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Rheumatoid arthritis is a chronic immunological disease leading to the
progressive bone and joint destruction. Angiogenesis, accompanied by
synovial hyperplasia and inflammation underlies joint destruction. Delaying or
even blocking synovial angiogenesis has emerged as an important target of RA
treatment. Natural medicines has a long history of treating RA, and numerous
reports have suggested that natural medicines have a strong inhibitory activity on
synovial angiogenesis, thereby improving the progression of RA. Natural
medicines could regulate the following signaling pathways: HIF/VEGF/ANG,
PI3K/Akt pathway, MAPKs pathway, NF-κB pathway, PPARγ pathway, JAK2/
STAT3 pathway, etc., thereby inhibiting angiogenesis. Tripterygium wilfordii
Hook. f. (TwHF), sinomenine, and total glucoside of Paeonia lactiflora Pall. Are
currently the most representative of all natural products worthy of development
and utilization. In this paper, the main factors affecting angiogenesis were
discussed and different types of natural medicines that inhibit angiogenesis
were systematically summarized. Their specific anti-angiogenesis mechanisms
are also reviewed which aiming to provide new perspective and options for the
management of RA by targeting angiogenesis.
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1 Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease whose main pathology is
characterized by damage to articular cartilage and bone tissue, synovial hyperplasia, chronic
inflammation and pannus formation (Díaz-González and Hernández-Hernández, 2023). Its
worldwide prevalence ranges from 0.5% to 2% and the incidence is higher in females than in
males (Radu and Bungau, 2021). RA cause progressive joint destruction, lower life
expectancy, early unemployment, and considerable disability, all of which have a
negative impact on patients’ health (Scherer et al., 2020; Conforti et al., 2021; Finckh
et al., 2022). The pathogenesis of RA is not yet fully understood and may be related to genes,
epigenetics, environmental factors (Giannini et al., 2020). Patients who have suffered
irreparable damage to their joints will never regain normal physical functioning, even if
clinical remission is achieved at a later stage (Frazzei et al., 2023). Early recognition and
treatment can limit radioactive joint damage, preserve joint function, and achieve long-term
drug-free remission (Tan and Buch, 2022). Currently, nonsteroidal anti-inflammatory
drugs, antirheumatic medicines, glucocorticoids, and immunosuppressants are the most
commonly used drugs in the clinical prevention and management of RA (Zhao J. et al.,
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2021). The first-line treatment for RA is anti-rheumatic drugs,
which interferes with RA symptoms, enhance physical function,
and alleviate joint deterioration. However, the progression of
damage and severe incapacity is not halted by antirheumatic
medicines (Lin et al., 2020). In the last three decades, new
treatment alternatives have been developed for both biologics and
small-molecule drugs. However, because to the complex
pathophysiology of RA, it is difficult for existing drug treatments
to achieve satisfactory efficacy (Smolen, 2020).

Angiogenesis, the process by which pre-existing vessels grow into
new capillaries, has been implicated in the proliferation of cancers as
well as the pathophysiology of inflammatory disorders (Carmeliet,
2003; Folkman, 2006). Some compounds such as nintedanib which
targeting angiogenesis have already been used for tumor treatment
(Roth et al., 2015). Thus, the blockade of angiogenesis was a viable
strategy that could lead to remission of disease progression (Balogh
et al., 2019). Angiogenesis is an early indication of RA, and is also one of
the hallmarks of RA, which precedes the appearance of other symptoms
(Szekanecz et al., 2009). The neovasculature generated in the initial
stages of RA transports oxygen and nutrients to the highly dividing
synovial tissue, increases synovial cell proliferation, and allows immune
cells to invade cartilage and bone tissue (Szekanecz et al., 2005). Once
the new vasculature and the proliferative synovial cells form into the
vascular cartilage junction and the vascular bone junction, the invasion
may injure both bone and cartilage tissue, prompting deformation of
the joints and functional impairment (Maeda et al., 2022). Inhibition of
neovascularization is a significant aim in the management and
recovery of RA because it prevents the occurrence of pannus
(Eelen et al., 2020).

Natural medicines has been used for centuries in the
management of RA, which has the advantages of abundant
resources, minimal toxicity and favourable therapeutic effect
(Wang et al., 2021a; Liu X. et al., 2022). Some natural medicines
have been offered to patients with RA or have shown encouraging
evidence in preclinical studies, indicating potential for future use
(Zhou et al., 2018; Liu X. et al., 2022; Luo et al., 2023). Researchers
have made major advances in understanding the material basis and
mechanism of natural medicines (Li W. et al., 2023). Many
researches have demonstrated that natural medicines has
significant anti-arthritis potential. The mechanism involved in
this effect include immunological regulation, anti-oxidative stress,
anti-angiogenesis, inhibition of bone destructionand and decreased
expression of inflammatory indicators (Lü et al., 2015; Zhao X. et al.,
2021; Liu X. et al., 2022). Firstly, the functions of angiogenesis in RA
will be discussed in this review, followed by an increased overview of
the angiogenic mediators required for RA.We will then describe and
summarize the natural medicines including compounds, extracts,
and prescription which inhibit synovial angiogenesis. Natural
products primarily regulate the hypoxia-inducing factor (HIF)/
vascular endothelial growth factor (VEGF)/angiotensin (Ang)
signaling axes, as well as related pathways such as mitogen-
activated protein kinase (MAPK), nuclear factor κB (NF-κB),
protein kinase B (AKT)/mTOR, peroxisome proliferator-activated
receptor-γ (PPARγ), and janus kinase/signal transduction and
transcriptional activator 3 (JAK/STAT3). Relevant researches
were retrieved from PubMed, Web of Science and China
National Knowledge internet databases. The search algorithm
was as follows: (“rheumatoid arthritis” OR “anti-rheumatic

drugs”) AND (“alkaloids” OR “natural medicines” OR
“flavonoids” OR “terpenoids” OR.

“polyphenol” OR “natural extracts”). The main information
were summarized, as shown in Table 1–3. The major signaling
pathways that affect angiogenesis was shown in Figure 1. Studies on
natural medicines that inhibit angiogenesis range from 2000 to 2023.

2 Role of angiogenesis in RA

Angiogenesis is the generation of new branches of blood vessels
from pre-existing blood vessels, requiring the degeneration of the
basement membrane, stimulation, expansion, and migrating of
vascular endothelial cells (ECs), and neovascularization (Folkman,
2006). Synovial cells, like usual cells, require an exchange of vital
nutrients and oxygen through blood vessels in addition to the
elimination of metabolic waste (Taylor and Sivakumar, 2005). Under
normal physiological conditions, the vascular system will be in a resting
state for a long time, and only when the body is damaged will there be
temporary angiogenesis (Maruotti et al., 2006).

However, in the pathology of RA, the oxygen and nutrient
requirements of the synovium incrementally increase, and the
proliferation and expansion of synovial tissues force the number
and density of synovial vessels to increase compensatively (Leblond
et al., 2017). The higher the degree of synovial cell growth and the
degree of monocyte infiltration, the higher the vascular density and the
degree of ECs growth (Taylor and Sivakumar, 2005). Angiogenesis
depends on multiple phases, each of which is modulated by particular
factors. Angiogenesis is supposed to begin with the stimulation of ECs
mainly activated by pro-angiogenic substances especially VEGF. The
activated ECs secrete matrix metalloproteinases (MMPs) which
fragment the basal membrane and trigger invasion. This causes
local blood vessels dilatation, increased vascular permeability, and
proteolytic breakdown of the basal membranes of existing capillary
endothelial cells. When the basement membrane is disrupted,
endothelial tip cells will protrude and migrate approach the site of
origin of the angiogenic signaling. Following EC growth, capillary buds
form, causing ECs to elongate and organize properly. The expanding
buds eventually generate lumens, allowing these tubular structures to
connect to nearby blood vessels. In the last stage, pro-angiogenic
factors such as Ang1 stabilise blood vessels, and then pericytes are
incorporated into the newly constructed basement membrane to
facilitate the process of blood flow (Taylor and Sivakumar, 2005;
Szekanecz et al., 2010; Rizzi et al., 2017; Eelen et al., 2020). Early
neovascularization in RA strengthens tumor-like synovial cell
proliferation and allows inflammatory cells to infiltrate cartilage and
bone tissue. Inflammation, immunological imbalance, and
angiogenesis are all linked together to promote pannus production,
which damages joints and causes abnormalities in joints and
dysfunction (Costa et al., 2007; Leblond et al., 2017). Numerous
investigations have indicated that angiogenesis occurs at the
beginning of RA and persists throughout every phase of the
disease. There is evidence that the suppressing angiogenesis may
improve synovial inflammation and pannus formation.
Consequently, angiogenesis is essential to both the initiation of RA
and the discovery of effective pharmaceuticals (Semerano et al., 2011;
Wang et al., 2021b). The role of angiogenesis in the pathological
process of rheumatoid arthritis is shown in Figure 2.
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TABLE 1 Effects of compounds on angiogenesis in rheumatoid arthritis.

Categories Natural
product

Plants source Experiment
models

Effective dose Mechanism Ref.

