-mentioned
finding might be largely attributed to the favorable outcome of IDH
mutant GBMs, which are consistently classified as PN. According to
the fifth edition of the WHO Classification of Tumors of the Central
Nervous System (WHO CNS5), the definition of GBM was
augmented with genetic modifiers (e.g., GBM and IDH-wildtype)
(Louis et al., 2021). In 2017, Wang et al. defined three IDH wild-type
GBM subtypes based on the gene expression profile, including CL,
MES, and PN, which are tightly related to the tumor immune
environment (Wang et al., 2017). Their findings might aid in
precision immunotherapy medicine. However, two potential
issues need to be further improved. First, most clinicians are not
familiar with the analysis of sequence data, which prevents them
from calculating the patient’s molecular subtype based on gene
expression information. Second, extrachromosomal genetic
elements play a key role in regulating gene expression, but their
roles in the identification of molecular subtypes have not been fully
considered.

Extrachromosomal circular DNA (eccDNA) plays diverse roles
in healthy bioprocesses and cancer progression. EccDNAs are
mostly shorter than 1 kb. In contrast, a special subtype of
eccDNA is named extrachromosomal DNA (ecDNA) and is
much larger (50kb–5 Mb) (Yi et al., 2022). Although ecDNAs
play an important role in cancer, the larger size makes it
challenging for enrichment and identification, setting up a barrier
for research. Compared with ecDNAs, eccDNAs with smaller sizes
exhibit more promise serving as biomarkers. A previous study
reported that eccDNAs in maternal plasma represent prospective
circulating nucleic acid biomarkers to improve early diagnosis and
management (Sin et al., 2020; Sin et al., 2021). Here, we adapt the
Circle-seq to specifically enrich extrachromosomal circular DNA
fromGBM tumor tissues and adjacent non-tumor tissues. Circle-seq
can effectively capture eccDNAs, although it is challenging to
capture megabase-sized ecDNAs.

Leveraging machine learning to decode the underlying links in
multi-omics biological data has been popular (Sin et al., 2021;
Greener et al., 2022). Machine learning is a robust tool for
tackling challenging data (Greener et al., 2022). Stacking
ensemble is a strategy that combines the predictions of multiple
base models to create an ensemble model with more robust
performance. Here, we developed “ecGBMsub,” a stacking
ensemble framework based on eccDNA molecular profiling,
which may provide a convenient tool for clinicians to identify

the IDH wild-type GBM subtypes and reveal the underlying links
between GBM subtype evaluation and eccDNA biology.

We used nine machine learning algorithms to fit base models on
the training set. Then, the five optimal base models on cross-
validation (CV) were selected to create the stacking ensemble
framework, ecGBMsub. The optimal stacking ensemble model,
named XGBoost.Enet-stacking-Enet, exhibited robust
performance in the prediction of all IDH wild-type GBM
molecular subtypes. We conducted a model interpretability
analysis using SHAP to understand the decision-making process.
Finally, we developed a web tool and deployed the machine learning
model on the web tool. Our studies might help clinicians predict
molecular subtypes in patients with IDH wild-type GBM.

2 Materials and methods

2.1 Sample acquisition and diagnosis

GBM tumors and adjacent tissues (three pairs) were collected
from First Affiliated Hospital of Zhengzhou University. Following
WHO CNS5 standards, the initial histopathological diagnosis is
conducted at the institution that collects the tissue. To ensure
consistency across samples, in-house neuropathologists reviewed
the initial diagnosis. This study was approved by the hospital’s
institutional review board, and written informed consent was
obtained from all patients. The clinical data for the samples are
listed in Supplementary Table S1.

2.2 Circle-seq and data analysis

Circle-seq analysis based on clinical samples was performed
by CloudSeq Biotech Inc. (Shanghai, China). The detailed
procedure was previously reported (Møller et al., 2015; Møller
et al., 2018). The edgeR (v0.6.9) software was used to normalize
and calculate fold changes and p-values between two groups/
samples to screen differentially expressed eccDNAs. Gene
annotation of differential eccDNAs was performed using
bedtools software (v2.27.1).

