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The renin-angiotensin system (RAS) is an important cascade of enzymes and
peptides that regulates blood pressure, volume, and electrolytes. Within this
complex system of reactions, its counter-regulatory axis has attracted attention,
which has been associated with the pathophysiology of inflammatory and fibrotic
diseases. This review article analyzes the impact of different components of the
counter-regulatory axis of the RAS on different pathologies. Of these peptides,
Angiotensin-(1–7), angiotensin-(1–9) and alamandine have been evaluated in a
wide variety of in vitro and in vivo studies, where not only they counteract the
actions of the classical axis, but also exhibit independent anti-inflammatory and
fibrotic actions when binding to specific receptors, mainly in heart, kidney, and
lung. Other functional peptides are also addressed, which despite no reports
associated with inflammation and fibrosis to date were found, they could
represent a potential target of study. Furthermore, the association of agonists
of the counter-regulatory axis is analyzed, highlighting their contribution to the
modulation of the inflammatory response counteracting the development of
fibrotic events. This article shows an overview of the importance of the RAS in the
resolution of inflammatory and fibrotic diseases, offering an understanding of the
individual components as potential treatments.
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1 Introduction

Inflammation is a physiological process used as a defense mechanism in response to
tissue injury and infection. When an infection or tissue injury triggers an acute
inflammatory response, blood components (proinflammatory mediators) are released to
the local site where the signal begins. These signals are sent by endothelial cells, tissue-
resident macrophages, and, in some tissues, mast cells, resulting in the recruitment of
immune cells that orchestrate actions eliminating harmful stimulus and promoting tissue
repair. If stimuli are not resolved and repaired, protein excess sets in the extracellular matrix
causing the destruction of the original tissue architecture, originating fibrosis that leads to

OPEN ACCESS

EDITED BY

Yassine Sassi,
Fralin Biomedical Research Institute,
United States

REVIEWED BY

Francisco O. Silva,
University of Texas Southwestern Medical
Center, United States
Carlos F. Sánchez-Ferrer,
Autonomous University of Madrid, Spain

*CORRESPONDENCE

Mónica Flores-Muñoz,
moflores@uv.mx

Oscar Lopez-Franco,
oscarlopez01@uv.mx

†These authors have contributed equally to
this work

RECEIVED 26 January 2024
ACCEPTED 18 March 2024
PUBLISHED 10 April 2024

CITATION

Ávila-Martínez DV, Mixtega-Ruiz WK,
Hurtado-Capetillo JM, Lopez-Franco O and
Flores-Muñoz M (2024), Counter-regulatory
RAS peptides: new therapy targets for
inflammation and fibrotic diseases?
Front. Pharmacol. 15:1377113.
doi: 10.3389/fphar.2024.1377113

COPYRIGHT

© 2024 Ávila-Martínez, Mixtega-Ruiz, Hurtado-
Capetillo, Lopez-Franco and Flores-Muñoz.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Review
PUBLISHED 10 April 2024
DOI 10.3389/fphar.2024.1377113

https://www.frontiersin.org/articles/10.3389/fphar.2024.1377113/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1377113/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1377113/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1377113/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2024.1377113&domain=pdf&date_stamp=2024-04-10
mailto:moflores@uv.mx
mailto:moflores@uv.mx
mailto:oscarlopez01@uv.mx
mailto:oscarlopez01@uv.mx
https://doi.org/10.3389/fphar.2024.1377113
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2024.1377113


organ malfunction. The main effector cells in fibrosis,
myofibroblasts, are responsible for remodeling the extracellular
matrix. Increasing evidence has demonstrated that a major
pathway in fibrosis generation is the transforming growth factor-
β (TGF-β) and, indeed, this factor promotes a sustained fibrogenic
immune cell phenotype (Frangogiannis, 2020).

Over the last years, researchers have discovered that the renin-
angiotensin system (RAS), besides having an important role in the
regulation of electrolyte balance, intravascular volume, and blood
pressure, is also implicated in triggering inflammation and
promoting tissue remodeling. Emerging evidence supports that
the peptides from the newly discovered counter-regulatory arm
of RAS, as part of the opposite effects to classic RAS, may also
elicit anti-inflammatory and antifibrotic effects.

In this review, we describe some of the mechanisms were the
counter-regulatory peptides have been found to be regulatory
elements in inflammation and fibrotic processes, making them an
interesting therapeutic target (Figure 1).

2 From inflammation to fibrosis

The initial recognition of pathogens or cell damage by tissue
macrophages through pattern recognition receptors (PRRs), release
a variety of cytokines, chemokines, and eicosanoids [such as tumor
necrosis factor-alpha (TNF-α), interleukine (IL) 6, IL-1β, monocyte
chemoattractant protein 1 (MCP-1), IL8, prostaglandins, etc.,]
allowing the recruitment and transmigration of neutrophils,
monocytes, and dendritic cells. Transcription nuclear factor
kappa B (NF-κB) is one of the most common pathways activated
by PRRs, which is responsible for inflammatory mediators’
induction by different immune cell types (Mussbacher et al.,
2019). In activated M1 macrophages, NF-κB is a key pathway
required for a large number of inflammatory genes including IL-
1β, IL-6, IL-12, TNF-α, and cyclooxygenase-2 (Chen S. et al., 2023).
Furthermore, NF-κB activation plays an important role in T cell
activation and differentiation, thus, the pathway induces
Th1 polarization improving the induction of cytokines and
antigen presentation (Liu et al., 2017).

The transmigration mechanism is mediated by selectins (P, L,
and E selectins) and integrins which facilitate adhesive interactions
between leukocytes and endothelial cells of blood vessel walls, and
additional chemokines and lipid chemoattractants to govern the
migration of leukocyte route to inflamed tissue (Nourshargh and
Alon, 2014). Inside the infection site, pathogens are opsonized, and
the activated neutrophils attempt to kill the pathogens by releasing
reactive oxygen species (ROS), reactive nitrogen species, proteinase
3, and cathepsin, found in the content of their granules.
Consequently, surrounding tissue impairs the release of
mediators that, not only contribute as inflammation signals but,
also, triggers an antifibrinolytic coagulation cascade. The circulating
platelets bind to exposed collagen and von Willebrand factor,
activating and leading to the production of growth factors.
Beyond this, other coagulation factors help to form fibrin and
blood clots. (Serhan and Savill, 2005).

If the insult is eliminated, the set of signals switches from pro-
inflammatory to anti-inflammatory cues such as lipoxins, resolvins,
prostaglandins, and anti-inflammatory cytokines such as TGF-β or

IL-10 (Levy et al., 2001; Serhan and Savill, 2005). The excess cells
that had to proliferate in response to inflammation and damaged
endothelial cells, now undergo apoptosis as an essential step for the
clearance of resolved inflammation. During this procedure,
suppression of NF-κB in neutrophils has been seen, which
increases the cytotoxic effects of TNF-α (Ward et al., 1999).
Apoptotic cells are phagocytized by a process called efferocytosis
which includes the beginning of tissue restoration (Schmid and
Brüne, 2021). The repair process involves the replacement of injury
cells and components of extracellular matrix (ECM) that are
beneficial for the healing process. As already mentioned, when
the platelets are activated, they produce growth factors and
through TGF-β action, stimulate fibroblast infiltration and its
subsequent differentiation into myofibroblast, which promotes
the production of collagen deposits and wound healing. In
physiological conditions, ECM components are turnover and
degraded by a family of proteinases termed matrix
metalloproteinases (MMP) (Nathan and Ding, 2010).

Persistent tissue damage and non-resolving inflammation
contribute to the development of chronic inflammation,
leading to excessive deposits of ECM components generating
fibrosis. Hence, fibrosis has been defined as the accumulation of
ECM, mainly collagen and fibronectin, around damaged tissue.
But the main question is, why is there persistent tissue damage?
There are numerous reasons for that, for instance persistent
infections by Helicobacter pylori (Waluga et al., 2015;
Zahmatkesh et al., 2022), Schistosomes (Zhong et al., 2022),
hepatitis viruses (Zhou et al., 2021), SARS-COV-2 virus (Shen
et al., 2022), recurrent exposure to toxins, allergic and asthma
(Hough et al., 2020), obesity, diabetes (Xiong et al., 2022) and
hypertension (Schimmel et al., 2022).