Alkaloids Sinomenine Sinomenium acutum CIA rats 30, 100, 300 mg/kg HIF-1α, VEGF, Ang-1, CD31↓ Feng et al.
(2019)

Berberine Hydrastis canadensis/Cortex
phellodendri/Rhizoma
coptidis

CIA rats 200 mg/kg TNF-α, IL-1β, IL-6, IL-17, VEGF↓;
VEGF, CD34↓; p-ERK, p-p38,
p-JNK↓

Wang
et al.
(2014)

1-Methoxycarbony-β-
carboline

Picrasma quassioides HUVECs 50 μmol/L Ang, EGF, bFGF, GRO, IGF-1, PLG,
MMP-1, TIE-2, uPAR↓

Lin et al.
(2018)

zebrafish 12.5, 25, 50 μmol/L embryonic angiogenesis in
zebrafish↓; angiogenesis in the
zebrafish caudal fin regeneration
assay↓

Matrine Sophora flavescens Alt CIA rats 100 mg/kg IL-1β, IFN-γ, VEGF, PLGF, HIF-α,
Ang-1, Ang-2, Tie-2↓;
phosphorylation-Akt↓

Ao et al.
(2022)

FLS 0.5, 1.0, 1.5, 2.0 mg/mL proliferation and migration of
RA-FLS↓

HUVECs 0.5, 1.0, 1.5, 2.0 mg/mL proliferation and lumen formation of
HUVECs↓

Flavonoids Morin Morus alba L CIA rats 20, 40, 80 mg/kg TNF-a, IL-6↓; IL-10↑; CD31, VEGF,
bFGF↓

Yue et al.
(2018)

HUVECs 1, 3, 10, 30, 100 mol/L VEGF induced migration and tube
formation↓

Morin Morus alba L./Otostegia
persica

CIA rats 80 mg/kg PTEN↑; PPARγ↓ Zeng et al.
(2015)

HUVECs 10 μM migration and tube formation↓;
PTEN↑, PPARγ↓; PI3K/Akt↓

nobiletin citrus fruits CIA rats 100, 400 mg/kg IL-1β, MCP-1, IL-6, TNF-α↓; p38/
NF-κB↓

Yang et al.
(2017)

Gambogic acid Garcinia maingayi gambogic
tree

AIA rats 1, 5, 10 mg/kg IL-1β, IL-6↓; p-Akt, mTOR↑; HIF-
1α, VEGF↓

Wu et al.
(2017)

Liquiritin Glycyrrhiza uralensis CIA rats 8 mg/kg IL-1β, TNF-α, IL-6↓; synoviocyte
apoptosis↑; VEGF↓

Zhai et al.
(2019)

RA-FLS 0.345, 3.45, 34.5 μmol/L proliferation↓; nuclear DNA
fragmentation↑; cell apoptosis↑; Bcl-
2/Bax↓; VEGF, p-JNK, P38↓

Genistein Euchresta japonica Benth.
Ex Oliv./Sophora japonica L

CIA mice 5 mg/kg IL-1β, IL-6, TNF-α↓; VEGF↓ Hu et al.
(2016)

apigenin parsley/celery/celeriac/
chamomile tea

CIA mice 20 mg/kg VEGF, VEGFR↓ Li et al.
(2019b)

Iridoid Geniposide Gardenia jasminoides Ellis AIA mice 60 mg/kg CD31, VEGF, p-VEGFR2, SphK1,
p-SphK1, S1PR1↓

Wang
et al.

(2022a)
HUVECs 25, 50, 100 μM VEGFR2, p-VEGFR2, p-PKC,

ERK1/2, p-ERK1/2, SphK1,
p-SphK1, S1PR1↓

Geniposide Gardenia jasminoides Ellis AIA rats 60 mg/kg vimentin, CD31, VEGF, VEGFR2,
p-VEGFR2, Erk1/2, p-Erk1/2,
SphK1, p-SphK1, S1PR1↓

Wang
et al.
(2021c)

FLS/VEC 25, 50, and 100 μM proliferation, migration, tube
formation, S1P secretion↓

Geniposide Gardenia jasminoides Ellis AIA rats 30, 60 and 120 mg/kg Dnmt1-mediated PTEN gene
hypermethylation↓

Bu et al.
(2022a)

HUVECs 25, 50, 100 μM DNA methylation, Dnmt1↓

(Continued on following page)
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3 The major mediator and signaling
pathways that regulates angiogenesis

Angiogenesis is mainly regulated by an appropriate ratio of
promoting and inhibitory forces (Eelen et al., 2020). Once this

balance is broken, it will activate the angiogenesis into new vessels
or suppress the vasculature angiosclerosis. Synovial
neovascularization can be aided by a variety of mediators, such
as growth factors, cytokines, chemokines and so on. Conversely,
synovial angiogenesis is hampered by endogenous vascular

TABLE 1 (Continued) Effects of compounds on angiogenesis in rheumatoid arthritis.

Categories Natural
product

Plants source Experiment
models

Effective dose Mechanism Ref.

Geniposide Gardenia jasminoides Ellis AIA rats 30, 60 and 120 mg/kg PTEN↑; p-PI3K, p-Akt↓ Bu et al.
(2022b)

HUVECs 25, 50, 100 μM proliferation, migration, and tubule
formation↓

geniposide Gardenia jasminoides Ellis AIA rats 30, 60, 120 mg/kg CD31, VEGF, Ang-1↓; ES↑ Sun et al.
(2020)

FLSs 5, 10, 20 μM SphK1, S1PR1, VEGF↓

Geniposide Gardenia jasminoides Ellis AIA 30, 60, 120 mg/kg CD31, SphK1, p-Erk1/2↓ Deng et al.
(2021)

FLSs/VECs 25,50,100 μM SphK1, p-Erk1/2, S1P↓

Monoterpene Paeoniflorin-6′-O-
benzene sulfonate

Paeonia lactiflora Pall AIA rats 50 mg/kg CXCL12, CXCR4↓ Zhang
et al.
(2019)HUVECs 1 × 10−9, 1 × 10−8, 1 × 10−7,

1 × 10−6, 1 × 10−5 mol/L
GRK2↓

Sesquiterpene artesunate Artemisia annua L RA FLS 0.5, 1.0, 5.0, 10, 20 μM VEGF, IL-8↓; HIF-1α↓ He et al.
(2011)

Diterpene Triptolide Tripterygium Wilfordii
Hook f

CIA rats 11, 22, 45 mg/kg TNF-α, IL-17, VEGF, VEGFR, Ang-
1, Ang-2, Tie2↓, ERK, p38, JNK↓

Kong et al.
(2013)

HFLS–RA cells 1, 10 and 50 ng/mL tube formation↓, chemotactic
migration↓

HUVEC 1, 10 and 50 ng/mL chemotactic migration↓

Triterpene Pristimerin Celastrus aculeatus Merr AIA rats 0.40,0.8 mg/kg vessel density↓; TNF-α, Ang-1,
MMP-9↓; VEGF, p-VEGFR2↓

Deng et al.
(2015)

Rat aortic ring assay 0.5, 1.0, 2.0 μM sprouting vessels of the aortic ring↓

HFLS-RA 0.50, 0.75, 1.0 μM migration↓

HUVECs 0.125, 0.25, 0.50 μM VEGF-induced proliferation,
migration and tube formation↓,
VEGF-induced VEGFR2↓; PI3K,
AKT, mTOR, ERK1/2, JNK,
and p38↓

β-Sitosterol many kinds of plants CIA mice 100 mg/kg VEGFR2, p-VEGFR2↓ Qian et al.
(2021)

HUVECs 10 and 20 μM proliferation and migration of
HUVECs↓

Polyphenol Chebulinic acid Fructus Chebulae CIA mice/DBA/1J 50 mg/kg CD31, VEGF↓ Lu et al.
(2020)

HSMECs 1.7 μM Erk1/2, p38 MAPK, AKT↓

Resveratrol Polygonum cuspidatum CIA rats 200, 400 mg/kg IL-1β, MCP-1, IL-6, TNF-α, ROS↓ Yang et al.
(2018)

RSC-364 25, 50 μmol/L HIF-1α↓; p38↓; c-Jun↓

Anthraquinones Emodin Rheum palmatum L synoviocytes 0.01, 0.1, 1, 10, 100 mM TNF-a, IL-6, IL-8, PGE2, MMP-1,
MMP-13, VEGF, COX-2, HIF-1a,
HDAC1↓

Ha et al.
(2011)

Coumarin Scopoletin Erycibe obtusifolia Benth AIA rats 50, 100 mg/kg blood vessel formation↓; VEGF,
bFGF, IL-6↓

Pan et al.
(2010)

Scopolin Erycibe obtusifolia Benth AIA rats 25, 50, 100 mg/kg IL-6, VEGF, FGF-2↓ Pan et al.
(2009)

Mineral drug arsenic trioxide — CIA mice 1.0, 2.0, 5.0 mg/kg TSP-1, TGF-β1, CTGF, VEGF↓ Zhang
et al.
(2017)RA-FLS 0.5, 1, 2 μM

↑, increase, upregulate, promote or improve; ↓, suppress, downregulate, reduce, or inhibit.
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inhibitors, including angiostatin, interleukin-4 (IL-4), interleukin-
13 (IL-13) and interferon. Among them, VEGF, HIF-1, Ang-1,
Ang-2 are recognized as most important angiogenic factors that
affect synovial angiogenesis (Szekanecz et al., 2005; Maruotti
et al., 2006).

3.1 VEGF

VEGF is a homologous dimeric glycoprotein which involved in
regulating neovascularization. The VEGF family is a group of
angiogenic cytokines that comprises placental growth factor
(PLGF), VEGF-A→VEGF-F (Costache et al., 2015; Hamilton
et al., 2016). The importance of VEGF-A (commonly referred to
as VEGF) in the regulation of angiogenesis will be the primary topic
of this review (Apte et al., 2019). VEGF experience alternative exon
splicing, resulting in various isoforms. Among them, VEGF165 is
the most widely expressed isoform in tissues (Woolard et al., 2009).
VEGF has two high-affinity receptors, VEGFR-1 and VEGFR-2,
which are predominantly distributed on ECs, and a small amount
of other cells such as hematopoietic stem cells and monocytes are
also expressed, but it is currently believed that only ECs have a
response to VEGF (Melincovici et al., 2018). Studies have shown
that VEGF specifically acts on vascular ECs and can affect their

proliferation, differentiation and other functions. The VEGF-
dependent signaling pathway plays a central part in
angiogenesis during RA pathophysiology (Liang et al., 2014).
Under normal conditions, vascular ECs renewal is slow and
VEGF expression is low. During tissue injury and
inflammation, hypoxia, platelet-derived growth factor (PDGF),
fibroblast growth factors (FGFs), etc., Can increase VEGF by
3–20 times (Melincovici et al., 2018). VEGF signaling
modulates the activation of various kinases during
vasculogenesis and angiogenesis, which in turn controls cell
division, movement, longevity, and permeability of the vessel
(Ahmad and Nawaz, 2022).