2.3 Data collection criteria and preprocess

The inclusion criteria for datasets were 1) that they contained
IDH wild-type GBM and 2) that they contained classical,
mesenchymal, and proneural molecular subtype information.
Three datasets met the criteria and were enrolled in this study.
The number of IDH wild-type GBM samples in these cohorts was as
follows: TCGA-GBM (n = 114), CGGA301 (n = 89), and G-SAM
(n = 283). The TCGA-GBM RNA-seq raw count was downloaded
from the TCGA portal (https://portal.gdc.cancer.gov/) and
converted to transcripts per kilobase million (TPM), followed by
log-2 transformation. The G-SAM dataset was accessed from the
European Genome Phenome Archive (EGA; EGAD00001007860)
(Draaisma et al., 2020; Hoogstrate et al., 2023). The
CGGA301 dataset was accessed from the Chinese Glioma
Genome Atlas (CGGA, http://www.cgga.org.cn/) (Zhao et al.,
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2021). The ComBat algorithm was utilized to remove batch effects
from nonbiological technical biases between different cohorts
(Supplementary Figure S1). Somatic mutation and copy number
segment data were downloaded from cBioPortal (https://www.
cbioportal.org/) and FireBrowse (http://firebrowse.org/),
respectively. TCGA was set as the training set, while the others
(CGGA301 and G-SAM) were used for independent test datasets.

2.4 Molecular landscape analysis

The immune signatures were obtained from previous studies (Lu
et al., 2021). The R package “GSVA” was used to calculate the score
of immune signature gene sets in each sample. The R package “RTN”
was used to construct transcriptional regulatory networks
(regulons). The activities of regulons (transcription factors) that

FIGURE 1
The workflow of this study.
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were associated with GBM progression and the regulators that were
relevant to cancerous histone modification were calculated.
Specifically, the transcriptome expression profile was analyzed
using mutual information analysis and Spearman rank-order
correlation to determine the potential associations between
regulators and potential targets. Permutation analysis was applied
to eliminate associations with an FDR >0.00001. Unstable
associations were removed through a bootstrapping strategy of
1,000 resamplings with a consensus bootstrap greater than 95%.
The weakest associations in the triangles of two regulators and
common targets were removed. A two-sided GSEA was used to
estimate the activity of each regulon.

2.5 Framework of ecGBMsub

Numerous studies have demonstrated that ensemble models
might exhibit higher performance under certain situations than
single models. Unlike other ensemble strategies, such as bagging and
boosting, a stacking strategy creates a hybrid model by combining
the strengths of different predictive models. The workflow of
ecGBMsub development includes the fit, evaluation, and selection
of base models, the generation of new feature vectors, the selection of
meta-models with an enumeration method, and the selection of the
optimal model by comprehensive evaluation. The workflow of this
study is shown in Figure 1.

2.5.1 Base model construction
Nine machine learning algorithms, including multinomial

logistic regression, decision tree (DT), random forest (RF),
extreme gradient boosting (XGBoost), multilayer perceptron
(MLP), elastic net (Enet), support vector machine (SVM), light
gradient boosting machine (LightGBM) and K-nearest neighbor
(KNN), were performed to fit models based on 5-fold CV on the
training cohort.

2.5.2 Evaluation and selection of base models
Base learner accuracy and diversity were vital to the

performance of the ensemble model. A comprehensive evaluation
involving multiple metrics was performed. We used accuracy,
balanced accuracy, F1-score, NPV, PPV, PR-AUC, precision,
recall, ROC-AUC, sensitivity, and specificity in CV as statistics to
ensure the robustness of base models. Finally, SVM, Enet, KNN,
XGBoost, and RF were determined to be the best-performing
base models.

2.5.3 New feature vector generation
The new feature vector was created using predicted probabilities

(PPs) of five optimal base models. The new feature vector was
defined as [PPs(SVM), PPs(Enet), PPs(KNN), PPs(XGBoost),
PPs(RF)]T, where PPs i) is the PPs based on the optimal base model i.

2.5.4 Meta-model selection with
enumeration method

Nine machine learning algorithms, including multinomial
logistic regression, DT, RF, XGBoost, MLP, Enet, SVM,
LightGBM, and KNN, were used as meta-models. In the
enumeration framework, the five base models were randomly

combined to generate 26 different combinations, and then nine
algorithms were used to build a meta-model, resulting in
234 stacking models. In total, 243 types of models, including
234 stacking ensemble models and nine base models, were
created in the ecGBMsub framework.