3 The renin-angiotensin system and its
counter-regulatory arm

The classical pathway of RAS begins with cleavage of the 10 N-
terminal amino acids of angiotensinogen (ANG) by the enzyme
renin, converting it into angiotensin I (Ang I) (Lu et al., 2016)
(Figure 1). Renin is the active enzyme produced by
juxtaglomerular cells in the kidney and released into circulation
in response to sympathetic activation, low levels of sodium in renal
tubules, and low pressure in afferent arterioles of the renal
glomerulus (Muñoz-Durango et al., 2016). Human ANG is a
glycoprotein that is composed of 485 residue amino acids. The
liver is considered the main source of ANG, but other organs and
cells such as the heart, kidney, brain, and leukocytes can express
ANG in pathophysiological conditions (Gomez et al., 1993;
Tamura et al., 1998; Kobori et al., 2007; Klimov et al., 2012).
Subsequently, the angiotensin-converting enzyme (ACE),
expressed in many tissues, cleaves the C-terminal dipeptide
from Ang I to produce Angiotensin II (Ang II) octapeptide.
Though, in vitro ACE activity also hydrolyzes other peptides
such as bradykinin, N-acetyl-Ser-Asp-Lys-Pro and Angiotensin-
(1–7) [Ang-(1–7)] due to its two catalytic sites (Hooper and
Turner, 2003) (Figure 1).

Ang II is the most studied components of RAS, known for its
principal effects as a vasoactive mediator. Ang II binds to its two
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main receptors, the Ang II type 1 and 2 receptor (AT1Rand AT2R,
respectively). Both receptors are part of the G protein-coupled
receptor family. AT1R mediates the main roles of Ang II in

blood pressure regulation and body fluid homeostasis. Whereas
AT2R activation is considered to have antagonist effects to AT1R.
However, its complete role in different pathologies is still being

FIGURE 1
Renin-angiotensin system. Classic axis. Angiotensinogen (AGT), synthesized in the liver, is cleaved by renin, an enzyme synthesized by the kidneys, to
form Ang I. Ang I is cleaved by ACE to form Ang II. Counter-regulatory axis. Ang I and Ang II are cleaved by ACE2 to form Ang-(1–9) and Ang-(1–7)
respectively. Ang II is also cleaved by APA to form Ang III, by NEP to form Ang-(3–4), and by APN to form Ang IV. DC, decarboxylase; APA, aminopeptidase
A; NEP, neutral endopeptidase; APN, aminopeptidase N; AP, aminopeptidase. Illustration was created with BioRender.com.
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studied. There are several reports describing an increase in the levels
of several components of the RAS in different diseases such as
hypertension, progressive nephropathic disease, diabetes, septic
shock, asthma, aneurism, aging, and acute respiratory distress
syndrome (Millar, et al., 1995; Kuba et al., 2006; Chawla et al.,
2010; Antonucci et al., 2017), suggesting a wider effect of RAS, than
merely control of blood pressure.

In the last decades, Ang II´s proinflammatory effects linked to
fibrosis have been studied. Ang II is capable of up regulating many
inflammatory mediators. Ang II infusion in normotensive subjects
increased IL-6 plasma levels (Luther et al., 2006). Likewise, Ang II-
infused mice showed an increase in the expression of cell adhesion
proteins VCAM-1 and ICAM-1 on the surface of endothelial and
leukocyte cells respectively, playing an important role in leukocyte
adhesion (Qiu et al., 2022). Furthermore, Ang II raised IL-1β, IL-6,
TNF-α levels, and macrophage infiltration in heart and vessel walls.
These changes boosted TGF-β expression and collagen I/III
production, promoting subsequent cardiac remodeling (Zhang
et al., 2023). These effects were also observed in hypertensive
patients with heart failure (Muñoz-Durango et al., 2016),

suggesting that blocking inflammatory proteins could attenuate
hypertensive cardiac remodeling (Wenzel et al., 2011; Qiu et al.,
2022; Zhang et al., 2023). Moreover, expression of endoglin, a type
III TGF-β receptor, and endothelin-1 in cardiac fibroblast (CF) were
increased after Ang II treatment (Chen et al., 2004). Ang II also
elicits an increase in collagen protein expression and a decrease in
MMP-1 protein. These effects were abolished by AT1R and
MAPp42/44 inhibitors, whereas AT2R antagonists had no effect
(Chen et al., 2004). In addition, Ang II-induced TGF-β and
endothelin-1 expression in CF promoted cardiac hypertrophy
and renal fibrosis in vitro and in vivo (Gray et al., 1998; Sun
et al., 2000; Schultz et al., 2002; Chen et al., 2004). This evidence
implies that Ang II could promote profibrotic responses up-
regulating TGF-β and endothelin-1 expression through the
AT1R/MAPp42/44 pathway (Figure 2).

In addition, there is evidence of RAS overactivation in adipose
tissue in obesity. It has been shown that Ang II induces insulin
resistance and favors inflammation (Goossens et al., 2007). Ang II
in vitro treatment increases MCP-1 secretion and proinflammatory
cytokines. In contrast, adipocytes produce low levels of IL-10 after

FIGURE 2
Biological effects of the RAS and the Counter-regulatory RAS on inflammation and fibrosis. In the classical axis, Ang II stimulus (illustrated as RAS in
red bold letters) increases CCL-2 production and upregulates adhesins expression. Moreover, Ang II promotes pro-inflammatory cytokines releasing
such as IL-6, which induces immunological cell recruitment and promotes its activation favoring the inflammatory process. In turn, the persistent signal
gives rise to immune cells producing other mediators creating a microenvironment where the inflammation did not resolve, contributing to
fibrogenesis by fibroblast activation and subsequent excessive collagen deposition. On the other hand, some of the counter-regulatory RAS (illustrated as
CR-RAS in blue bold letters) have demonstrated opposite effects. Illustration was created with BioRender.com.
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peptide stimuli, which impairs insulin secretion (Kalupahana et al.,
2012). Moreover, pancreatic islet exposure to Ang II also induces
cytokine production, impairs insulin secretion, and triggers β cells
apoptosis. Interestingly, cytokine IL-1β blocking reduced
inflammation, and restored insulin secretion, suggesting that
inflammation deteriorates pancreatic islet function and could lead
to end-organ damage (Sauter et al., 2015). On the other hand,
scientific evidence has investigated the role of RAS in aging
(Takeshita et al., 2023). Ang II has been implicated in the
senescence process. The Ang II in vitro stimuli of human
umbilical endothelial vein cells (HUVEC) and vascular smooth
muscle cells (VSMC) induced cell growth arrest, and increased
senescence-associated β-galactosidase, observing fragmented
nuclei, and increase in apoptotic cells (Shan et al., 2008).
Furthermore, persistent Ang II stimulation upregulates
senescence-related protein expression such as p21, p16, p27, and
p53 including a boost in ROS production and activation of
transcription factors NF-κB and AP-1 in VSMC. These effects
were inhibited by AT1R and PI3K/Akt inhibitors, suggesting that
Ang II could exhibit its effect by AT1R/PI3K/Akt/p53/p21 pathway
(Min et al., 2007; Li et al., 2014).