3.2 Ang

Ang serves as one of the growth factors requested for the initial
angiogenesis. At the present time, the Ang family is the sole known
pro-angiogenic factor having both promoting and inhibitory
actions, and it consists four members, Ang-1→Ang-4, which all
share the EC tyrosine kinase receptor Tie-2 (Saharinen et al., 2017).
Ang-1 and Ang-2 are two key angiogenin regulators involved in
vascular development, endothelial eruption, vascular wall
remodeling and parietal cell recruitment. According to research,

TABLE 2 Effects of natural medicine extracts in rheumatiod arthritis.

Phytochemicals Animal/
Strains

Dose Effects and molecular mechanisms Ref.

Anemone ffaccida Fr. Schmidt CIA rats 200, 400 mg/kg CD31, VEGF↓ Rao et al.
(2023)

HUVECs 5, 7.5, 10, 15, 20,
30 μg/mL

VEGFR, p-PI3K, p-AKT, p-mTOR↓

HFLS-RA 2.5, 5, 10, 20, 40,
80 μg/mL

Proliferation, migration↓

Davallia bilabiata chicken embryos 0.1, 0.5 mg/mL MMP-2, MMP-14↓ Liu et al.
(2017)

HUVECs 0.25, 0.5 mg/mL/ VEGF-A, VEGF-B, VEGF-C, VEGF-D↓; VEGFR-1, VEGFR-2, VEGFR-3↓

Cissus quadrangularis AIA rats 50, 100, 200 mg/kg TNF-α, IL-1β, IL-6, TNF-R1, VEGF, MMP-3, MMP-9↓ Kumar et al.
(2015)

total Saponins of Panax japonicus CIA mice 50, 150 mg/kg HIF-1α, VEGF↓; SRC, STAT 3↓ Guo et al.
(2020)

Dendrobium huoshanense stem
polysaccharide

CIA mice 0.1095, 0.4380 g/kg CD90↓; CD31↓; RANKL↓; OPG↑; VEGF, IL-17, IL-1β, IL-6, TNF-α,
MMPs, GM-CSF, M-CSF, CCL5, CXCL2↓; IL-10, TGF-β1↑; NF-κB,
MAPKs, PI3K/AKT, JAK1/STAT3↓; Treg cell↑; Th17 cell↓

Shang et al.
(2021)

evening primrose oil AIA rats 5 g/kg Ang-1, TNF-a↓; SOD↓; lipid peroxidation↑ El-Sayed et al.
(2014)

Rhus verniciflua Stokes CIA mice 50 mg/kg synovial inflammatory cells↓ Lee et al.
(2009)

FLS 0–1,000 μg/mL TNF-α, IL-6, IL-8, MCP-1, VEGF↓; ERK 1/2, p-JNK, p38 MAPK↓

saponins from Nigella glandulifera
seeds

CIA rats 10, 50, 250 mg/kg IFN-γ, TNF-α, IL-1β, IL-6, IL-17A↓; IL-4, IL-10↑; CD4+CD25+ Tregs↑;
Foxp3↑; OPG/RANKL ratio↑; p-p65↑

Jiang et al.
(2022)

HFLS-RAs 10, 30, 100 μg/mL proliferation, migration, adhesion↓; f TNF-α, IL-17A, Ang-2, Tie-2↓

HUVECs 10, 30, 100 μg/mL proliferation, migration, adhesion↓; Ang-2, Tie-2↓

total saponins of Rhizoma Dioscorea
nipponica

CIA rats 25 mg/kg VEGF, Ang-2, Tie-2↓; MVD, VEGF, STAT3, NF-κB↓ Liang et al.
(2016)

↑, increase, upregulate, promote or improve; ↓, suppress, downregulate, reduce, or inhibit.
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TABLE 3 Effects of natural medicine prescriptions in rheumatoid arthritis.

Prescription Composition Models Dose Effects and
molecular
mechanisms

Toxicity Clinical
dosage

Ref.

YuXueBi tablet Boswellia carteri Birdw.,
Commiphora myrrha (Nees)
Engl., Clematis chinensis
Osbeck, Cyathula officinalis
Kuan, Curcuma longa L.,
Carthamus tinctorius L., Salvia
miltiorrhiza Bunge, Cyperus
rotundus L., Ligusticum
chuanxiong Hort, Astragalus
membranaceus (Fisch.) Bunge,
and Angelica sinensis (Oliv.)
Diels

CIA rats 0.1, 0.2,
0.4 g/kg

CD31, VEGF↓; LOX, Ras,
Raf-1, p-MEK p-ERK↓

eye edema, Sore throat 2.5 g p.o tid Su et al.
(2022)

HUVECs 12.5, 25, 50,
100 μg/mL

migration, invasion, tube
formation↓; LOX, Ras,
Raf-1, p-MEK, MEK,
p-ERK, MEK↓

Huatan Tongluo
decoction

Dannanxing (Rhizoma
Arisaematis Cum Bile), Taoren
(Semen Persicae), Jiangcan
(Bombyx Batryticatus), Baijiezi
(Semen Sinapis) and Shancigu
(Pseudobulbus Cremastrae)

CIA rats 7.5 g/kg CD34, VEGF, VEGFR2↓ gastrointestinal
discomfort, dizziness

Potion
p.o bid

Chen
et al.
(2019a)

Shexiang Zhuifeng
analgesic plaster

Artificial Musk, Aconitum
kusnezoffii Reichb., Aconitum
carmichaeliDebeaux, Boswellia
carterii Birdw., Commiphora
myrrha (T.Nees) Engl.,
Strychnos nux-vomica L.,
Eugenia caryophyllata Thunb.,
Cinnamomum cassia (L.)
J.Presl, Schizonepeta tenuifolia
(Benth.) Briq., Saposhnikovia
divaricate (Trucz.) Schischk.,
Geranium wilfordii Maxim.,
Periploca sepium Bunge,
Centella asiatica (L.) Urban,
Drynaria fortunei (Kunze ex
Mett.) J.Sm., Angelica dahurica
(Hoffm.) Benth. and Hook.f.
Ex Franch. and Sav.,
Kaempferia galanga L.,
Zingiber officinale Roscoe,
Camphor, Borneol, Menthol,
Methyl salicylate, Liquidambar
formosana Hance, Atropa
belladonna L

CIA rats 0.63, 2.52 cm2 IL6, VEGF, TNF-α↓; HIF-
1, p-AKT, p-mTOR↓

rash, pruritus,
anaphylactic shock

External use
1 patch qd

Wang
et al.
(2023)

RAW
264.7 cells

12.5, 25,
50 μM

NO↓

Kunxian Capsule Tripterygium wilfordiiHook. F.
(Tripterygium hypoglaucum
(H. Lév.) Hutch), Epimedium
brevicornu Maxim, Lycium
barbarum L. and Cuscuta
chinensis Lam

Zebra fish 3.5, 7, 14,
21 μg/mL

PI3K, AKT, MAPK, ERK1,
ERK2, VEGF2, VEGFR,
FGF-2↓

gastrointestinal
discomfort, abnormal
liver function,
leukopenia, paramenia,
oligospermia

0.6 g p.o tid Ma et al.
(2023)

Sidaxue Spatholobus suberectus Dunn,
Sargentodoxa cuneata (Oliv.)
Rehd. Et Wils., Toddalia
asiatica L. Lam., Periploca
forrestii Schltr

CIA rats 10, 20, 40 g/kg IL-2, IL-6, TNF-α, VEGF,
PI3K, AKT, p-AKT, NF-
κBp65, p-NF-κBp65,
STAT1, PTGS2↓

- - Wu
et al.
(2022)

Qianghuo Shengshi
Decoction

Ramulus Cinnamomi,
Epimedium brevicornum
Maxim, Rhizoma Wenyujin
Concisum, Poria cocos,
Scutellaria baicalensi

AIA rats IL-6, MMP-9, TNF-α,
VEGFA↓

gastrointestinal
discomfort, abnormal
liver function, rash,
infect, subcutaneous
hemorrhage

Potion
p.o bid

Zeng
et al.
(2021b)

Fengshi Gutong
capsule

Aconiti Radix Cocta, Aconiti
Kusnezoffii Radix Cocta,
Carthami Flos, Chaenomelis
fructus, Mume Fructus,
Ephedrae Herba, Glycyrrhizae
Radix et Rhizoma

CIA rats 300,
900 mg/kg

RF, VEGF, TNF-α, IL-6↓;
ICAM-1, IL-1β, p-Akt↓

gastrointestinal
discomfort, renal
damage

0.6–1.2 g
p.o bid

Lin et al.
(2021)

RAW264.7 Different
concentration

IL-1β, iNOS↓

(Continued on following page)

Frontiers in Pharmacology frontiersin.org06

Gao et al. 10.3389/fphar.2024.1380098

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1380098


the Ang/Tie2 signaling pathway is directly associated to the
development of blood vessels in pathological diseases such as
RA and tumor (Fagiani and Christofori, 2013). There is 60%
similarity between Ang1 and Ang2, in addition, they all have
high binding affinity with Tie2. Ang-1 adheres to and
phosphates the Tie2 receptor, which stimulates it and
facilitates the survival of cells and vascular integrity. Ang-1/
Tie2 signalling also inhibits NF-κB pathway thus decreasing the
inflammatory factor cascade and maintaining vascular stability
(Mitola et al., 2008). Overall, the Ang1/Tie2 signaling pathway
builds vascular stability and quiescence under physical
environments (Fukuhara et al., 2010). In pathological
conditions, Ang-2 expression is increased, which pushes the
emergence of RA’s clinical hallmarks. As natural antagonist of
Ang-1, Ang-2 is employed to cause EC instability and prevent
Ang-1-induced Tie2 phosphorylation. In fact, the Ang/Tie
signal pathway and the VEGF/VEGFR signaling pathway are
related to each other and coordinate with each other to regulate
the processes of vascular growth, maturation and degeneration
(Akwii et al., 2019).