2.5.5 Selection of optimal model by
comprehensive evaluation

The performance of all models in ecGBMsub was evaluated and
compared using 11 standard performance metrics for the
classification problem: accuracy, balanced accuracy, F1-score,
NPV, PPV, precision, recall, PR-AUC, ROC-AUC, sensitivity,
and specificity. Finally, the stacking model, named
XGBoost.Enet-stacking-Enet, was chosen as the optimal model in
the ecGBMsub framework. XGBoost.Enet-stacking-Enet refers to a
two-layer stacking model, of which the optimal XGBoost and Enet
models are the base learner, and the Enet model is the meta-learner.

2.5.6 Hyperparameter settings
The base model employs 5-fold cross-validation along with

Bayesian optimization to improve its performance. The stacking
ensemble model leverages bootstrap resampling in combination
with Bayesian optimization to enhance performance. The
hyperparameter tuning metrics were set as balanced accuracy.
During Bayesian optimization, the maximum number of
iterations is set to 50. If there is no performance improvement
within 10 consecutive iterations, the process is terminated early. The
bootstrap resampling times are set to 10. The hyperparameter tuning
process is shown in Supplementary Figure S2.

2.6 Statistical analysis

The statistical tests were conducted by R4.2.2, including the
Kruskal–Wallis test for comparisons among multiple groups of
continuous variables, Fisher’s exact test for categorical data, and
the log-rank test for Kaplan–Meier curves. For unadjusted
comparisons, statistical significance was defined as p < 0.05.

3 Results

3.1 Prognostic landscape of IDH wild-type
GBM subtypes

Most of the patients in the G-SAM database received standard
treatment, while the treatment approaches of patients in the TCGA
group were diverse. Therefore, the G-SAM database was selected for
the survival analysis. To standardize the survival analysis candidates,
the patients were filtered according to the following criteria: 1) IDH
wild-type; 2) underwent temozolomide chemotherapy combined
with radiotherapy after surgical resection. Patients meeting both
criteria were retained for survival analysis (n = 260). The
mesenchymal subtype in the G-SAM cohort had the most
unfavorable overall survival (OS), progression-free survival (PFS),
and post-relapse treatment survival (RTS) of all the subtypes (all
pairwise comparisons, p = 0.004; p = 0.02; p < 0.001, Figures 2A–C).
RTS refers to the survival time after the patient’s tumor recurred and
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received treatment. Thus, different subtypes imply different
prognostic landscapes, which emphasizes the importance of
accurate prediction of subtypes.

3.2 Molecular landscape of IDH wild-type
GBM subtypes

As cancer immunity plays a pivotal role in tumor progression,
we hypothesized that the tumor immune microenvironment
(TIME) of the mesenchymal subtype may be different from that
of the other subtypes. Thus, the immune cell infiltration status was
investigated in two cohorts (TCGA and G-SAM). Specifically, we
quantified the infiltration levels of 24 microenvironment cell types
and the expression of immune checkpoints in IDH wild-type GBM
samples. In the TCGA and G-SAM cohorts, the analysis of immune
signature expression levels suggested that immunocyte infiltration
was dramatically higher in the mesenchymal subtype (Figure 3A;
Supplementary Figure S3A). Compared to the other subtypes, the
mesenchymal subtype exhibited a relatively higher expression of
checkpoints that represent potential targets for immunotherapy (Lu
et al., 2021), including CD247 (CD3), CTLA4 (CD152), IDO1, IL10,
PDCD1, PDCD1LG2 (PDL2), and TNFRSF9 (CD137) in the TCGA
cohort and CD247 (CD3), CD274 (PDL1), CD276, CTLA4 (CD152),
IDO1, IL10, PDCD1 (PD1), PDCD1LG2 (PDL2), and TNFRSF9
(CD137) in the G-SAM cohort (Supplementary Figure S3B).
Additionally, the mesenchymal subtype exhibited higher immune
and stromal scores (Figure 3A; Supplementary Figure S3C), which
confirms the feasibility of microenvironment-targeted therapy for
patients with the mesenchymal subtype.