In addition to Ang II, other identified angiotensin peptides have
been described as having counter effects to the classical RAS
pathway. This non-classical pathway is also called the counter-
regulatory arm and comprises several peptides product of Ang II
and its precursor´s cleavage. The counter-regulatory RAS was
identified through the concept of a local RAS based on two
discoveries: first, expression of all components of the RAS in
specific tissues. ACE, renin, angiotensinogen, Ang I and Ang II
are expressed and synthesized in human and murine
cardiomyocytes (Paul et al., 1993; Hirsch et al., 1991; Burrell
et al., 2005; van Kats et al., 1998). Both the AT1R and the AT2R
have also been shown to be expressed in cardiac cells (Booz and
Baker, 1996). All these findings suggested that generation and
consequently Ang II-mediated signaling could be initiated
directly in individual tissues without the requirement for
systemic, circulating RAS components. The second discovery was
the identification of new components of the RAS expressed in
specific tissues, predominantly the enzyme Angiotensin-
converting enzyme 2 (ACE2). These findings resulted in the
theory of a “local and tissue-specific” RAS. Since the recognition
of this local tissue-specific RAS many studies have been described to
elucidate the actions and mechanisms of their components and to
attempt to segregate these actions from those mediated by
circulating Ang II produced via the classical pathway. This has
led to the characterization of the physiological and
pathophysiological action of the RAS in different organs. Local
tissue-specific RAS has been described in the heart, blood vessels,
kidney, adrenal gland, nervous system, reproductive system, skin,
digestive system, lymphatic and adipose tissue and in fetal
development.

One of the main discoveries of the counter-regulatory RAS is the
generation of Angiotensin peptide metabolites. These peptides
include Ang-(1–7), angiotensin-(1–9) [Ang-(1–9)], angiotensin-
(3–7) [Ang-(3–7)], angiotensin-(3–4) [Ang-(3–4)], angiotensin-
(1–5) [Ang-(1–5)], angiotensin-(2–8) [Ang-(2–8)], angiotensin-
(3–8) [Ang-(3–8)], also called angiotensin III (Ang III) and IV
(Ang IV) respectively, and alamandine (Paz Ocaranza et al., 2020).

3.1 Angiotensin-(1–7)

Ang-(1–7) is a heptapeptide discovered in 1988 in the brainstem
by Santos et al. (1988). The first characterization of the peptide
described it as an Ang I´s metabolite by ACE enzymatic action.
However, after ACE inhibition, Ang-(1–7) was still detectable,
suggesting that other enzymes could generate this peptide (Santos
et al., 1988). Some years later, ACE2 was identified as an ACE
homolog, that was able to hydrolyze Ang II to Ang-(1–7) (Tipnis
et al., 2000) and Ang I to Ang-(1–9) (Donoghue et al., 2000). Unlike
ACE, ACE2 is tissue-specific, firstly described as expressed only in
heart, kidney, and testis (Donoghue et al., 2000), to then be shown to
express in many other tissues, as enterocytes, reproductive cells,
eyes, etc. (Hikmet et al., 2020). Subsequently, Ang I can also be
converted into Ang-(1–7), via either cleavage by ACE 2, to form
Ang-(1–9) which is then hydrolyzed by ACE transforming it into
Ang-(1–7), or by a direct conversion by the action of prolyl
endopeptidase, neutral endopeptidase or thimet oligopeptidase
(Welches et al., 1993) (Figure 1). Although it has been proved
that ACE2 has higher catalytic efficiency on Ang II to form Ang-
(1–7), its formation at least in failing human heart, has been reported
also by NEP suggesting that its pathway generation is dependent of
physiological conditions (Vickers et al., 2002; Zisman et al., 2003;
Rice et al., 2004). Ang-(1–7) acts through engaging the orphan Mas
proto-oncogene (Santos et al., 2003). However, there is evidence that
shows Ang-(1–7) can also bind to AT2R although with less
specificity (Bosnyak et al., 2011).

The first described actions for Ang-(1–7) were in the
cardiovascular system, where it inhibited Ang II-induced
vasoconstriction (Roks et al., 1999; Jiang et al., 2014). Afterward,
several studies have shown anti-inflammatory and antifibrotic
effects in different pathological conditions (Figures 2, 3). There is
evidence that Ang-(1–7) treatment alleviates induced inflammation
by cecal ligation and puncture in murine models (Passaglia et al.,
2023). Ang-(1–7) reduced expression of proinflammatory cytokines
TNF-α and IL-6 while augmenting anti-inflammatory cytokines IL-
4 and 10 and promoting M2 macrophage polarization. These effects
were accompanied by a decrease in NF-kB phosphorylation,
suggesting that Ang-(1–7) inhibits inflammation through this
pathway (De Carvalho Santuchi et al., 2019; Pan et al., 2021). In
another study using a E. coli-induced peritonitis, administration of
Ang-(1–7) promoted the recruitment of M2 macrophages,
increasing its phagocytic capacity, and increased the production
of IL-10, MCP-1. These effects were inhibited in the absence of the
Mas receptor, suggesting that Ang-(1–7) could contribute to the
resolution of inflammation through the Mas receptor (Zaidan
et al., 2022).

Furthermore, the role of Ang-(1–7) during sepsis has been
evaluated. The infusion of this peptide prevented septic shock in
different animal models, limiting the amount of IL-6 cytokine, nitric
oxide (NO) production and decreasing renal, lung and liver damage,
along with IκB kinase pathway inhibition, suggesting that Ang-(1–7)
ameliorate sepsis-induced organ injury likely through the inhibition
of an inflammatory response (Tsai et al., 2021; Garcia et al., 2023). In
the septic process, an increase in Ang II levels has been shown and is
associated with renal and myocardial injury with an increase in
cytokine levels (Zhu et al., 2021; Chen X. S. et al., 2023). It has been
found that administration of Ang-(1–7) decreases inflammatory
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cells infiltration as well as the production of IL-6, IL-1β, and TNF-α
in myocardial and renal tissue of septic mice. Additionally, a higher
survival percentage and a decrease of Ang II levels were observed in
mice that were administered with Ang-(1–7) compared to untreated
mice suggesting that treatment with this peptide could attenuate the
organic damage caused by sepsis (Xu et al., 2021; Zhu et al., 2021;
Chen X. S. et al., 2023).

During the recent coronavirus pandemic, researchers found that
there was a RAS dysregulation and ACE2 dysfunction due to SARS-
COV-2 binding to ACE2 receptor in host cells, driving to acute
respiratory distress syndrome. COVID-19 patients exhibit reduced
Ang-(1–7) levels compared to control individuals and this
phenomenon was associated with the severe form of the disease
(Carpenter et al., 2022). Therefore, the peptide was also suggested as
a therapy in COVID-19 ill patients confirmed with high viral load
and co-morbidities such as hypertension, diabetes, heart diseases
and asthma. Plasma enriched with Ang-(1–7) was transfused in
combination with favipiravir treatment and, in almost all cases, the
peptide transfusion improved oxygen saturation and clinical status
(Onal et al., 2022). It has been shown that SARS-COV-2 infect
bronchoalveolar stem cells (BACS). BACS are a lung resident stem
cell population that differentiate into many types of cells,
contributing to the maintenance of bronchoalveolar duct. In
response to injury, BACS ratio increases and promotes tissue
repair, which is impaired when viral infection. In mice, Ang-
(1–7) administration increased the percentage of BACS and
decreased protein expression involved in programmed cell death
and inflammation process, suggesting that Ang-(1–7) peptide

treatment could have a protective function in lung injury by
SARS-CoV-2 (Ciechanowicz et al., 2022). In addition, Ang-(1–7)´
s in vitro treatment of human pulmonary alveolar epithelial cells
stimulates with SARS-COV-2 spike protein reduced production of
IL-6, IL-8 and suppressed ERK1/2 and AP-1 phosphorylation,
suggesting that Ang (1–7) could block SARS-COV-2-exacerbating
proinflammatory response (Shen et al., 2023).