3.3 HIF-1

Hypoxia predominantly modulates VEGF expression by means
of HIF, a heterodimeric transcription factor with α (HIF-1α) and β
(HIF-1β) subunits (Hamilton et al., 2016; Yang et al., 2021). Under
proper condition of oxygen, HIF-1α expression is limited. Hypoxia
causes HIF-1α to aggregate and bond to HIF-1β, generating a stable
active dimer HIF-1 (Balamurugan, 2016). HIF-1 encourages
synovial angiogenesis by prompting synoviocytes to release
VEGF, which influences the progression of RA. Additionally,
synovial angiogenesis boosted HIF-1α and VEGF amounts of
expression in synovial tissues (Westra et al., 2010; Konisti
et al., 2012).

3.4 Growth factors

Growth factors including FGF, PDGF, transforming growth
factor-β (TGF-β), insulin-like growth factor 1 (IGF-I), hepatocyte
growth factor (HGF) and epidermal growth factor (EGF) also

TABLE 3 (Continued) Effects of natural medicine prescriptions in rheumatoid arthritis.

Prescription Composition Models Dose Effects and
molecular
mechanisms

Toxicity Clinical
dosage

Ref.

HUVEC Different
concentration

migration↓

Qing-Luo-Yin
Extract

Sophora flavescens Ait.,
Phellodendron amurense
Rupr., Sinomenium acutum
Rehd. Et Wils. And Dioscorea
hypoglauca Palib

CIA rats 0.3 g/kg MMP-3↓, TIMP-1↑ - Potion
p.o bid

Li et al.
(2003)

Wen Luo Yin Radix Aconiti Lateralis
Preparata, Cinnamomi
Ramulus, Atractylodis
Macrocephalae Rhizoma,
Selaginellae Herba

CIA rats 3.45, 6.9,
13.8 g/kg

TNF-α, IL-1β, VEGF↓ - Potion p.o tid Liu et al.
(2013)

HFLS-RA 8, 16,
32 mg/mL

migration, adhesion↓;
TNF-α, IL-17, VEGF,
Ang-1, Ang-2↓

HUVEC 8, 16,
32 mg/mL

migration, adhesion↓;
VEGFR, Ang-2↓

Wutou Decoction Aconitum carmichaeli
Debeaux., Ephedra sinica Stapf,
Paeonia lactiflora Pall.,
Astragalus mongholicus Bunge,
Glycyrrhiza uralensis Fisch.
ex DC.

CIA rats 3.75,
7.5 g/kg/day

CD31, VEGF, Ang-
1,VEGFR2, TEK, PI3K,
AKT, mTOR, HIF-1α↓

gastrointestinal
discomfort

Potion p.o tid Ba et al.
(2021)

FLS 1, 10 mg/mL proliferation, migration,
invasion↓; apoptosis↑;
VEGF, Ang-1↓

HUVEC 1, 10 mg/mL proliferation, migration,
invasion, tube formation↓

Wutou decoction Aconitum carmichaeli
Debeaux., Ephedra sinica Stapf,
Paeonia lactiflora Pall.,
Astragalus mongholicus Bunge,
Glycyrrhiza uralensis Fisch.
ex DC.

CIA rats 0.95, 1.9,
3.8 g/kg

CD31↓; VEGF, VEGFR2,
IL-1β, IL-17, TGF-β,
PDGF, PIGF, Ang I,
Ang II↓

gastrointestinal
discomfort

Potion p.o tid He et al.
(2018)

FLS 0.2, 1, 5 μg/mL IL-1β, IL-17, VEGF, TGF-
β, PDGF, PIGF, Ang I,
Ang II↓

HUVECs 0.2, 1, 5 μg/mL migration, invasion, tube
formation↓; VEGFR2↓;
AKT, ERK1/2, JNK, p38↓

↑, increase, upregulate, promote or improve; ↓, suppress, downregulate, reduce, or inhibit.
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promote angiogenesis (Szekanecz and Koch, 2009). FGF is secreted
by ECs in the pannus and includes alkaline FGF and acidic FGF. The
former (bFGF) can stimulate microvascular ECs to secrete
metalloproteinases and destroy vascular endothelial matrix.
aFGF not only produces collagenase and plasminogen, which
degrades ECs’ basement membranes, but it also has a potent
mitogenic impact and directly induces the proliferation of
vascular ECs. (Malemud, 2007). PDGF and TGF-β both helps
blood vessels function properly (Carmeliet and Jain, 2011). PDGF
is needed for the recruitment of pericytes to newly established
vessels. During angiogenesis, sprouting ECs secrete PDGF which
stimulates proliferation and migration of mural cells during vessel
maturation (Armulik et al., 2005). The reinduction of vascular
smooth muscle cells around neovasculature is dependent on TGF-
β, which is required for the growth and function of the vasculature
(Armulik et al., 2005).

3.5 Pro-inflammatory cytokines

Cytokines leave their mark throughout the whole course of RA’
biological development (Kondo et al., 2021). Pro-inflammatory
cytokines including TNF-α, IL-1, IL-6, IL-15, IL-17, IL-18
promote synovial vessel formation (Szekanecz and Koch, 2009).
Studies on the effects of TNF-α and IL-6 on angiogenesis are the
most in-depth and extensive (Kondo et al., 2021). Tumor
necrosis factor (TNF-α) may stimulate a multitude of
immune cells in the RA cartilage tissues to produce pro-
angiogenic factors, which in consequently results in persistent
inflammation of the synovial tissue during the progression of the
disease (Chen Z. et al., 2019; Kondo et al., 2021). IL-6 is

produced by monocytes and macrophages of RA synovium,
which can activate vascular ECs(Zegeye et al., 2020). It not
only boosts pannus formation but also aggravates bone
resorption (Pandolfi et al., 2020). Anti-inflammatory
cytokines, such as interferon-α (IFN-α), IFN-γ, IL-4, IL-12,
IL-13 and leukemia inhibitory factor (LIF) are mediators that
inhibit angiogenesis (Szekanecz and Koch, 2009).

3.6 Others

Angiogenesis regulation is a complex process. Except the above-
mentioned factors, there are also chemokines/receptors,
extracellular adhesion molecules and proteolytic enzyme possess
a contribution to make in the controlling of synovial angiogenesis
(Maruotti et al., 2006). Matrix metalloproteinases (MMPs) and
plasminogen activators participate in the dissolution of synovial
cartilage during the maintenance of angiogenesis. Other factors that
both encourage and inhibit angiogenesis that are mentioned have
been reviewed in the literature (Paleolog, 2002; Balogh et al., 2019).
Plenty of studies on RA have proved that extracellular adhesion
molecules play a critical part in leukocyte migration into synovial
tissue (Volin, 2005).

3.7 Signaling pathways

In addition, various additional signaling pathways are also
associated in angiogenesis. MAPK, NF-κB, JAK-STAT, PI3K, and
PPARγ signaling pathways have been extensively studied for their
role in inducing angiogenesis. The PPARγ signaling pathway is

TABLE 4 Animal model for rheumatoid arthritis commonly used.

name Molding method Suitable species Molding
time

Position

induced
model

collagen-induced arthritis (CIA) CⅡ + CFA rat, mice, monkey 21–25 days base of the tail, dorsal skin

collagen-antibody-induced arthritis
(CAIA)

CⅡ + LPS mice 7 days base of the tail

adjuvant-induced arthritis (AIA) CFA + tubercle bacillus rat 10–14 days base of the tail, hind paw region

streptococcal cell wall induced
arthritis (SCWIA)

PG-PS rat, mice 3 days intra-articular

COMP induced arthritis IFA + COMP rat, mice 45 days base of the tail

pristane induced arthritis (PIA) 2,6,10,14-
tetramethylpentodecane

rat, mice 2 months intradermal injection

antigen induced arthritis mBSA + CFA mice, rats, guinea pigs,
rabbits

6 days subcutaneous or intradermal
injections, intra-articular

proteoglycan induced arthritis
(PGIA)

Proteoglycan + DDA rabbit, dogs, mice 35 days intra-articular

G6PI induced arthritis G6PI + CFA mice 15 days base of the tail

genetic
models

K/BxN mice - mice 10–14 days -

TNF-α mice - mice 3-4 w -

SKG mice - mice 14 days -

IL-1ra−/− transgenic mice - mice 5 w -
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capable of promoting angiogenesis by enhancing VEGF expression.
Signaling pathways such as MAPK, NF-κB, and JAK/STAT3 may
indirectly boost angiogenesis. MAPK mediates various cellular
physiological processes and abnormal activation of MAPK
signaling pathway can lead to RA. MAPK signaling pathway is a
tertiary enzyme linked system with four activation pathways: ERK1/
2, JNK/SAPK, p38 and ERK5. In the pathological process of RA,
MAPKs not only regulate the production of pro-inflammatory
cytokines and matrix protein degrading enzyme, but also play an
important role in the downstream signaling cascade of cytokine
receptors (Liu et al., 2021). MAPK is the up-stream signal of the NF-
κB pathway and is regarded as an intersection of various signalling
pathways (Yeung et al., 2018). NF-κB is an important transcription
factor in the cytoplasm. The expression of a large number of genes in
immune and inflammatory responses is regulated by NF-κB. The
role of NF-κB in the pathogenesis of RA has attracted the attention
of researches. Activation of NF-κB signaling pathway can lead to
T cell activation to induce the production of various pro-
inflammatory cytokines. It can also induce abnormal proliferation
of RA-FLS to stimulate osteoclast proliferation and activation, which

results in joint deformity and bone erosion (Liu et al., 2021). After
activation of JAK-STAT pathway, it can activate the activity of
immune cells, especially T cells, and inhibit FLS autophagy, resulting
in continuous proliferation of RA synovium and cartilage erosion
(Di Benedetto et al., 2021). PI3K pathways have a key role in
angiogenesis which involved in stimulating HIF(Zeng et al.,
2016). These multiple pathways interact and collaborate to
control diverse angiogenic activities in vascular cells. Animal
model for rheumatoid arthritis commonly used are shown in
Table 4.