To further explore the epigenetic landscape of IDH wild-type
GBM, we analyzed GBM-specific regulon activity and potential
regulators relevant to cancerous histone modification (Li et al.,

2016; Sharpe and Baskin, 2016; Luedi et al., 2018; Chen et al.,
2019; Yang et al., 2021; Tsai et al., 2022; Yuan et al., 2022; Dai et al.,
2023; Kosti et al., 2023; Mao et al., 2023; Yao and Wang, 2023).
Surprisingly, the regulon activity was tightly associated with IDH
wild-type GBM subtypes. The patterns of regulon activity were
different in three subtypes. The mesenchymal subtype exhibits high
activity of POU2F2, SPP1, CEBPD, and CEBPB, while the classical
subtype was distinctly associated with high activity of POU3F2 and
TCF3 (Figure 3B). The regulation activity patterns associated with
histone modification among the three subtypes were also different,
emphasizing that epigenetic networks might play a pivotal role in
defining these molecular subtypes. Compared with classical and
proneural subtypes, the mesenchymal subtype exhibited lower
cancerous histone modification activity in the TCGA cohort
(Figure 3B). Therefore, epigenetic regulation of the mesenchymal
subtype may be primarily influenced by transcription factor activity
rather than chromatin accessibility.

To investigate the genomic heterogeneity of three IDHwild-type
GBM subtypes further, the genomic alteration landscape was
systematically characterized in the TCGA cohort (Figure 4A).
There was no significant difference in tumor mutation burden
(TMB) among subtypes (p = 0.14, Figure 4B). The fraction
genome altered (FGA) and fraction genome gain/loss (FGG/FGL)
among the three subtypes did not show differences (Figure 4C).

Notably, we found that the classical and mesenchymal subtypes
exhibited higher EGFR mutation frequencies than the proneural
subtype. The NF1 was exclusively mutated in mesenchymal
subtype (Figure 4A). Wang et al. reported that NF1 deficiency
drives the infiltration of tumor-associated macrophages/microglia
(Wang et al., 2017). Therefore, NF1 mutations may contribute to a
tumor-promoting immune microenvironment in the mesenchymal
subtype. Meanwhile, the proneural subtype exhibited higher 4q12-
amplification, 12q14.1-amplification, and lower 9p21.3-deletion than

FIGURE 2
Prognostic landscape of three IDHwild-type GBM subtypes. (A–C) Kaplan–Meier curves of overall survival (OS), progression-free survival (PFS), and
post-relapse treatment survival (RTS) log-rank test for 260 IDH wild-type GBM patients classified by subtypes.
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FIGURE 3
Molecular landscape of three IDH wild-type GBM subtypes. (A) Tumor immune microenvironment (TIME): heatmap showing the immune profile in
the IDH wild-type GBM subtypes (TCGA for left; G-SAM for right), with the top panel showing the expression of genes involved in immune checkpoint
targets and the bottom panel showing the enrichment level of 24 microenvironment cell types. The immune enrichment score and stromal enrichment
score are annotated at the top of the heatmap. (B) Epigenetic landscape: heatmap showing regulon activity profiles for GBM transcription factors
(top panel) and potential regulators associated with histonemodification (bottom panel) in the IDHwild-type GBM subtypes (TCGA on the left; G-SAM on
the right).
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other subtypes. The classical subtype exhibited lower 11p15.1-deletion
than other subtypes. Alterations in these chromosomal arms may
serve as biomarkers for subtype identification. Additionally, EGFR
showed a more high-balanced gain in the classical subtype than other
subtypes, which is consistent with previous studies (Verhaak et al.,
2010). EGFR tyrosine kinase inhibitor (TKI) might exhibit better
benefits for patients in the classical subtype. CDKN2A showed more
high-balanced loss in the classical and mesenchymal subtypes than in
the proneural subtype. Nathanson et al. reported that CDKN2A
deletion remodels lipid metabolism, thereby priming GBM for
ferroptosis (Minami et al., 2023). Drugs targeting lipid metabolism
and enhancing the ferroptosis process may be more suitable to benefit
patients with the classic or the mesenchymal subtypes. The CDK4,
PDGFRA, and MDM2 showed more high-balanced gain in the
proneural than the other subtypes, which provided potential
individualized targets for patients in the proneural subtype
(Figure 4A). Meanwhile, some inhibitors that might aid in clinical
administration have been developed, including CDK4/6 inhibitors,
PDGFRA inhibitors, and MDM2 inhibitors. Therefore, considering
genetic alterations in clinical administration may be the key to
achieving precision medicine among different subtypes.