On the other hand, there is experimental evidence indicating
Ang-(1–7)/Mas pathway may contribute to the attenuation of
airway pathological conditions. Asthma is a chronic allergic
airway disease and is characterized by airway
hyperresponsiveness and pulmonary remodeling in which
inflammatory response play an important role with a
predominance of eosinophils, increased IL-4, IL-5, IL-13, TNF-α
cytokines, and chemokines such as MCP-1 and CCL5 (Magalhães
et al., 2016). Ovalbumin challenge in mice is used as an experimental
asthma model, since it replicates the pathophysiological features in
patients (Magalhães et al., 2015). In previous studies using this
model, Ang-(1–7) treatment statistically diminished the release
levels of IL-4, IL-5 cytokines and MCP-1 and CCL-5 chemokines
into serum, as well as granulocyte-macrophage colony-stimulating
factor. Consequently, reducing inflammatory cell infiltrate, alveolar
wall thickening and airway collagen I and mucus deposition
(Magalhães et al., 2015). In addition, Ang-(1–7) administration
upregulated Mas expression on bronchial cells and decrease
epidermal growth factor receptor (EGFR), Src kinase and ERK1/
2 phosphorylation in lung tissue (El-Hashim et al., 2019).
Nonetheless, it has been demonstrated that Mas deficiency

FIGURE 3
Cell signaling of bioactive peptides of the counter-regulatory axis in inflammation and fibrosis. The binding of peptides to their receptor induces
inhibition of cytokines, chemokines, adhesion molecules, growth factors, collagen, metalloproteases, and inflammatory and fibrotic signaling pathways.
The blue arrows show the actions of Ang-(1–7), throughMas; the orange arrows, showing the actions of Ang-(1–9), via AT2R; the purple arrows, show the
actions of Ang-(3–8), through AT4R; the red arrows, show the actions of Alamandina, through MrgD. Illustration was created with BioRender.com.
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aggravates chronic allergic pulmonary inflammation, suggesting
that Mas is an important receptor to trigger anti-inflammatory
response and could be doing it through mediation of EGFR/Src/
ERK1/2 pathway on lung tissue (Magalhães et al., 2016).
Additionally, ATG5 is a key protein involved in the formation of
autophagosomes overexpressed in lung tissue of asthma patients.
Interestingly, Ang-(1–7) elicited decreased levels of ATG5 on
human bronchial epithelial and smooth muscle cells. This
ATG5 deficiency suppressed inflammation and airway fibrosis,
similarly to what it was observed in ovalbumin-challenged mice
with Ang-(1–7) administration, suggesting another mechanism for
Ang-(1–7) as an asthma treatment (Xu et al., 2023).

As already mentioned, the end result of inflammation is fibrosis.
In models of acute lung injury mimicking acute respiratory distress
syndrome in humans, the action of Ang-(1–7) have been examined.
In this syndrome, there is a disruption of epithelial and endothelial
barriers in the lung leading to severe immune reactions, hypoxic
respiratory failure, pulmonary edema, and fibrosis (Chen et al.,
2013). In acute lung injury, the characteristic increase in the
expression of collagen I and III, TGF-β, IL-6, and Smad2/3 in
the lung, is reduced after Ang-(1–7) therapy, leading to a
significant improvement in oxygenation and reduction of white
blood cells counts mainly in neutrophil percentage (Chen et al.,
2013; Zambelli et al., 2015; Wang et al., 2022). In addition, Ang-
(1–7) infusion, starting immediately after lung injury, has also been
shown to prevent pulmonary vascular resistance, diminish aortic
pressure, and increase ACE2 activity in lung tissue (Supé et al.,
2016). Ang II-induced pulmonary fibrosis in rats triggers a cascade
of proinflammatory factors and adhesion molecules that allows
infiltrate cells recruitment in the lung, mediated by
phosphorylation of ERK1/2/NF-κB pathway. Interestingly, Ang-
(1–7) treatment in Ang II-treated animals inhibited ERK1/2/NF-
κB axis, proinflammatory cascade and ameliorated lung fibrosis,
effects that were reverse by Mas antagonists. By contrast, in Ang-
(1–7) alone group, exhibited lung inflammation and deposition of
collagen I compared to the untreated group (Meng et al., 2014).
Together these data showed, at least under pathological conditions,
Ang-(1–7) can protect against fibrosis development down-
regulating pathways such as ERK1/2/NF-κB, which makes it a
therapeutic target in fibrotic conditions (Figure 3).

Ang-(1–7) has also been studied in fibrotic renal diseases.
Renal diseases are characterized by interstitial cell infiltration,
NF-κB activation, increased apoptosis, oxidative stress, and
fibrosis, even when patients with renal failure present
complications in other organs such as heart. In previous studies
in renal injury models, long-term treatment with Ang-(1–7)
decreased the production of pro-inflammatory cytokines,
macrophage infiltrate, caspases cleavage and blood pressure, as
well as attenuating Ang II levels meliorating oxidative stress and
renal fibrosis (Lu et al., 2017; Zaman and Banday, 2022). Moreover,
treatment was able to increase the activity of enzymes involved in
collagen degradation, and improved heart function accompanied
by a reduction in cardiac fibrosis (Li et al., 2009). Interestingly, in
renal failure models, Mas receptor deficiency inhibited NF-κB
phosphorylation leading to reduction in MCP-1 and IL-6
cytokines and thus attenuating the fibrotic condition. Similar
results were observed when wildtype experimental models were
infused with short-term Ang-(1–7) treatment, suggesting that in

some conditions, lack of signaling by Mas could prevent renal
inflammation (Esteban et al., 2009).

One of the most studied actions of Ang-(1–7) is in cardiac
remodeling. Many authors have confirmed that Ang-(1–7) has some
effect in at least one of the components of cardiac remodeling. Grobe
et al. demonstrated reduced myocyte hypertrophy, interstitial
fibrosis and TGF-β levels in response to Ang-(1–7) in an Ang II-
induced rat model of hypertension and cardiac remodeling (Grobe
et al., 2007). Studies with transgenic mice overexpressing Ang-(1–7)
in the heart have shown that in the presence of Ang II, hypertrophy
and fibrosis of the left ventricle is reduced, as well as expression of
TGF-β1 (Mercure et al., 2008). In cardiac fibrosis, exposure of Ang
II-stimulated cardiac fibroblasts to Ang-(1–7) inhibited collagen
synthesis and expression of endothelin-1 and leukaemia inhibitory
factor (Iwata et al., 2005). It has also been described that Ang-(1–7)
normalizes the decreased levels of MMP in Ang II-stimulated
cardiac fibroblasts and myocytes (Pan et al., 2008). In addition,
Grobe et al. (2006) showed that Ang1-(1–7) was able to prevent
interstitial fibrosis by decreasing collagen deposition in the
deoxycorticosterone acetate (DOCA) salt hypertensive rat model
(Grobe et al., 2006). In nephrectomised mice Ang-(1–7) prevented
left ventricular remodeling and diminished interstitial fibrosis by
reducing the levels of TGF-β and increasing MMP2 and 9 (Li et al.,
2009). Ang-(1–7) also decreased the expression levels of
inflammatory cytokines and suppressed oxidative damage (Li
et al., 2009) (Figure 3). It has been demonstrated that oxidative
stress, vasoactive peptides, and inflammation can induce DNA
damage, mitochondrial dysfunction, and protein misfolding
leading to senescence and cell death (Erusalimsky, 2009).
Endothelial senescence has been associated with cardiovascular
diseases and atherosclerotic lesions (Mogi, 2020). Regarding Ang-
(1–7), Romero et al. (2019), studied the heptapeptide role in
endothelial cells senescence-induced by RAS or non-RAS
mechanism. They found that Ang-(1–7) antagonized the cell
senescence triggered by Ang II and IL-1β, which were blunted by
A779 (Mas antagonist). The pro-inflammatory phenotype also was
reduced after peptide treatment, which included a reduction in
adhesines such as ICAM-1, VCAM, and IL-6 secretion.
Additionally, the nuclear factor-erythroid 2-related factor 2
(Nrf2) and heme oxygenase-1 (HO-1) levels were augmented
after Ang-(1–7) and inhibited when these pathways were
blocked. These data suggest that Ang-(1–7) could prevent Ang II
and IL-1β senescencent-induced effects by reducing oxidative stress
by MasR/Nrf2/HO-1 axis (Romero et al., 2019). As mentioned
above, oxidative stress and cytokine production can trigger cell
senescence. Several reports on ROS dysregulation are related to the
development of fibrosis diseases (Li et al., 2020). Due to that in
fibrosis, there is low-grade chronic inflammation, which triggers
excessive ROS production and may promote TGF-β synthesis
leading to fibroblast activation with consequent ECM deposit
accumulation. Hence, it could be interesting to study the
pathways related to aging and fibrosis development.

