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Background: One of the primary reasons for tumor invasion and metastasis is
anoikis resistance. Biochemical recurrence (BCR) of prostate cancer (PCa) serves
as a harbinger of its distant metastasis. However, the role of anoikis in PCa
biochemical recurrence has not been fully elucidated.

Methods: Differential expression analysis was used to identify anoikis-related
genes based on the TCGA and GeneCards databases. Prognostic models were
constructed utilizing LASSO regression, univariate and multivariate Cox regression
analyses. Moreover, Gene Expression Omnibus datasets (GSE70770 and
GSE46602) were applied as validation cohorts. Gene Ontology, KEGG and
GSVA were utilized to explore biological pathways and molecular mechanisms.
Further, immune profileswere assessedusingCIBERSORT, ssGSEA, and TIDE,while
anti-cancer drugs sensitivity was analyzed by GDSC database. In addition, gene
expressions in the model were examined using online databases (Human Protein
Atlas and Tumor Immune Single-Cell Hub).

Results: 113 differentially expressed anoikis-related genes were found. Four genes
(EEF1A2, RET, FOSL1, PCA3) were selected for constructing a prognosticmodel. Using
the findings from theCox regression analysis, we grouped patients into groups of high
and low risk. The high-risk group exhibited a poorer prognosis, with a maximum AUC
of 0.897. Moreover, larger percentage of immune infiltration of memory B cells,
CD8 Tcells, neutrophils, and M1 macrophages were observed in the high-risk group
than those in the low-risk group, whereas the percentage of activated mast cells and
dendritic cells in thehigh-risk groupwere lower. An increasedTIDE scorewas founded
in the high-risk group, suggesting reduced effectiveness of ICI therapy. Additionally,
the IC50 results for chemotherapy drugs indicated that the low-risk group was more
sensitive to most of the drugs. Finally, the genes EEF1A2, RET, and FOSL1 were
expressed in PCa cases based on HPA website. The TISCH database suggested that
these four ARGs might contribute to the tumor microenvironment of PCa.

Conclusion: We created a risk model utilizing four ARGs that effectively predicts
the risk of BCR in PCa patients. This study lays the groundwork for risk
stratification and predicting survival outcomes in PCa patients with BCR.
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1 Introduction

Prostate cancer (PCa) is ranked as the most common cancer
among men worldwide, representing a considerable percentage of
cancer-related deaths in the male demographic (Sung et al., 2021).
According to estimations, PCa account for 29% of newly diagnosed
male malignancies in the United States in 2023. In China, the
occurrence of PCa has been on the rise with the aging population
and increased screening rates (He et al., 2022; Siegel et al., 2023).
Despite advancements in diagnostic and treatment options, around
30% of PCa patients who have radical prostatectomy developed
biochemical recurrence (BCR) within a decade, with two-thirds of
these recurrencesmanifestingwithin the first 2 years after surgery (Lin
et al., 2019). A rise in serumprostate-specific antigen (PSA) levels after
radical prostatectomy or radical radiotherapy signals biochemical
recurrence. This increase was typically an early indicator of PCa
progression, which could lead to PCa specific mortality or distant
metastasis (Pound et al., 1999; Dess et al., 2017). For patients with
BCR requiring salvage therapy, treatment options were limited (Wang
M. et al., 2022). Therefore, identifying reliable prognostic biomarkers
and understanding the underlying molecular mechanisms involved in
BCR were crucial for better risk stratification and personalized
treatment strategies in PCa.

Past studies have shown that some molecular prognostic
biomarkers other than anoikis may also predict the risk of BCR
of PCa. MiRNA such as miR-320a, miR-125A, and miR-196a were
reported to be used for predicting the recurrence of PCa after
radical prostatectomy (Pashaei et al., 2017; Zhan et al., 2020;
Konoshenko and Laktionov, 2021). Moreover, the expression
levels of mRNAs such as SAMD5 (Li et al., 2019) and ZNF154
(Zhang et al., 2018) served as prognostic biomarkers for predicting
the risk of BCR in PCa. Furthermore, seven immune-related genes
including (PPARGC1A、AKR1C2、COMP、EEF1A2、IRF5、
NTM and TPX2) were identified as prognostic markers,
showing an association with BCR-free survival in PCa patients
(Lv et al., 2021). In addition, Prognostic subtypes established using
senescence-associated lncRNAs were also closely associated with
BCR-free survival in PCa (Feng et al., 2023). However, these
molecular prognostic biomarkers above have not been validated
in clinical application. In addition, there were some
clinicopathological markers such as the Gleason score, clinical
stage and PSA levels which were also applied to predict BCR
following local PCa treatment (Cornford et al., 2017; D’Andrea
et al., 2018). Nevertheless, various clinical outcomes were observed
in these patients with the same biomarker (Li et al., 2019).
Therefore, more sensitive BCR-related biomarkers for
prediction should be developed.