3.3 Feature selection and base model
construction

A total of 924 differentially expressed eccDNAs carrying
protein-coding genes were identified in GBM core tissues and
adjacent tissues with a cut-off criteria of |FC (fold
change)| >2 and p < 0.05. Among them, 371 eccDNAs were
upregulated, and 553 were downregulated in the GBM tumor
core tissues (Supplementary Table S2). Finally, 717 protein-
coding genes carried by differentially expressed eccDNAs were
included in three data sets (TCGA, CGGA301, and G-SAM). The
717 protein-coding genes mentioned above are original features and
will be used for subsequent analysis.

Two machine learning algorithms, including SVM-RFE and
varSelRF, were used for feature selection. When faced with
redundant features, SVM-RFE generally exhibits higher
robustness because it considers the interactions between the
features. The varSelRF algorithm is based on multiple decision
trees with non-linear modeling capabilities. The rationality of
these two methods is that they can provide feature screening at
different levels and perspectives. Finally, a total of 29 independent

FIGURE 4
Genomic alteration landscape of three IDHwild-type GBM subtypes. (A)Genomic alteration landscape in the three IDHwild-type GBM subtypes. (B)
Tumor mutation burden (TMB) in different subtypes. (C) Distribution of fraction genome altered (FGA) and fraction genome gain/loss (FGG/FGL) in the
three IDH wild-type GBM subtypes. Bar charts are presented as the mean ± standard error of the mean. * (p < 0.05), ** (p < 0.01), and *** (p < 0.001), ns
(p > 0.05).
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features were obtained based on two algorithms, including ABLIM1,
ADAP2, APBA2, ATCAY, COL1A2, CR1, CSMD1, DPP6, EFNA2,
EGFR, ELMO1, GNG7, GPC2, HEXB, IL16, MAP2, NOVA2,
OPCML, OPLAH, PSTPIP2, PTDSS2, RGS12, ROR2, RORB, SIL1,
SLC7A7, TMCO4, TNR, and ZNF84 (Figure 5A).

Nine machine learning algorithms, including multinomial
logistic regression, DT, RF, XGBoost, MLP, Enet, SVM,
LightGBM, and KNN, were used to fit base models on the
training set (TCGA cohort). The optimal hyperparameters on the
CV of each base model are shown in Supplementary Table S3. The
nine models with optimal hyperparameters were comprehensively
evaluated on CV. Eleven metrics were calculated for model
evaluation, including accuracy, balanced accuracy, F1-score, NPV,
PPV, PR-AUC, precision, recall, ROC-AUC, sensitivity, and
specificity. Finally, the mean metric was calculated as the average
of each metric on CV (Figure 5B). SVM, Enet, KNN, XGBoost, and
RF were the top five optimal base models among these models.

3.4 Construction of stacking ensemble
models and selection of optimal model by
comprehensive evaluation

We randomly combined the five optimal base models, which
generated 26 types of different combinations. Then, the new feature

vector was created using the predicted probabilities (PPs) of
26 combinations. For example, for the combination of SVM.
Enet. KNN. XGBoost. RF, the new feature vector was defined as
[PPs(SVM), PPs(Enet), PPs(KNN), PPs(XGBoost), PPs(RF)]T,
where PPs i) is the PPs based on the optimal base model i. Next,
the meta-models were fitted based on the new feature vector. Here,
nine types of machine learning algorithms, including multinomial
logistic regression, DT, RF, XGBoost, MLP, Enet, SVM, LightGBM,
and KNN, were set as meta-models to fit the two-layer stacking
ensemble models. Finally, 234 stacking ensemble models
were generated.

The 243 models, including 234 stacking ensemble models and
nine base models, were comprehensively evaluated on the G-SAM
and CGGA301 test cohorts. The mean metric was calculated by the
mean value of each metric on the two test sets. The XGBoost.Enet-
stacking-Enet stacking ensemble model exhibits a robust
performance among all metrics on test sets (Figure 6).

3.5 Evaluation of XGBoost.Enet-
stacking-Enet

An ROC curve and a confusion matrix were used for the
performance evaluation of XGBoost.Enet-stacking-Enet. ROC
curves can exhibit the model’s classification ability across each

FIGURE 5
Feature selection and base model construction and comparison. (A) Feature selection: the SVM-REF and varSelRF algorithms were used for feature
selection, and 29 features were retained. (B) Base model construction and comparison: nine machine learning algorithms were used to fit models based
on 5-fold cross-validation (CV) on the training cohort (TCGA). The performance of each model on CV was comprehensively evaluated.
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class. The confusion matrix provides detailed class-level
performance metrics. The macro average method was used to
calculate the area under the curve (ROC-AUC) of the model on

each class. This approach calculates and averages the AUC for each
class to obtain an averaged ROC-AUC. In this way, we can evaluate
the performance of each class equally without suffering from class