3.2 Angiotensin-(3–8)

Ang-(3–8), also known as Ang IV, is a hexapeptide generated
through the cleavage of Ang III by aminopeptidase N. This peptide
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of only six amino acids long has been shown to have vasodilatory
and inflammatory actions in different organs. The role of Ang-(3–8)
in inflammation was described for the first time in 2005. The
capacity of this peptide to activate the transcription factor NF-κB
and positively regulate inflammation was demonstrated in vascular
smooth muscle cells through the AT4R receptor (Esteban et al.,
2005). On the contrary, studies have emerged establishing Ang-
(3–8) having anti-inflammatory effects. In human endothelial cells,
the capacity of Ang IV to mediate the expression of Macrophage
Migration Inhibitor, a proinflammatory cytokine associated with the
production of TNF-α, IL-1β and IL-6, was observed (Zhong et al.,
2008). In murine macrophages, Nikolaou et al. (2014), evaluated the
effects of Ang IV on the NF-κB pathway, where a lack of expression
of proinflammatory genes such as ICAM-1 and TNF-α was
observed, which could indicate differential effects of this peptide
depending on cell lineage (Nikolaou et al., 2014). In a murine model
of abdominal aortic aneurysm, treatment with Ang IV markedly
reduced the infiltration of macrophages and proinflammatory
cytokines (Kong et al., 2015). Furthermore, in cardiac ischemia-
reperfusion (I/R) injury, Ang-(3–8) infusion managed to suppress
the expression of VCAM-1, TNFα, MMP-9, and NF-κB proteins
(Figure 3) (Park et al., 2016). Similar results were described in rats
with cerebral hypoperfusion, where in addition to observing anti-
inflammatory effects, it was discovered for the first time that this
effect was induced in a dose-dependent manner (Wang et al., 2018).
More recently, in mice, it was demonstrated how Ang IV was able to
protect against acute myocardial infarction by inhibiting
inflammation (Bai et al., 2021).

In a fibrotic context, little is still known in relation to Ang IV.
However, some studies have demonstrated an interaction
between this peptide and fibrotic pathologies. In a study
performed in kidney cells, the capacity of Ang IV to induce
the expression of plasminogen activator inhibitor-1 mRNA, a
protein involved in fibrosis inhibition and progression of fibrotic
events, was demonstrated (Gesualdo et al., 1999). Ang-(3–8) also
induced interstitial fibrosis and cardiac deterioration in adult
mouse hearts when bound to the AT1R receptor (Ainscough et al.,
2009). Conversely, Ang IV dose-dependently downregulated
Fox01-mediated fibrosis when bound to the AT4 receptor in a
mouse model of diabetic cardiomyopathy (Zhang M. et al.,
2021) (Figure 3).

3.3 Angiotensin-(1–9)

Ang-(1–9) is a nine amino acid peptide that results from the
metabolism of Ang I by ACE2 cleavage of the terminal amino acid
(Donoghue et al., 2000). Although ACE2 is the main enzyme to form
Ang-(1–9), carboxypeptidase A and cathepsin A can also produce
this peptide (Jackman et al., 2002; Garabelli et al., 2008). These
reports also show that formation of Ang-(1–9) from Ang I is the
main pathway in cardiomyocytes (Kokkonen, et al., 1997; Garabelli
et al., 2008). As already mentioned, once Ang-(1–9) is formed ACE
cleaves the two last amino acids (phenylalanine and histidine)
generating the active peptide Ang-(1–7). Ang I is the precursor
to Ang-(1–9) through ACE2 (Figure 1). Although little is known
about it, Ang-(1–9) has gained relevance as a counterregulatory
active peptide. Ang-(1–9) binds mainly to the AT2R (Flores-Muñoz

et al., 2011), exerting biological effects in organs such as kidney, lung
and mainly heart.

Few studies have described Ang-(1–9) in an inflammatory
context (Figure 2). In rats with diabetic heart disease,
subcutaneous administration of this peptide normalized the levels
of several proinflammatory cytokines, including TNF-α and IL-1β
through the AT2R (Zheng et al., 2015). In DOCA-salt hypertensive
rats, infusion of Ang-(1–9) decrease monocyte infiltration in heart,
aorta and kidney tissue, reducing inflammation in these rats
(Gonzalez et al., 2018). Similar results were also observed in a rat
model of pulmonary hypertension, where treatment with Ang-(1–9)
reduced plasma TNF-α, MCP-1, IL-1β, and IL-6 (Cha, et al., 2018).
Furthermore, in prostate cancer cells Ang-(1–9) negatively regulated
the expression of NF-κB1 and NF-κB2, modulating these
inflammatory pathways (Domińska et al., 2020)

Within the fibrotic context Ang-(1–9) was shown to be capable
of reducing cardiac fibrosis through the AT2R, by reducing the
presence of type I collagen in spontaneously hypertensive rats
(Flores-Munoz et al., 2012). Similarly in rats with Ang II-induced
hypertension, this peptide was able to reduce the presence of
collagen type I, in addition to reducing the expression of TGF-β
(Ocaranza et al., 2014). These results were also observed in diabetic
rats where collagen I and TGF-β mRNA expression was also
decreased (Zheng et al., 2015). Adenoassociated delivery of Ang-
(1–9) in mice infarcted hearts, reduced septal and perivascular
fibrosis, as well as expression of MMP-12, described as promoter
of fibrosis (Fattah et al., 2016). Furthermore, Fattah et al. (2016),
described that Ang-(1–9) delivery, while reducing fibrosis, it also
reduced acute rupture by stabilizing and thickening myocardial
infarction scar, suggesting Ang-(1–9) remodeling modulation
during scar evolution. Gonzalez et al. (2018), described Ang-
(1–9) as having a protective role in hypertensive end-organ
damage, by demonstrating reduction of collagen deposition and
myofibroblast in heart, kidney and aorta when infused in DOCA-
salt hypertensive rats (Gonzalez et al., 2018). Additionally, in rats
with pulmonary hypertension the antifibrotic effects of Ang-(1–9)
were replicated. Treatment with Ang-(1–9) in an monocrotaline
induced pulmonary hypertensive model reduced pulmonary
damage via the AT2R (Cha et al., 2018) (Figure 3).

3.4 Alamandine

Alamandine is a recently discovered heptapeptide derived from
Angiotensin A, very similar to Ang-(1–7), differing only by
presenting alanine instead of aspartate in the N-terminal domain
(Lautner et al., 2013). Due to this similarity, alamandine has been
shown to have similar actions to Ang-(1–7). However, these actions
have been associated with its interaction with a different receptor,
the Mas-related G protein-coupled receptor, member D (MrgD)
(Lautner et al., 2013) (Figure 2). Within the inflammatory context,
in vitro experiment showed that alamandine was able to dose-
dependently regulate the degranulation of MMP-9 and
myeloperoxidase in mouse neutrophils, suggesting an anti-
inflammatory role (Da Silva et al., 2017). Later, in a murine
model of cardiac dysfunction associated with sepsis, this peptide
was able to prevent myocardial inflammation, by preventing the
activation of ERK, JNK and P38 (Li et al., 2018). Furthermore, in
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mice subjected to a transverse aortic constriction procedure, it was
observed that alamandine was able to decrease the expression of
proinflammatory genes MCP-1, TNF-α, IL-1β and contribute to
resolution with an increased expression of MRC1 and FIZZ1
(Morais Silva, 2020). Similar results were observed in a
myocardial ischemia-reperfusion injury model where alamandine
reduced the levels of TNF-α, IL-1β, IL-6 and NO, and protected
cardiomyocytes by inhibiting the activation of NF-κB (Song et al.,
2019). Therapeutic administration of this peptide decreased the
number of neutrophils and M1 macrophages in a model of LPS-
induced inflammation (De Carvalho Santuchi et al., 2019). Recently,
alamandine was able to reduce doxorubicin-induced cardiotoxicity
in rats, by counteracting the elevation of proinflammatory cytokines
(Hekmat et al., 2021). In the kidney, this peptide also demonstrated
anti-inflammatory actions by alleviating kidney injury by inhibiting
PI3K/AK and MAPK pathways (Hu et al., 2021). Furthermore,
alamandine was shown to have a protective role in a stroke model by
reducing the expression of proinflammatory cytokines (TNFα, IL-
1β, IL-6) (Figure 2; 3) (Gonçalves et al., 2022). Such protective effects
were also observed in a collagen induced arthritis model (Ding
et al., 2022).