4 Natural medicine targeting
angiogenesis to prevent and treat RA

4.1 Natural active ingredients

Natural medicines contain abundant anti-angiogenic active
ingredients, including alkaloids, flavonoids, terpenoids,
polyphenol and so on. Figure 3 illustrates the chemical structures

FIGURE 1
Major signaling pathways that affect angiogenesis.
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of the active components obtained from natural medicines. Table 1
summarizes the models and mechanisms of all these components
against rheumatoid arthritis.

4.1.1 Alkaloids
Alkaloids occur naturally as organic molecules with no less than

one basic nitrogen atom embedded in their ring structure. Alkaloids
can be divided into organic amines, pyrrolidines, pyridines,
isoquinolines, indoles, scopolanes, imidazoles, quinazolines,
purines, steroids, terpenes and others according to their structure
(Bhambhani et al., 2021). Alkaloids are employed in the clinical
treatment of a number of illnesses. For example, berberine is used to
treat enteritis that achieve significant benefits (Cao et al., 2023).
Alkaloids are found in numerous natural medicines, including
tricuspidus, aconitum, ephedra, corydalis, and tetrandrhexis. They
are also extensively distributed in nature (Bhambhani et al., 2021).
Many alkaloids have therapeutic effects on experimental arthritis
(Lu et al., 2022), among which sinomenine has been used in clinic.

Sinomenine, the main component of Sinomenium acutum, has
been traditionally utilized as a natural medicine for RA. Sinomenine
has been proven in modern pharmacological research to be capable
of remarkable anti-inflammatory, pain reliever, and
immunosuppressive effects (Li J. M. et al., 2023). In collagen-
induced arthritis (CIA) mice, sinomenine can significantly reduce
the swelling, erythema expansion, arthritis index, cartilage
deterioration, bone erosion and the quantity of CD31-positive
cells in the synovium. In addition, sinomenine can drastically
lower the levels of HIF-1α, VEGF and Ang-1 in the peripheral
blood. The HIF-1α-VEGF-Ang-1 axis is considered to be essential

for the inhibitory effect of sinomenine on angiogenesis (Feng et al.,
2019). Besides sinomenine, other alkaloids also provide inhibitory
effects on RA angiogenesis as well.

Berberine, a quaternary ammonium alkaloid, as an active
ingredient in various therapeutic materials (such as Hydrastis
canadensis, Cortex phellodendri), has a number of
pharmacological actions which include antimicrobial and anti-
diarrhea (Song et al., 2020). Wang et al. found that berberine
considerably reduced the hyperplasia of synovial tissue and
inflammatory responses in CIA rats, while also suppressing
cytokines and VEGF in the plasma. Subsequent investigations
into beberine’s mechanism showed that it inhibited the activation
of phospho-extracellular signal-regulated kinase (p-ERK),
phosphorylated p38 mitogen-activated protein kinase (p-P38),
and phosphorylated c-Jun N-terminal kinase (p-JNK).
Additionally, it markedly decreased the generation of VEGF and
CD34 (p < 0.05). These discoveries indicate that berberine has both
anti-inflammatory and anti-angiogenic potential, meaning that it
may have an important therapeutically value in RA (Wang et al.,
2014). Matrine is a prominent bioactivated alkaloid gained from
Sophora flavescens Alt, and extensive research have corroborated its
wide-ranging biological activities, including anticancer, anti-
inflammatory and antiviral (Sun et al., 2022). In cellular
experiments, matrine suppressed the migration and proliferation
of fibroblast-like synoviocytes (FLS). Additionally, it decreased the
growth and lumen formation of human umbilical vein endothelial
cells (HUVECs). In vivo, matrine has the ability to suppress the
expression of several proteins, including IL-1β, interferon gamma
(IFN-γ), VEGF, PLGF, HIF-α, Ang-1, Ang-2, Tie-2, and

FIGURE 2
The role of angiogenesis in the pathological process of rheumatoid arthritis.
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phosphorylated -akt in ankle of CIA rats. Further investigation of
the mechanism revealed that matrine inhibits angiogenesis by
suppressing the PI3K/Akt signalling pathway and the HIF-VEGF-
Ang axis, thereby alleviating RA symptoms (Ao et al., 2022).
Picrasma quassioides is a natural medicine, using dried branches
and leaves, rich in alkaloids, triterpenoids. Picrasma quassioides has
anti-tumor, anti-inflammatory, antiviral and antihypertensive
activities, according to modern pharmacological investigations
(Lee et al., 2019). Several alkaloids with anti-angiogenic activity
were discovered by zebrafish bioassay-guided screening. Following
screening, 1-Methoxycarbony-β-carboline (MCC) had the highest
anti-angiogenic index. Further studies confirmed that MCC inhibits
HUVECs activity, migration, invasion and lumen formation, as well
as downregulates several angiogenesis-ralated proteins, like Ang,
epidermal growth factor (EGF), bFGF, growth-related oncogene
(GRO), insulin like growth factor 1 (IGF-1), plasminogen (PLG),
and matrix metallopeptidase-1 (MMP-1). In zebrafish tail fin
regeneration experiments, it was observed that MCC
prevented the formation of blood vessels. These findings point
to MCC’s potential therapeutic utility as a powerful natural
angiogenesis inhibitor for RA via numerous biological targets
(Lin et al., 2018).

Collectively, most alkaloids perform as antiangiogenic drugs by
inhibiting angiogenic factors, lumen formation, and proliferation of
RA-FLS. The two biggest obstacles to alkaloid study are their
complicated structures and insufficient bioavailability. The use of
modern preparation strategies and biochemical transformation
techniques can address the problem of low bioavailability (Cheng
et al., 2018; Valentová, 2023). Chemical synthesis provides a way to
prepare the active components of natural medicines. With the

application of green chemistry, biocatalysis, and computer-aided
drug design, more efficiency has been gained in the synthesis of
highly complex natural compound. Many difficulties, such as many
chiral centers, complex synthesis steps, easily formed isomerism,
and chemical agent pollution, will be solved or considerably
improved by the use of the above technology (Wang et al., 2019;
Chakrabarty et al., 2021; Peña et al., 2023).

4.1.2 Flavonoids
Flavonoids are a group of compounds with a C6-C3-

C6 skeleton, consisting of three carbon atoms connected to two
benzene rings (Dias et al., 2021). These compounds are abundant in
natural medicines and are mostly bonded to sugars to the formation
of glycosides. They have favorable therapeutic effects such as
immune enhancement, anti-aging and antioxidant which some of
them including quercetin have been applied to dietary supplements
(Wen et al., 2021; Shen et al., 2022).

Morin is a kind of flavonoid that is found in a diverse range of
plant sources. A series of investigations have revealed that morin has
potent antioxidant and anticancer effects (Rajput et al., 2021). At the
same time, multiple research have confirmed that morin has potent
anti-inflammatory effects (Caselli et al., 2016). In vitro, Yue et al.
investigated the impact of morin on HUVECs migration through
wound healing and transwell experiments. Morin blocks VEGF-
induced HUVEC movement and tubular formation through
initiating PPARγ. Morin raised expression levels of phosphatase
and tensin homolog deleted on chromosome ten (PTEN), whereas
suppressing PI3K/Akt signaling. Animal experimentation have
demonstrated that morin can relieve symptom of CIA rats,
reduce synovial angiogenesis and upregulate synovial PTEN

FIGURE 3
The chemical structures of compounds in natural medicine with antiangiogenesis effects.
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expression in synovial membrane. In brief, morin, a putative PPARγ
agonist, attenuates angiogenesis and joint inflammation by acting on
the PPARγ-PTEN-PI3K/Akt pathway (Yue et al., 2018). Zeng et al.
also used the CIA rat model and observed that morin can strongly
downregulate the serum pro-inflammatory factors TNF-α and IL-6,
upregulate the anti-inflammatory factor interleukin-10 (IL-10) and
ameliorate the pathologic damage of the joint tissue. Morin was able
to drastically reduced the production of CD31, VEGF and bFGF in
the synovial tissue of CIA rats, while also decreasing the serum
VEGF levels. These findings indicate that morin has anti-
rheumatoid potential via inhibiting synovial angiogenesis (Zeng
et al., 2015).

Nobiletin is a natural constituent widely occurring in the peel of
citrus fruits (such as Pericarpium Citri Reticulatae) belonging to the
rutaceaceae family (Chen Y. Y. et al., 2023). It can inhibit
inflammation, regulates blood lipids and act as an antioxidant
(Nakajima and Ohizumi, 2019). Yang et al. employed bovine
type II collagen to establish a CIA model in SD rats. Nobiletin
was able to drastically lower the levels of nuclear factor kappa-B
kinase α (IκBα), phosphorylated p38, p-p65, and TNF-α in CIA rats.
These results point to the fact that nobiline inhibited the p38/NF-κB
signaling pathway, which in turn prevented the development of RA
through decreased angiogenesis and inflammation (Yang et al.,
2017). Garcinia, a resin, which has a number of different
pharmacological activities such as anti-tumor, detoxification and
hemostasis, and its main active ingredient is garcinic acid (Jia et al.,
2015; He et al., 2023). Gambogic acid has potently inhibited right
paw swelling in adjuvant-induced arthritis (AIA) rats, increased the
pain threshold, decreased the clinical arthritis score, and
downregulated pro-inflammatory markers. Garcinia cambogia
also relieves RA by regulating the PI3K/Akt/mTOR signaling
pathway, resulting in decreased inflammation and angiogenesis.
Therefore, Gambogic acid might be used as a prospective
treatment in the future medical management of RA (Wu et al.,
2017). Liquiritin is a natural flavonoid isolated from licorice root,
which has antioxidant, antibacterial and anti-tumor effects (Qin
et al., 2022). Zhai et al. reported that liquiritin greatly suppressed the
proliferation of IL-1β-induced RA-FLS, enhanced nuclear DNA
fragmentation, altered mitochondrial membrane potential and
accelerated cell apoptosis. Liquiritin can also downtregulate the
proportion of B-cell lymphoma 2/Bcl-2-associated X protein (Bcl-
2/Bax), inhibit VEGF expression and c-Jun N-terminal kinase (JNK)
and P38 phosphorylation. In addition, liquiritin was able to improve
the rheumatism score, inflammatory infiltrations and angiogenesis
in CIA rats and induce synovial tissue apoptosis. Therefore,
liquiritin may improve RA by controlling inflammation, blocking
MAPK signalling and inhibiting angiogenesis (Zhai et al., 2019).
Genistein, which is present in many medical herbs such as Euchresta
japonica Benth. Ex Oliv. And Sophora japonica L., is an isoflavone
compound that possesses a series of biological effects including anti-
angiogenesis and joint protection properties (Sharifi-Rad et al.,
2021). Genistein is able to reduce the expression of the pro-
inflammatory factors in the serum of CIA mice, inhibit bone
degradation, reduce synovial inflammation, inhibit VEGF
expression, and block the angiogenesis of synovial tissue (Hu
et al., 2016). Apigenin widespread in warm tropical vegetables,
fruits and medicinal plants (Salehi et al., 2019). The study by Li
et al. has indicated that apigenin is able to inhibit the proliferation of