FIGURE 6
Integrative construction of stacking ensemble models and model comparison. A total of 243 models, including 234 stacking ensemble models and
nine base models, were comprehensively evaluated on two test cohorts. The metric values were calculated by the mean values of the G-SAM and
CGGA301 cohorts. (A) The top 121 models ranked by mean metric. (B) The 122–243 models ranked by mean metric.
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imbalance. The macro-averaged ROC-AUC values were 0.976 in the
TCGA cohort, 0.933 in the G-SAM cohort, and 0.905 in the
CGGA301 cohort, respectively (Figures 7A–C). The confusion
matrix consists of rows representing the true classes and columns
representing the model’s predicted classes. Overall, the
XGBoost.Enet-stacking-Enet model performed well on both the
training and test sets (Figure 7D).

3.6 Interpretability analysis of
XGBoost.Enet-stacking-Enet

Shapley additive explanations (SHAP) is widely used to explain
machine learning model predictions. Here, SHAP was used to
perform an interpretability analysis of XGBoost.Enet-stacking-
Enet. First, the feature importance analysis was performed by

FIGURE 7
Performance evaluation of the optimal model. (A) ROC curves of the XGBoost.Enet-stacking-Enet model in the training cohort (TCGA). (B, C) ROC
curves of the XGBoost.Enet-stacking-Enet model in the test cohort (G-SAM, CGGA301). (D) Confusionmatrix of the XGBoost.Enet-stacking-Enet model
on the training and test cohorts.
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FIGURE 8
Feature importance based on Shapley additive explanation (SHAP) analysis of the XGBoost.Enet-stacking-Enet model. Feature importance for the
prediction of the classical subtype (A), themesenchymal subtype (B), and the proneural subtype (C). The features are ranked frommost important to least
important on the vertical axis, ordered from top to bottom. The horizontal axis shows the mean absolute SHAP values in all samples in the TCGA cohort.
The higher absolute SHAP values mean higher importance. Feature contribution for the prediction of the classical subtype (D), mesenchymal
subtype (E), and proneural subtype (F). The non-linear relationship between the expression level of EGFR (G), COL1A2 (H), OPLAH (I), and SHAP value. The
horizontal axis represents the feature expression values of each feature ordered from low to high in each feature. SHAP values are presented on the
vertical axis. A SHAP value higher than 0 implicates positive contributions to the corresponding subtype prediction, and SHAP values less than 0 indicate
negative contributions to the corresponding subtype prediction.
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calculating the mean absolute SHAP value. For the prediction of
classical, mesenchymal, and proneural subtypes, the expression
levels of EGFR, COL1A2, and OPLAH/GPC2 play the most
important roles (Figures 8A–C).

Next, we explored the contributional directions of features for
each subtype. The high expression level of EGFRmight contribute to
the classical subtype (Figure 8D). Meanwhile, the high expression
level of COL1A2 and GPC2 might contribute to mesenchymal and
proneural subtypes, respectively (Figures 8E,F). Notably, the
correlations between some features and prediction outcomes were
non-linear, which confirmed the ability of XGBoost.Enet-stacking-
Enet to capture non-linear relationships. For example, the
expression levels of EGFR, COL1A2, and OPLAH have a non-
linear relationship with outcomes (Figures 8G–I).

3.7 Establishment of web tool based on the
XGBoost.Enet-stacking-Enet model

To support intelligent automated decision-making and make it
easier for clinicians to use the model, we developed a web tool
(https://lizesheng20190820.shinyapps.io/ecGBMsub/). This web
tool will promote the practice of precision medicine for IDH
wild-type GBM patients, ultimately improving patients’ quality of
life and treatment outcomes.

4 Discussion

IDH wild-type GBM intrinsic subtypes have been linked to
different genomic landscapes, epigenetic landscapes, treatment
benefits, and tumor immune microenvironments (Figures 2–4).
Accurately identifying molecular subtypes is pivotal to better
understanding the biological characteristics of IDH wild-type
GBM, thereby developing more personalized treatment
administration. Our previous study demonstrated that eccDNA
plays an important role in predicting the grade and prognosis of
glioma patients and the recurrence of GBM (Li et al., 2023). Here, we
would like to further explore the potential of eccDNA in the
identification of IDH wild-type GBM molecular subtypes.