Alamandine has also been described as having antifibrotic effects
in different pathologies. Oral treatment of alamandine to
spontaneously hypertensive rats resulted in decrease of collagen I,
III and fibronectin expression of (Lautner et al., 2013; Liu et al.,
2017). Similarly, administration of alamandine regulated vascular
remodeling of ascending aorta by diminishing aortic fibrosis,
collagen deposition, MMP activity and TGF-β expression in a
murine model of transverse aortic contrition, as well as several
important pro inflammatory genes (MCP-1, TNF-α, IL1-β) (De
Souza-Neto et al., 2019). These effects are mediated through the
MrgD receptor (Yang et al., 2020). In a subsequent study, when
analyzing cardiac remodeling, alamandine administration reduced
collagen deposition, MMP-2 and TGF-β expression in the left
ventricle, induced by aortic constriction. Additionally,
alamandine prevented ERK1/2 and AMPKα phosphorylation,
suggesting important effects of alamandine in cardiac remodeling
regulation (Morais Silva, 2020). Furthermore, Wang et al. (2023),
suggested that alamandine antifibrotic effects on TGF-β activated
fibroblast could be mediated by decreasing glycolysis through
Parkin/CSF mitophagy (Wang et al., 2023). NF-κB and JNK
pathways have been linked to alamandine actions. In a rat model
of cardiac ischemia-reperfusion injury, the administration of this
peptide reduced the presence of fibrotic markers, increasing the
phosphorylation levels of ERK and JNK, while NF-κB decreased
(Song et al., 2019). Another mechanism associated with the effects of
alamandine was observed in liver and lung, where the peptide
attenuated the presence of fibrosis by attenuating autophagy
activated by ROS-dependent reactive oxygen species (Huang
et al., 2020; Gong et al., 2022; Zhao et al., 2022). (Figure 3).

3.5 Other functional peptides of the
counter-regulatory axis

Currently, as part of the counter-regulatory RAS there are
several other angiotensin peptides, but their role in inflammation
or fibrosis has not been yet described. Within these, Ang III is a

heptapeptide produced by Ang II cleaved in the Asp N-terminal
residue, mediated by aminopeptidase A, and has been demonstrated
to have high affinity to AT1R but shows selectivity to AT2R (Bosnyak
et al., 2011). Ang III can induce NF-κB phosphorylation in
mesangial cells and increase MAPK phosphorylation on VSMC,
inducing proliferation. These effects are mainly mediated through
the AT2R (Lorenzo et al., 2002; Alanazi and Clark, 2020). In
addition, low concentrations of Ang III perfusion have been
demonstrated to stimulate stretch-induced atrial natriuretic
peptide (ANP) secretion. ANP secretion was abolished when the
AT2R was blocked but not AT1R orMas. Interestingly, such an effect
was also blocked by pretreatment with PI3K, Akt or PKG inhibitor,
showing that ANP secretion may be stimulated by PI3K–Akt–PKG
signaling pathway (Park et al., 2013). Moreover, intrarenal treatment
with Ang III augmented urine sodium excretion in rats and
increased AT2R expression, effect that was abolished by an AT2R
antagonist (Padia et al., 2009). In addition, Ang III treatment
produced a significant reduction of diastolic blood pressure in
spontaneously hypertensive rats (Matsufuji et al., 1995).
However, in another study, Ang III infusion failed to increase
urine sodium excretion rate and AT2R upregulation suggesting
that the natriuretic effect is mediated by AT2R signaling (Padia
et al., 2009; Kemp et al., 2019). These data together suggest that Ang
III could have an important pathologic role in renal diseases;
however, further studies are needed to understand its clinical
implications.

On the other hand, Ang-(3–7) is formed by cleavage of the Pro-
Phe amino acid residue fromAng IV by carboxypeptidase P (Wright
et al., 2012). Early studies that evaluated Ang-(3–7) showed its
pressor effect in rats (Ferreira A. J. et al., 2007). Subsequently, the
role has been studied in vitro in prostate epithelial cells, observing
that Ang-(3–7) incubation led to upregulation of MIK67, NF-κB
gene expression, and mobility was increased (Domińska et al., 2020).
Additionally, Ang-(3–7) administration reduced heart weight and
cardiac hypertrophy gene markers ANP, BNP, and β-MHC.
Furthermore, the peptide treatment inhibited collagen I, collagen
III, and fibronectin expression in hearts’mice and cardiac fibroblast
cells. These results indicated that Ang-(3–7) could attenuate cardiac
hypertrophy and prevent fibrosis development in experimental
cardiac remodeling model (Zhang Y. et al., 2021).

Ang-(3–4) is one of the shorter peptides in the counter-
regulatory RAS that has been shown to have some effects. It is
produced fromAng III metabolism in plasma (Matsufuji et al., 1995)
or by Ang-(1–7) cleavage in the kidney (Axelband et al., 2009). The
first studies showing some effect of this peptide demonstrated a role
as an antihypertensive, antiproliferative, and vasodilatory agent
(Matsufuji et al., 1995; Matsui et al., 2005; Dias et al., 2017). In
hypertensive models, it has been found that oral administration of
Ang-(3–4) produced a reduction in systolic blood pressure, as well as
urinary sodium excretion increased and AT1R downregulated in the
renal proximal tubule of young rats (Saito et al., 1994; Luzes and
Crisóstomo, 2021). Interestingly, the dipeptide depressor effect was
not significant in aged mice (Matsui et al., 2003). In addition, in vitro
studies show that Ang-(3–4) can also inhibit Ang II induced-human
VSMC proliferation through intracellular Ca2+ suppression (Matsui
et al., 2005). In a subsequent study, it was demonstrated ACE
inhibition by dipeptide’s stimulus led to a reduction of Ang
I-produced contraction of the aortic rings in rats (Vercruysse
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et al., 2008). Additionally, Ang-(3–4) effects are also investigated in
overweight and undernutrition. In an overweight rat model, it was
found that Ang-(3–4) treatment reduced blood pressure and
hepatorenal index, suggesting that the peptide could prevent
lesion formation induced by lipid deposits (Crisóstomo et al.,
2022). Moreover, it has been found that in aging overweight and
undernutrition juvenile rats, ACE2 levels decrease. Interestingly,
after Ang-(3–4) administration, ACE2 levels are increased in
overweight rats but not in rats with undernutrition conditions
(Luzes and Muzi-Filho, 2021). In contrast, in a recent study,
Pereira-Acácio et al. showed that a multi-deficient diet led to
high blood pressure, and it could be associated with the
development of hypertension (Pereira-Acácio et al., 2022). In this
sense, they demonstrated that Ang-(3–4) treatment is capable of
normalizing systolic blood pressure (Pereira-Acácio et al., 2022).