synovial cells in vitro. In vivo, apigenin has a very protective effect on
CIA mice and can prevent angiogenesis in CIA mice by blocking
VEGF and VEGFR. Furthermore, apigenin may inhibit the nuclear
factor-κ b ligand receptor activator/receptor activator of nuclear
factor-κ b/osteoprotegerin (RANKL/RANK/OPG) signaling
pathway, which may help protect bones and joints from damage.
Therefore, apigenin may influence the pathogenesis of RA by
inhibiting synovial hypertrophy, angiogenesis, and
osteoclastogenesis, thereby ameliorating arthritis manifestations
(Li Y. et al., 2019).

In conclusion, flavonoids have significant antiangiogenic effects.
At the same time, it has the advantages of low toxicity and abundant
resources which make it has a strong potential for RA treatment
(Hughes et al., 2017).

4.1.3 Terpenoids
Terpenoids, which are widely distributed in higher plants,

fungi, microorganisms, insects, and marine creatures, are
characterized as hydrocarbons and their derivatives based on
the carbon structure of 2-methylbutadiene and 3-diene (also
known as isoprene) (Bergman et al., 2019; Avila, 2020;
Amirzakariya and Shakeri, 2022). Terpenoids are classified as
monoterpenes, sesquiterpenes, diterpenes, disesquiterpenes,
triterpenes, tetriterpenes, and polyterpenes based on the amount
of isoprene units they possess. Terpenoids are the most abundant
class of natural substances, and more than 40,000 compounds have
been identified, accounting for 60% of all natural compounds.
Terpenoids are rich in diversity and have multiple biological
functions (Bergman et al., 2019). In the past few decades,
specialists and scholars all over the world have paid increasing
attention to the anti-arthritis properties of terpenoids and their
mechanisms (Lü et al., 2015). The bioactive compounds of
terpenoids with anti-angiogenic effects include triptolide (TP),
geniposide, Paeoniflorin-6′-O-benzene sulfonate, artesunate,
Pristimerin, etc.

TP is an epoxidized diterpene lactone and a major active
ingredient of Tripterygium wilfordii Hook. f. (Gao et al., 2021).
Numerous investigations have ascribed the anti-arthritis potential of
TP to its immunosuppressive, anti-inflammatory, activation of
apoptosis, cartilage protection and gene regulation (Yuan et al.,
2019). According to Kong et al.’s research, TP was also reported to
significantly inhibit the phosphorylation of extracellular signal-
regulated kinase (ERK), p38 and JNK at the protein level and to
downregulate the expression of angiogenic activators. In cellular
assays, TP inhibited HUVEC luminal formation and chemotactic
migration of RA-FLS and ECs. The above experiments provided
evidence that TP may be able to inhibit angiogenesis and is an
excellent candidate as a novel therapeutic drug for RA (Kong et al.,
2013). Pristimerin is a naturally occurring quinonemethide
triterpenoidis which contain in Celastrus aculeatus Merr. (Wang
et al., 2022a). In past years, more and more research has been
undertaken on the anti-arthritis pharmacological effect of
Pristimerin (Tong et al., 2014; Lv et al., 2022). In AIA rats,
Pristimerin has been shown to significantly decrease the density
of synovial vessels in inflamed joints and serum pro-angiogenic
factors such as matrix metallopeptidase-9 (MMP-9). Pristimerin has
also been observed to decrease the expression of VEGF and its
receptor in the synovium. In vitro, pristimerin inhibited rat aortic
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ring vessel sprouting and HFLS-RA and HUVEC migrations.
Pristimerin also inhibited VEGF-induced HUVEC proliferation
and luminal formation and downregulated the levels of activated
PI3K, AKT, mTOR, ERK1/2, JNK and p38 (Deng et al., 2015). A
sesquiterpene lactone isolated from Artemisia annua L., artemisinin
is a useful medication for the treatment of malaria (Ma et al.,
2020). Artesunate is derived from artemisinin, which is used
mainly as an antimalarial drug (Zhang J. et al., 2022). Artesunate
may not only modulate T and B cell immunological function and
limit the generation of autoantibodies, but it could also directly
alter FLS and osteoclasts, inhibit synovitis and
osteoclastogenesis, and therefore suppress joint inflammation
and bone degradation associated with RA. As a result,
artesunate may be a viable treatment option for RA in the
clinic. Artesunate suppresses the production of VEGF and IL-
8 as well as the nuclear expression and translocation of HIF-1α in
RA-FLS, which indicates that it could inhibit angiogenesis
through those pathways (He et al., 2011). Paeoniflorin, which
has both an antiinflammatory and immunomodulatory function,
is one of the principle active constituents of genus Paeonia. But
its oral bioavailability is low, about 3%–4% (Zhang X. X. et al.,
2022). Paeoniflorin six-o’-benzenesulphonate (CP-25) is a
lipophilic molecule obtained by structural modification of
paeoniflorin (Tu et al., 2019). CP-25 is a remarkable inhibitor
of pannus formation in AIA rats. The specific mechanism could
be associated to the lowered the plasma membrane distribution of
G protein-coupled receptor kinase 2 (GRK2) in ECs, the more
marked suppression of ERK1/2 in the cytoplasm by GRK2, the
decreased phosphorylation of ERK1/2 (Zhang et al., 2019). Sterol
is an abundant phytosterol and Qian et al. recently showed that β-
sitosterol inhibits angiogenesis both in vitro and in vivo. In the
cellular experiments, β-sitosterol suppressed the HUVECs’
growth. Notably, in CIA mice, treatment with β-sitosterol was
more effective than axitinib in inhibiting VEGFR2/p-VEGFR2
(Qian et al., 2021).

Geniposide is iridoid glucoside, which easily soluble in water,
and is the main pharmacodynamic component of Gardenia
jasminoides Ellis. Geniposide has a considerable impact on
illnesses of digestive, circulatory, and neurological systems.
Additionally, Geniposide has anti-inflammatory and soft tissue
injury healing properties (Liu L. et al., 2022). Geniposide treats
RA by inhibiting angiogenesis through multiple pathways.
Geniposide can block angiogenesis, rebalance pro/anti-
angiogenic factors and suppress activation of VEGF and S1P
signalling pathways in the synovium in the AIA rat model,
according to the study by Wang et al. Geniposide decreases
VEGFR2/PKC/ERK1/2-mediated sphingosine kinase 1 (SphK1)
translocation, prevents activation of sphingosine 1-phosphate/
sphingosine 1-phosphate receptor 1 (S1P/S1PR1) signalling,
thereby limiting VEGF-induced angiogenesis (Wang et al.,
2022b). Wang et al. also investigated the anti-angiogenic
potential of geniposide, the main therapeutic targets of which
are to lower the expression of VEGF, to reestablish the dynamic
balance between pro- and anti-angiogenic factors, to block the
SphK1/S1P signalling pathway and to decrease the secretion of
S1P(Wang et al., 2021c). Bu et al. figured out that geniposide
improved the severity of inflammation and angiogenesis in AIA
rats. Geniposide has an anti-angiogenesis effect in vitro via

decreased HUVEC migration, proliferation, and tubule
formation. According to the mechanistic study, geniposide
blocked the activation of the PI3K-Akt signalling pathway,
upregulated the expression of PTEN and indirectly inhibited
angiogenesis (Bu et al., 2022b; a). In experimental arthritis,
geniposide confirmed anti-angiogenesis actions by preventing
Dnmt1-mediated hypermethylation of the PTEN gene (Bu et al.,
2022b). Sun et al. discovered that geniposide dose-dependently
reduced inflammatory manifestation and synovial microvessel
density (MVD) in AIA rats. Geniposide can lower VEGF and
Ang-1 production, increase ES secretion, and inhibit abnormal
FLS proliferation (Sun et al., 2020). Deng et al. discovered that
geniposide decreased S1P secretion and the interaction between
FLSs and ECs via decreased expression of p-Erk1/2 and SphK1.
These findings provided insight into the process of angiogenesis
in the inhibition of geniposide. These data confirm that
Geniposide is able to inhibit angiogenesis through several
pathways and is expected to be developed as an angiogenesis
inhibitor (Deng et al., 2021).

Although terpenoids have a relatively significant effect in anti-
arthritis, some of them may cause serious liver and kidney damage
when used, which is not to be ignored. For instance, TP is a
pharmacologically active ingredient of Tripterygium wilfordii, but
its clinical application is limited due to a restricted therapy window
and multi-organ toxicity. Triptolide can disrupt a number of cellular
structures and functions, including membrane injury,
mitochondrial disruption, metabolic malfunction (Xi et al., 2017;
Cui et al., 2023). Therefore, reducing the toxicity of terpenoids and
increasing their bioavailability through structural modification are
very important for further application of terpenoids.

4.1.4 Polyphenol
Polyphenols, as natural metabolites widely found in natural

medicines, have a high variety of biological capacities such as anti-
oxidation, anti-inflammation, anti-fibrosis and anti-tumor (Luca
et al., 2020). Additionally, they have low toxicity and will not
accumulation in body, which are potential active ingredients of
great development value for dietary supplement and drugs (Gamage
et al., 2023).