In this study, we have successfully identified differentially
expressed eccDNAs between IDH wild-type GBM tumor tissues
and para-tumor tissues through Circle-seq sequencing.
Simultaneously, it was discovered that these differentially
expressed eccDNAs carried several protein-coding genes.
Currently available IDH wild-type GBM datasets with subtype
information were collected. A novel stacked ensemble machine
learning framework, ecGBMsub, was developed by integrating
multiple machine learning algorithms. Following a
comprehensive model evaluation and comparison, the
XGBoost.Enet-stacking-Enet model was determined to be the
optimal model (Figure 6). The XGBoost.Enet-stacking-Enet is a
two-layer stacking ensemble model, utilizing the XGBoost and Enet
models with optimal hyperparameters as base models and Enet as
the meta-model. The meta-model takes the PPs of the base model as
input and allows the generation of new PPs, thus integrating the
advantages of different models. As expected, this model exhibits
robust performance in predicting molecular subtypes in IDH wild-

type GBM patients (Figure 7). To better understand how
XGBoost.Enet-stacking-Enet achieves predictions for each
subtype, a model interpretability analysis was conducted using
SHAP to help explain the decision-making process for molecular
subtype identification (Figure 8). To enhance the model’s clinical
applicability, a website tool was developed, and the machine learning
model was deployed on the website. This facilitates easy access for
clinicians to leverage our model for molecular subtype prediction in
IDH wild-type GBM patients.

Compared with previous models, the XGBoost.Enet-stacking-
Enet stacking ensemble model exhibits three main advantages. First,
our model was validated in two large-scale independent cohorts,
ensuring its generalization ability. Munquad et al. developed a
biologically interpretable deep learning framework based on a
convolutional deep neural network (CDNN) for subtype
classification (Munquad et al., 2022). Their model integrated
transcriptome and methylome to accurately predict molecular
subtypes. However, their model was trained and validated on a
single-center cohort and lacked external validation. Second, the
XGBoost.Enet-stacking-Enet model exhibits better interpretability,
aiding us to better understand the decision-making process. Mao
et al. developed a CDNN to classify samples (Mao et al., 2022).
However, their models suffer from poor interpretability and limited
clinical translation potential. Third, we developed a website tool to
deploy machine learning models to make it easier for clinicians to
access. Ensenyat-Mendez et al. developed GBM subtype classifiers
based on transcriptomic and epigenomic using random forest and
nearest shrunken centroid algorithms (Ensenyat-Mendez et al.,
2021). Tang et al. leveraged extreme gradient boosting (XGBoost)
to develop a classifier to predict the molecular subtypes of GBM
(Tang et al., 2021). The two models mentioned above have not been
deployed on web tools, making them inconvenient for
clinicians to use.

The innovation of this model lies in two key points: 1) the source
of its features and 2) the model stacking strategy. Our features were
obtained from eccDNA molecular profiling. We first revealed the
underlying correlation between eccDNA and the molecular subtypes
of IDH wild-type GBM. A stacking ensemble strategy was developed
based on enumeration. The ecGBMsub framework maximizes the
advantages of stacking ensemble models by integrating diverse base
models and meta-models to capture complex relationships within
datasets. The framework enhances model stability, especially when
dealing with challenging datasets such as imbalanced or high-
dimensional data.

However, there are some limitations. First, the eccDNAs
identified by Circle-seq sequencing need to be further
experimentally verified to eliminate false positive effects.
Likewise, there may be eccDNAs that are not detected by Circle-
seq due to false negative effects. More advanced sequencing methods
and computational biology tools are needed to fully corroborate and
supplement our detected eccDNA molecules. Second, all data are
sourced from public datasets, and a large-scale in-house cohort is
needed to further verify the robustness of the model. Third, to
confirm that eccDNA molecules play a role in subtype
transformation, in vitro and in vivo experiments that target
specific eccDNA molecules are needed. Finally, our models are
trained and tested based on the transcription profile of the genes
carried by eccDNA, which can be attributed to the lack of a large
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eccDNAmolecular profile cohort. In the future, artificial intelligence
models based on eccDNA’s DNA molecular profiling should be
developed. Such models might be capable of monitoring the
emergence and evolution of eccDNAs during disease progression
to achieve much-needed patient stratification.
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