Finally, another recently studied peptide is Ang-(1–5). This
pentapeptide is derived from Ang-(1–7) in vitro metabolism by
the ACE enzyme, which hydrolyzes its Ile- His amino acid residues
(Chappell et al., 1998). The most researched effects of pentapeptide
are focused on the cardiovascular system. Roks et al. (1999),
demonstrated that in vitro stimuli with Ang-(1–5) inhibited ACE
activity from human plasma but is not capable of affecting arterial
contractions (Roks et al., 1999). In addition, in isolated beating atria
Ang-(1–5) stimulation induced augmented ANP secretion that was
attenuated after inhibition of Mas, PI3K, Akt, and NOS, suggesting
these pathways could be involved in ANP secretion stimulated by
pentapeptide (Yu et al., 2016). Subsequently, the effect of Ang-(1–5)
in Sprague-Dawley rats with I/R injury was evaluated. In this study,
rats’ hearts were infused with low doses of Ang-(1–5) for 10 min
prior to ischemic induction, further, they used AT1R, AT2R, and
Mas antagonists. The Ang-(1–5) infusion ameliorated I/R-induced
changes in left ventricular end-diastolic and developed pressure,
cardiac infarct size and ANP secretion. These effects were abolished
by the treatment with Mas antagonist, but not by AT1R or AT2R
blockers. Moreover, the pentapeptide treatment also reduced pro-
apoptotic proteins such as Bax, Caspase-3, and 9. However, anti-
apoptotic proteins such as Bcl-2, and antioxidant enzymes such as
Mn-superoxide dismutase, catalase, and HO-1 were increased.
These effects were blocked when Mas was inhibited (Park, et al.,
2021). Myocardial ischemic/hypoxia models are characterized by a
gradual decrease in ANP secretion and changes in the profile of
antioxidant enzymes and ROS production that lead to an increase in
cell death (Park et al., 2021). Hence, this data together suggests that
Ang-(1–5) treatment could attenuate myocardial damage in this
pathology. Despite the recent evidence about the effects of these
peptides, most reports are focused on their anti-hypertensive role.
However, taken together all the available data, it could suggest that
the upregulation of antioxidant pathways will lead to a reduction in
ROS production with a consequent decrease in tissue damage to
avoid chronic inflammation and fibrosis development.

4 AT2R and MAS agonists

4.1 Compound 21

Compound 21 (C21) is the first non-peptide agonist of the
AT2R. This agonist was synthesized in 2004 by Yiqian Wan, and

through a binding assay they demonstrated the selective affinity of
C21 for AT2R. Additionally and most importantly, this new C21 had
vasopressor effects in spontaneously hypertensive rats (Wan et al.,
2004). The synthesis of this compound has facilitated the study of
the specific effects of AT2R. Antihypertensive, proangiogenic,
antifibrotic and anti-inflammatory effects in different organs have
been attributed to the interaction of C21 and AT2R.

The anti-inflammatory actions of C21 with the AT2R interaction
have been studied in different pathologies. In a model of acute
myocardial infarction in Wistar rats, the intraperitoneal
administration of C21 was able to stimulate AT2R, observing
improvement in cardiac function and reduction of the scar in the
post-infarction heart (Kaschina et al., 2008). In addition to these
results, a null expression of p38 MAPK and p44/42 MAPK was
observed. These MAPKs are traditionally involved in processes such
as proliferative, apoptotic, and inflammatory. However, there is also
evidence of opposite effects to those mentioned above. This
association was demonstrated with evidence of anti-inflammatory
actions, where C21 significantly suppressed the expression of
cytokines (MCP-1, IL-1, IL-2, IL-6), so C21 contributed to the
preservation of normal physiology after of myocardial infarction
(Kaschina et al., 2008). Sampson et al., studied the involvement of
C21 in TNF-α-induced inflammation in HUVEC, monocyte
activation and in aortas of C57BL/6 mice. In vitro experiments
indicated that C21 reduced TNF-α-induced expression of ICAM-1,
CCL2, and IL-6 genes and proteins. In addition to reducing
increased monocyte adhesion by 40% and reduced NFkB-p65
translocation from cytoplasm to the nucleus. These results were
extrapolated to in vivo experiments, where treatment with
C21 showed similar results (Sampson et al., 2016).

In renal pathological conditions, C21 counteracts most of the
effects of the AT1R. Matavelli et al. (2011), evaluated early renal
inflammation in renovascular hypertension. In Sprague-Dawley rats
treated with C21 for 4 days, a reversal of the early inflammatory
stage was observed, with reduction of the proinflammatory markers
TNF-α, IL-6 and TGF-β1 in kidney tissue (Matavelli, et al., 2011).
Another study in 2015 evaluated the involvement of C21 in a model
of early diabetes in rats, where one of its main objectives was to study
the effects of this compound on kidney inflammation. In this case, in
addition to seeing a marked reduction in IL-6, C21 also reduced
TNF-α and markers of oxidative stress (Matavelli et al., 2015). Years
later, Jabber et al. (2023), demonstrated in a murine model of sepsis-
induced renal inflammation that the modulation of C21-induced
inflammation was mediated by the modulation of the PI3K/AKT
signaling pathways (Jabber, et al., 2023).

In the lung, C21, as in the heart and kidney, proved to have anti-
inflammatory potential. In experiments carried out in mice with
pulmonary inflammation induced by bleomycin, the contribution of
C21 as a pulmonary anti-inflammatory was confirmed for the first
time, observing a reduction in cellular infiltrate in bronchoalveolar
fluid (Du et al., 2009). In subsequent studies, carried out by Menk
et al. (2018), it was demonstrated that, in this organ, C21 could
reduce not only the cellular infiltrate, but also the expression of
TNF-α and IL-6 (Menk et al., 2018). Similar results were observed in
Chronic obstructive pulmonary disease (COPD) induced by
cigarette smoke, showing a reduction in proinflammatory
cytokines and, also, the inhibition of components of the NF-κB
signaling pathway in alveolar macrophages (Mei et al., 2022).
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Currently, with the emergence of the COVID-19 pandemic, the
study of acute respiratory distress syndrome (ARDS) has gained
relevance. In this sense, Chen et al. (2024), studied the relationship
of C21 in ARDS, where favorably, this compound was able to resolve
the inflammatory stage, with a marked reduction of CCL-2, IL-6
through NF-κB (Chen et al., 2024).

C21 has been shown to have antifibrotic actions in various
cardiac pathologies. In 2012, Rehman et al. (2012), studied the
involvement of C21 in the development of hypertension and
vascular damage in stroke-prone spontaneously hypertensive rats.
In these rats administered with C21 for 6 weeks, a decrease in fibrotic
and hypertensive events was observed, associated with the reduction
of the stiffness of the mesenteric artery, the decrease in myocardial
interstitial collagen type I/III and aortic oxidative stress, infiltrate of
inflammatory cells and fibronectin (Rehman et al., 2012).
Subsequently, in rats with myocardial infarction, in addition to
observing the ability of C21 to improve arterial stiffness and reduce
collagen, a decrease in the extracellular matrix metalloproteases
MMP2 and MMP9 and transforming growth factor B was observed
(Lauer et al., 2013). Similarly, in another study of cardiac
hypertrophy induced by high salt intake, C21 was able to
replicate previous results (Dopona et al., 2019). In rats with Ang
II-dependent hypertension, a sustained reduction in myocardial
perivascular fibrosis was observed after 1 week of intraperitoneal
administration of C21 (Castoldi et al., 2016).

In in vivo and in vitro experiments carried out in ydiabetic rats
and mesangial cells, Koulis et al. (2015), demonstrated that the
activation of AT2R by C21 reduced the gene and protein expression
of TGF-β1, CTGF, smooth muscle alpha actin and MMP-2 at the
renal level. Furthermore, the effect of C21 on the extracellular matrix
induced a reduction in type I and IV collagen (predominant collagen
isotypes in renal fibrosis) (Koulis et al., 2015). In rats with
cyclosporine-induced nephropathy, C21 reduced these same
fibrotic markers, in addition to reducing glomerular and tubulo-
interstitial fibrosis and macrophage infiltrate (Castoldi et al., 2016).

The presence of fibrosis in the lung can lead to decreased lung
capacity, respiratory failure, and other complications such as heart
problems. C21 has also been studied to treat fibrotic lung pathologies,
with promising results. In a model of pulmonaryb hypertension in rats,
induced by monocrotalin, the intraperitoneal administration of
C21 decreased the presence of interstitial and perivascular collagen I,
in addition to reducing the gene expression of profibrotic cytokines
(TNF-α and IL-1β) (Bruce et al., 2015). Similarly, in a bleomycin-
induced lung injury model in rats, administration of C21 at the same
concentration reduced lung collagen accumulation, attenuated gene
expression of fibrotic markers (Col 1, Col 3, Ctgf, Mmp12, Timp1, IL-
13) (Rathinasabapathy et al., 2018). Recently, in a model of pulmonary
hypertension induced by hypoxia in rats, C21 was administered
intraperitoneally at two different doses. It was shown that this
compound was able to reduce the presence of collagen fibers
significantly at the dose of 20 mg/kg but not with the dose of
2 mg/kg (Tornling et al., 2023).