Chebulinic acid, obtained from Fructus Chebulae, is a
polyphenol which has also been described to reduce
inflammatory manifestations in CIA mice by inhibiting
CD31 expression and VEGF. Degenerative changes and
inflammatory damage in osteoarthritis were also notably
attenuated by chebullinic acid administration. Further studies
were performed showing that chebullinic acid greatly inhibited
the activation of Erk1/2, p38 MAPK and AKT phosphorylation
in human synovial microvascular endothelial cells (HSMECs). This
result of this study point to the possible benefit of using chebulinic
acid to treat RA targeting angiogenesis (Lu et al., 2020). Resveratrol
is a widely existing polyphenol substance, which has pharmacologic
benefits such as anti-oxidation, anti-inflammatory and
cardiovascular protection, and is widely used in healthcare
products and cosmetics (Tian and Liu, 2020; Zhang L. X. et al.,
2021). According to Yang et al. research, resveratrol decreased the
levels of HIF-1α, MAPK and JNK in IL-1β treated RSC-364 cells. In
CIA rats, resveratrol decreased production of diverse pro-
inflammatory cytokines, monocyte chemoattractant protein-1
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(MCP-1), and reactive oxygen species (ROS). As a result, resveratrol
looks to have great potential for clinical validation as an angiogenesis
inhibitor (Yang et al., 2018).

4.1.5 Others
Ingredients such as emodin, scopoletin, scopolin and arsenic

trioxide can also alleviate RA by inhibiting angiogenesis. Emodin is a
natural anthraquinone compound found in a variety of natural
medicines such as Rheum palmatum L. (Dong et al., 2016). It can
dramatically suppress the expression of cytokines, prostaglandin E2
(PGE2), MMP-1, matrix metallopeptidase-13 (MMP-13), VEGF,
cyclooxygenase 2 (COX-2), HIF-1a, histone deacetylase 1 (HDAC1)
in synovial cells (Ha et al., 2011). In a rat model of AIA, scopoletin
inhibits neoangiogenesis and reduces overexpression of VEGF,
bFGF and IL-6 in synovial tissue (Pan et al., 2010). Arsenic
trioxide (As2O3) is a highly toxic medicine. It has been clinically
used in China as early as 1996 for the treatment of leukemia with
remarkable efficacy (Hoonjan et al., 2018). At present, it has been
confirmed that the anti-tumor mechanism of As2O3 is
predominantly by inhibiting the proliferation of tumor vascular
ECs and inducing their apoptosis, and inhibiting the formation of
tumor neovascularization and new lymphatic vessels (Chen J. et al.,
2023). Therefore, several studies have used As2O3 to treat RA (Li C.
et al., 2019; Niu et al., 2022). In CIA mice and FLS, As2O3

dramatically reduced the expression of thrombospondin-1 (TSP-
1), transforming growth factor-1 (TGF-1), connective tissue growth
factor (CTGF), and VEGF (Zhang et al., 2017). Unfortunately, it has
been discovered that As2O3 has a nephrotoxic effect during leukemia
treatment, causing swelling, denaturation, and necrosis of renal
tubular ECs. As a result, the use of As2O3 in the therapy of RA
should be approached with caution (Hoonjan et al., 2018).

The content of active components in natural medicines is very
low, which greatly limits their development and application. For
example, the first-line anti-cancer drug paclitaxel exists in the bark
of Taxus brevifolia, which accounts for about 0.004% (Alqahtani
et al., 2019). Most of the active substances in natural medicines are
directly extracted from plants, but the efficiency of extraction is very
low, and a large number of uncontrolled production will lead to the
destruction of plant resources (Stanifer et al., 2017; Liu G. Q.
et al., 2022).

4.2 Natural extracts

Natural medicines treatment of RA has been occupied a very
important position since ancient times, including plant extracts and
animal extracts. At present, the commercial preparations of natural
medicines include tripterygium glycoside tablets, sinomenine
hydrochloride enteric-coated tablets, etc., (Zhang Y. et al., 2021;
Liu X. et al., 2022). Modern pharmacology has demonstrated that
natural medicines extracts have anti-arthritis effects by targeting
angiogenesis. Both the total extract and the effective parts had
antiangiogenic effect. The natural extracts with anti-arthritis
activity were summarized in Table 2.

Anemone flaccida F. Schmidt is a perennial plant of the genus
Anemone L. in the Ranunculacae family whose roots can be
traditionally used as natural medicine. It is mainly rich in
triterpenoid saponins, and it has been reported that A. flaccida F.

Schmidt is effective in the prevention of RA by inhibiting bone
differentiation and reconstruction (Kong et al., 2015; Liu et al.,
2015). Research by Rao et al. has indicated that A. flaccida F.
Schmidt effectively suppresses synovial proliferation and
angiogenesis in arthritic joints and inhibited VEGFR/PI3K/AKT
signaling pathway (Rao et al., 2023).

Davallia bilabiata is an essential medicine for the healing of
bone injury, which can be used to treat osteoporosis, osteoarthritis
(Yang et al., 2014). Liu et al. evaluated the potential anti-angiogenic
benefits ofD. bilabiata through neovascularisation experiments with
chicken chorioallantoic membrane (CAM) and migration and tube
formation experiments with HUVECs. According to the
experimental findings, D. bilabiata exhibited anti-angiogenic
properties. The anti-angiogenic efficacy of D. bilabiata has
probably been due to its modulation on matrix metallopeptidase-
2 (MMP-2)/tissue inhibitor of metalloproteinase-2 (TIMP-2)
balance, suppression of MMP-2 activity and blocking of VEGF
ligand/receptors. Davallia bilabiata may therefore be a very
promising antiangiogenic drug for the management of RA (Liu
et al., 2017). Cissus quadrangularis, a natural medicine, that has been
previously observed to have significant osteoprotective effects (Bafna
et al., 2021; Kaur et al., 2021). Administration of C. quadrangularis
resulted in reduction of serum cytokines, oxidative stress damage
and markers of angiogenesis. In addition, the oral LD50 of C.
quadrangularis was over 2000 mg/kg body weight, indicating a
high safety profile (Kumar et al., 2015). Saponins from Nigella
glandulifera seeds, the primary active components, may relieve
pain and swelling (Zhao et al., 2013; Zeng L. et al., 2021). In CIA
model, rats received saponins10 mg, 50 mg or 250 mg per day for
24 days. The authors found that saponins from N. glandulifera seeds
modified the immuno-inflammatory response by recovering
cytokines, as well as increasing the proportions of Tregs in the
peripheral blood vessels and forkhead box protein P3 (Foxp3) levels
in knee joints. Saponins from N. glandulifera seeds alleviate
synovitis, bone degradation, and angiogenesis through the OPG/
RANKL/NF-κB and Ang/Tie-2 pathways (Jiang et al., 2022). Total
saponins of Rhizoma Dioscorea nipponica also have anti-angiogenic
effects, the main target of which is to reduce VEGF, Ang-2, and Tie-2
in synovial membrane. In addition to inhibiting angiogenesis by
reducing VEGF, total saponins of Rhizoma D. nipponica can also
inhibit MVD, STAT3 expression, and DNA-binding activity of NF-
κB (Liang et al., 2016). The Flavonol-rich Rhus verniciflua Stokes
exhibited anti-arthritic potential by decreasing the levels of pro-
inflammatory factors, MCP-1 and VEGF in FLS, but downregulated
the anti-inflammatory cytokine in CIA mice, resulting in reduced
arthritic angiogenesis (Lee et al., 2009). Dendrobium huoshanense
stem polysaccharide (cDHPS) was able to comprehensively and
effectively alleviate arthritis symptoms in CIA mice by inhibiting
NF-κB, MAPKs, PI3K/AKT and JAK1/STAT3 signalling pathways.
These discoveries indicated that cDHPS has the potential to be
utilized in generating of functional foods or medications for the
administration of RA (Shang et al., 2021). Moreover, Spirulina
platensis (Ali et al., 2015), evening primrose oil (El-Sayed et al.,
2014) and total Saponins of Panax japonicus (Guo et al., 2020) rely
on their antiangiogenic effect to prevent the occurrence of arthritis.

Natural extracts can directly or indirectly affect synovial
angiogenesis through multiple components and multiple targets.
However, there are many components in natural extracts, and the
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content of effective substances in different batches of plants is
different. How to ensure the stable and reliable efficacy of
different batches of medicinal materials is difficult. There are still
great difficulties in the consistency of natural extracts quality, which
seriously hinders the clinical transformation process (Lu
et al., 2021).

4.3 Prescriptions

There are about 5,000 kinds of natural medicines, and the
prescriptions formed by the combination of different natural
medicines are countless. Natural medicines has the characteristics
of multi-component comprehensive action on multiple targets,
which can effectively treat difficult diseases. At the same time, it
is praised by more and more people because of its low price and
safety (Ziemska et al., 2019; Tang et al., 2020). Following the holism
concept of natural medicines, natural medicines prescription offer
the benefits of individualized treatment, lower cost and fewer side
effects and are proving their worth in managing RA (Liu X. et al.,
2022). According to the different types of syndrome of RA in clinical
practice, TCM prescription has achieved remarkable clinical effect
on RA relief. Classic prescriptions such as Wutou decoction have a
history of more than 1,800 years, which is a summary of clinical
experience and is still used in RA therapy (Ba et al., 2021; Wu et al.,
2021; Xie et al., 2021). With the development of preparation
technology, modern preparations have been developed according
to the classic prescriptions.