4.2 AVE 0991

The compound AVE 0991 (AVE) was first described in 2002 by
Wiemer et al. (2002). In this study they demonstrated that AVE

0991 mimicked the effects of Ang-(1–7) on endothelium, reducing
the) release of nitric oxide, maintaining endothelial function, and
reducing vascular injury (Wiemer et al., 2002), through the G
protein-coupled receptor MAS (Pinheiro et al., 2004).

In heart diseases, AVE has been shown to induce beneficial
effects for the resolution of pathologies. Zhou et al. (2019), in a
murine model of transverse aortic constriction, tested the effects of
AVE in combination with intraperitoneal captopril.
Coadministration of these compounds completely prevented
macrophage infiltration in the aortic adventitia. However, there
was an accumulation of cells still present (Zhou et al., 2019). In
another study of Ang II-induced hypertension in rats, AVE
treatment in combination with alamandine reduced inflammatory
stress related to the increase in MCP-1 (Tanrıverdi et al., 2023).

In an atherosclerosis model in knockout mice, AVE
administered as treatment for 4 months, reduced the infiltration
of proinflammatory cells MCP-1, IL-6, IL-12 and SAA (Jawien et al.,
2012). Skiba et al. (2017), demonstrator that in this model, AVE
0991, inhibited inflammation in perivascular adipose tissue by
reducing the expression of cytokines IL-1β, TNF-α, MCP-1 and
CXCL10, and the differentiation of M2 macrophages to the
M1 phenotype (Skiba et al., 2017).

This non-peptide agonist has also an anti-inflammatory
effect in pulmonary pathologies. Rodrigues-Machado et al.
(2013), evaluated the effects of AVE in a model of chronic
asthma induced with ovalbumin in BALB/c mice. After
administration of AVE for 28 days, this treatment was able to
prevent the development of pulmonary and airway vascular
remodeling, in addition to reducing the inflammatory
response with a marked reduction in cytokine release (IL-5) in
bronchoalveolar fluid and lung homogenates (Rodrigues-
Machado et al., 2013). Subsequently, in a similar model it was
observed that the anti-inflammatory effect (reduction of
macrophages, MCP-1, MAPK) occurred through the MAS
receptor expressed in the bronchial epithelium. Furthermore,
these actions were attributed to the inhibition of the JNK
signaling pathway (Hong et al., 2021).

In a fibrotic context, although little is known to date, AVE has
had favorable implications in the resolution of different
pathologies that develop this alteration. In a model of cardiac
dysfunction in rats, induced by isoproterenol, the intraperitoneal
administration of AVE attenuated the deposition of collagen in
the left ventricle, in addition to reducing the presence of collagen
type I, collagen III and fibronectin in the heart (Ferreira P. M.
et al., 2007). In rats with myocardial infarction, AVE also
attenuated the expression of collagen I and III, in addition to
inhibiting the expression of TGF-β and TNF-α (Zeng et al., 2012).
In a model of renal hypertension in rats, intragastric
administration of AVE for 28 days was shown to be capable of
reducing collagen deposition in renal tissue (Cunha et al., 2013;
Cao et al., 2019). Cao et al. (2019), in a model of pulmonary
fibrosis caused by LPS-induced ARDS, evaluated the effects of
AVE, where they demonstrated that the application of this
compound as an intraperitoneal treatment for 20 days was
capable of attenuating lung injury by reducing the presence of
collagen I fibers, the levels of TGF-β in bronchoalveolar fluid and
plasma, the protein expression of E-cadherin and vimectin and
the phosphorylation of Src kinase (Cao et al., 2019).
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5 Translational relevance

Peptides of the counterregulatory axis of the renin-angiotensin
system are likely to play an important role in the control of
inflammatory and fibrotic diseases, as supported by many
in vitro and in vivo studies. Still, to date, existing studies remain
limited in the clinical context.

As we have seen in this review, Ang-(1–7) is one of themost studied
peptides, so there are several reports that evaluate its actions as clinical
treatment. Although several of these studies are not directly in
inflammatory or fibrotic diseases, it is relevant to mention them.

Ueda et al. (2000), evaluated the vascular effects of Ang-(1–7) in
human forearm resistant vessels, where intra-arterial infusion of this
peptide reduced the increase in blood flow caused by Ang II in
normotensive patients (Ueda et al., 2000). Furthermore, in
normotensive subjects, Ang-(1–7) was able to enhance the
vasodilatory effects of bradykinin, reducing forearm blood flow by
10 percent (Ueda et al., 2001). Later, these same actions were
evaluated in normotensive and hypertensive subjects, observing an
increase in vasodilation in both conditions (Sasaki et al., 2001). More
recently, in healthy normotensive postpartumwomenwith preeclampsia,
Ang-(1–7) enhanced the endothelium-dependent vasodilatory response,
attenuating Ang II-mediated constriction (Stanhewicz and Alexander,
2020). The main beneficial effects described on these peptides are as
vasodilators and anti-hypertensives. Hence, the improvement in blood
flow could have anti-inflammatory effects by reducing the accumulation
of inflammatory cells and increasing the arrival of anti-inflammatory
factors, which could promote the resolution of this response.On the other
hand, the reduction of inflammation could regulate the elevation of pro-
fibrotic factors, which stimulate the excessive synthesis of extracellular
matrix components and the proliferation of fibroblasts, reducing the
progression of fibrosis.

To our knowledge, there are very few clinical trials that have
evaluated the implications of Ang-(1–7) in an inflammatory context.
In confirmed COVID-19 patients, the effects of plasma with Ang-
(1–7) were evaluated, observing an improvement in the clinical
status of the patient (Onal et al., 2022). Importantly, two
independent pilot clinical trials aimed to determine the safety of
human use of TXA-127 [a pharmaceutically formulated Ang-(1–7)]
(Wagener et al., 2022), or Ang-(1–7) (Valle Martins et al., 2022)
delivered these peptides intravenously to COVID-19 patients,
showing a safe use of both molecules, and suggesting the
potential clinical use as treatment for severe COVID-19.

Other peptides of the counterregulatory axis have not been
evaluated in clinical studies, however the knowledge generated so
far in cells and animals could lay the foundations for future research
in humans focused on the development of anti-inflammatory and
antifibrotic treatments.

6 Conclusion

In conclusion, the counterregulatory axis of the renin-angiotensin
system has become an important object of study for more than
2 decades. The components of this axis offer a variety of effects such
as antihypertensive, anti-inflammatory and antifibrotic. In the field of
research, the evaluation of these components has progressed from
structural observation through histological techniques to the evaluation

of gene and protein expression. Several studies have described some
mechanisms of action by which the components of the
counterregulatory axis act in the regulation of inflammation and
fibrosis. These mechanisms have focused on the evaluation of
signaling pathways such as NF-κB, JAK/STAT and JNK.

Therefore, the peptides of the counterregulatory axis of the renin-
angiotensin system, as well as their non-peptide analogues, offer new
options for the therapy of pathologies that have inflammatory and
fibrotic stages. However, several challenges remain, including:

1. There is literature that describe controversial evidence on some
of the peptides regarding their anti-inflammatory effects.

2. The understanding of the mechanisms of action is still very
limited, with little literature that supports the signaling
pathways involved in its effects.

3. Most of the effects described so far are evaluated in in vivo or
in vitro models and in numerous cases still require clinical
research to demonstrate the reproducibility of their results
in humans.

In future research, it is expected that by improving the understanding
of the action of this axis and its relationship with the progression of
diseases, these peptides can be applied clinically as treatments that help
reduce the alarming response of diseases to less serious stages.
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