Wutou decoction has been proven in earlier research to have anti-
inflammatory and antinociceptive properties. It also seems to prevent
the progressive development of chronic arthritic joints and to reverse
the symptoms of CIA or AIA rats. The research of He et al. have
confirmed that Wutou decoction has remarkable anti-angiogenesis
capacities via mediating VEGFR2 and PI3K/AKT/mTOR/HIF-1α
signaling pathway (He et al., 2018). Wutou Decoction significantly
reduced the generation of angiogenic activators such as VEGFR2,
TGF-β, platelet-derived growth factor receptor (PDGF-R) in CIA rats
synovium (Ba et al., 2021). Wenluo Yin, a classic prescription
composed of a variety of cold-dispersing and pain-relieving herbal
medicines. It has been recommended to accelerate blood circulation
and so alleviate pain (Li et al., 2002; Guan et al., 2019). Liu et al.
evaluated the antiangiogenic efficacy of the Wenluo drink by means of
animal tests (CIA rats) and cellular tests (HFLS-RA, HUVEC). The
findings indicate that Wenluo drink might significantly lower the
density of macrovascular and capillary vessels in synovium. Wenluo
Yin inhibits angiogenesis by downregulating various angiogenesis
activators (Liu et al., 2013). Qingluo Yin is an empirical
prescription for treating dampness-heat arthralgia. It is composed
of four kinds of medicinal plant (Li et al., 2002). In CIA rats, Qingluo
Yin can suppress angiogenesis, it might achieve so by reestablishing the
balance between MMP3 and TIMP-1 in the synovium (Li et al., 2003).

Modern preparations for RA treatment by inhibit angiogenesis
include tablets, capsules and patches. Most natural medicines
preparations such as Yuxuebi tablet, Kunxian capsule, Shexiang
zhuifeng analgesic plaster are used for RA joint swelling, pain and
stiffness. YuXueBi tablet decreased disease activity index, bone
degradation and angiogenesis in CIA rats. Its anti-angiogenesis
mechanism is believed to be the inhibition of CD31 and VEGF

production as well as the inhibition of lysyl oxidase (LOX)/Ras/Raf-
1 pathway (Su et al., 2022). Shexiang Zhuifeng analgesic plaster
significantly decreased the concentrations of cytokines and VEGF in
CIA rats, while also lowering the protein overexpression of the AKT/
mTOR/HIF-pathway. Shexiang Zhuifeng analgesic plaster
decreased nitric oxide (NO) production in RAW 264.7 cells
(Wang et al., 2023). In zebrafish embryos, Kunxian Capsule
displayed anti-angiogenic actions through the controlling of
the PI3K/AKT-MAPK-VEGF pathway (Ma et al., 2023).
Sidaxue is a Miao prescriptions known in the research work of
Miao medicine. It has been reported that Sidaxue can decrease
chronic synovitis and formation of pannus in CIA rats. Network
pharmacology investigations suggest that Sidax may primarily
impact the PI3K-AKT, TNF-α and NF-κB pathways in RA.
Animal studies have confirmed that SX ameliorates
inflammatory symptoms, inhibits angiogenesis, downregulates
inflammatory factors and regulates the expression of signal
transducer and activator of transcription 1 (STAT1), and
prostaglandin endoperoxide synthase 2 (PTGS2), resulting in
bone protection in CIA rats (Wu et al., 2022). Fengshi Gutong
capsule can inhibit the angiogenesis and disease progression of
joint synovial tissue in CIA rats, perhaps via inhibiting
rheumatoid factor (RF), VEGF, cytokines, intercellular cell
adhesion molecule-1 (ICAM1), and Akt (Lin et al., 2021). In
addition, Qianghuo Shengshi Decoction (Zeng Z. et al., 2021) and
Huatan Tongluo decoction (Chen J. et al., 2019) can also improve
RA by inhibiting angiogenesis.

Even though the constitution of the prescriptions of the natural
medicines is extremely complex, and the active pharmacological
compounds are hard to identify, they are still frequently applied as
medicinal products in clinical practice due to their effectivity and the
individualization of the dosage. The anti-angiogenic prescriptions
are listed in Table 3.

5 Conclusions and future directions

Angiogenesis is directly related to a series of inflammatory cell
mediators which are part of the overall pathogenic process of RA
(Bagli et al., 2004). It has been well established that many kinds of
regulating factors are of great relevance in the process of synovial
angiogenesis, it is clear that when treating synovial angiogenesis, the
inflammatory reaction closely related to it should also be treated.
Hence, inhibiting angiogenesis is a very attractive approach for the
management of RA by preventing inflammatory infiltration and
bone destruction (Maruotti et al., 2006). This paper is a review of the
natural medicines components, herbs and prescription that have
been found to inhibit angiogenesis in a recent period.

Natural medicines, including bioactives compounds, extracts, and
prescriptions have emerged as promising therapeutic alternatives for
RA treatment in the modern society. There are many similarities
between natural medicines theory of “collaterals” and modern theory
of angiogenesis. Most natural medicines with the effect of “clearing
collaterals” have better anti-angiogenesis effect (Li and Xu, 2011; Lee
et al., 2019; Huang et al., 2020; Jin et al., 2023). It suggests that natural
medicines have its own advantages in the intervention of angiogenesis.
Tripterygium wilfordii Hook. f. (TwHF), sinomenine, and total
glucoside of Paeonia lactiflora Pall. Are probably the most valuable
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of all the natural products. They are the prescription drug approved by
the China Food and Drug Administration for RA treatment. A
randomised controlled clinical trial comprising 269 patients
compared TwHF with methotrexate (MTX) in the treatment of
active RA. TwHF monotherapy was not found to be inferior to, and
MTX + TwHF was better than, MTX monotherapy in the control of
disease activity in patients with active RA (Lv et al., 2015). In recent
years, there have been many investigations of triptolide, which is one of
the main chemical components of TwHF. (5R)-5-hydroxytriptolide
(LLDT-8) is a new derivative of triptolide with potentially potent
immunosuppressive and anti-inflammatory activities which was
developed at the Shanghai Institute of Materia Medica. In fact, a
phase II clinical trial of this compound has been completed in RA
patients (Fan et al., 2018). A open-label, 24-week, parallel
randomized controlled trial has shown that the therapeutic effect of
methotrexate + sinomenine (MTX + SIN) is similar to methotrexate +
leflunomide (MTX + LEF). Notably, gastrointestinal adverse
reactions and hepatotoxicity were significantly reduced in
patients treated with MTX + SIN compared to patients treated
with MTX + LEF (p < 0.05) (Huang et al., 2019). Another clinical
trial in RA patients showed that SIN treatment markedly improved
disease activity and reduced RA-specific clinical indicators such
as RF. SIN was found to be effective in remissioning RA, even though
it produced a slightly lower remission rate than MTX (Liu W. et al.,
2018). Chen et al. demonstrate the hepatoprotective and additive role
of total glucoside of Paeonia lactiflora Pall. In combination with MTX
and LEF in the therapy of active RA (Chen et al., 2013).

In recent years, the scientific research on natural medicines has
made great progress, especially in explaining the material basis, the
mechanism, the rationality of the formulation, the quality standard and
so on. But, there are still many outstanding problems in the research
and development of naturalmedicines. For example, comparedwith the
pathological process such as synovial inflammation and joint
destruction, the study of natural medicines on synovial angiogenesis
is relatively insufficient (Cutolo et al., 2022; Komatsu and Takayanagi,
2022; Maeda et al., 2022). The basic research on the efficacy and
mechanism of natural medicines is still very weak. Although there have
been new developments in the study of angiogenesismodels, themodels
adopted by natural medicines are still relatively simple, and the study on
the complexmodel that can dynamically observe the process of synovial
angiogenesis has not been reported (Liu M. et al., 2018). Additionally,
most of these studies are currently at the preclinical phase, more specific
and adequate clinical research to explore and harness the full potential
of natural medicines is sorely lacking.

Since the 1960s, the research on natural medicines has
developed rapidly, especially Tu Youyou, who was awarded the
Nobel Prize in 2015 for her findings on artemisinin, making the
world realize the huge development potential of natural medicines
(Tu, 2016). Natural medicines has been applied to the management
of tens of thousands of confirmed cases of COVID-19, achieving
higher cure rates and lower mortality rates (Low et al., 2023).
Natural medicines are an invaluable source for the discovery and
development of new drugs. With the ongoing improvement of
chemical and biological research techniques, more and more new
natural products with novel skeletal structures have been discovered,
providing more information on the structure of new drugs and
forming a larger library of candidate natural products (Zhang et al.,
2020; Chopra and Dhingra, 2021). The comprehensive use of

genomics, transcriptomics, proteomics, metabolomics, phenomics
and synthetic biology techniques enables the analysis of biosynthetic
pathways and key enzymes of complex natural products.
Furthermore, the utilization of natural medicines as safe and
efficacious drugs could also be promoted by multi-omics
technologies and network pharmacology which elucidating the
complex mechanism of natural medicines (Chen and Song, 2016;
González-López et al., 2021; Pandita et al., 2021). It is also applied in
bionic cultivation and synthetic biology of natural products to
achieve scientific, standardized and sustainable development of
natural products (Clarke and Kitney, 2020; Jamieson et al., 2021;
Zhu et al., 2021). Natural medicines are becoming more widely-used
due to the rapid advancement of modern preparation technique.
The new preparation plays an increasingly crucial role in improving
the utilization rate, increasing the solubility and reducing the
toxicity of natural medicines (Patra et al., 2018). The defects of
natural medicines, such as short half-life in human body and easy to
produce accumulated toxicity, can be significantly improved by
structural modification using computer aided drug design
(Thomford et al., 2018; de Sousa et al., 2022; Mullowney et al.,
2023). For example, liu et al. designed and synthesized a series of
triptolide-glucose conjugates. These conjugates are well dissolved in
water and selectively inhibit the growth of tumour cells, which is
worth further exploration (Liu Y. et al., 2022). Therefore, exploring
natural products with novel structure and elucidating the
mechanism of their anti-angiogenesis will provide more valuable
anti-RA lead compounds for the research of innovative drugs. The
recognition of lead compounds targeting angiogenesis is an essential
contribution to accelerating the early treatment of RA, which may
enable the generation of novel therapeutic targets and approaches
for the management and prevention of irreversible joint damage.

In conclusion, the efficacy of natural medicines and its natural
products in the prevention of RA through anti-angiogenic activity is
undoubted. This review elucidates the anti-angiogenic action and
mechanism of various prescriptions, herbs and compounds, and
provides reference for the application and understanding of natural
medicines. It will help to treat RA in its earlier phases, avoiding
disability and potentially improving patients’ quality of life.
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