Anoikis is a distinct type of programmed cell death that
occurs when cells detach from the extracellular matrix or
neighboring cells (Sattari Fard et al., 2023). This process is
primarily initiated through the interplay of intrinsic and
extrinsic pathways (Paoli et al., 2013). Anoikis is also a critical
mechanism in maintaining tissue homeostasis by eliminating
cells that have lost their anchorage, preventing their abnormal
accumulation, and preventing metastasis (Taddei et al., 2012).
Dysfunctions in anoikis can facilitate tumor invasion and
migration, the establishment of metastasis in distant tissues,
and the development of drug resistance (Kim et al., 2021).

Moreover, tumor cells are able to resist anoikis and survive by
utilizing a variety of ways, including EMT (Cao et al., 2016),
oxidative stress (Giannoni et al., 2008), and adjusting their
integrin levels (Hynes, 1992). Lots of research demonstrates
that anoikis is essential in the development of a multiple
cancers, like renal cancer (Wang et al., 2022), lung cancer (Jin
et al., 2018), and gastric cancer (Ye et al., 2020) as well as PCa
(Nepali and Kyprianou, 2023). Prior studies reported that several
anoikis-related genes (ARGs) were closely correlated to the
metastasis and invasion of PCa (Rennebeck et al., 2005; Lee
et al., 2021). For example, FLIP, an inhibitor of anoikis, was
found upregulated in a mouse model of PCa metastasis (Mawji
et al., 2007). Inhibiting the synthesis of FLIP protein reduces the
formation of distant tumors (Mawji et al., 2007). Moreover, focal
adhesion complex protein Talin1 was a prognostic biomarker,
which promote the migration and invasion of PCa through focal
adhesion signaling and resistance to anoikis (Sakamoto et al.,
2010). Furthermore, the expression of CENPF gene was
upregulated in human PC3 cells, and silencing CENPF
increases sensitivity to anoikis-induced apoptosis (Shahid
et al., 2018). In addition, AR may suppress cell deaths via
anoikis and entosis, potentially leading increased PCa
metastasis (Wen et al., 2014). There is still a necessity to
identify new genetic markers related to anoikis, which could
serve as a foundation for risk stratification in patients with
BCR of PCa.

In this study, we tried to explore the association between
ARGs and the risk of biochemical recurrence in PCa. For this
purpose, we employed differentially expressed ARGs from TCGA
and the GeneCards databases, establishing an ARG-based
signature to forecast biochemical recurrence outcomes in PCa.
Moreover, the predictive capacity of ARGs in assessing patient
prognosis using Gene Expression Omnibus (GEO) datasets
(GSE70770 and GSE46602) were validated. Furthermore, the
molecular and immune characteristics, sensitivity to
antineoplastic agents, and the effectiveness of immunotherapy
associated with the model in PCa were assessed. Finally, the
protein expression of prognostic genes was confirmed based on
the Tumor Immune Single-Cell Hub (TISCH) and the Human
Protein Atlas (HPA). The workflow of this research was
illustrated in Figure 1.

2 Materials and methods

2.1 Data collection

The clinical information and transcriptome matrix,
encompassing 497 prostate tumor samples and 52 adjacent-
normal samples, were acquired from TCGA database (https://
portal.gdc.cancer.g-ov/). The expressed genes (DEGs) were
differentially detected using the “limma” R package, employing
thresholds of |log2FC| > 1.0 and FDR <0.05. Furthermore, we
obtained two external validation cohorts, GSE70770 and
GSE46602, from the Gene Expression Omnibus (GEO) datasets
available at https://www.ncbi.nlm.nih.gov/geo/. In addition, a sum
of 912 genes related to anoikis (ANOIKIS-related genes or ARGs)
was procured from the GeneCards database (https://www.

Frontiers in Pharmacology frontiersin.org02

Kang et al. 10.3389/fphar.2024.1383304

https://portal.gdc.cancer.g-ov/
https://portal.gdc.cancer.g-ov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1383304


genecards.org/). The ARGs that were differentially expressed were
then retrieved by overlapping with the DEGs.

2.2 Construction of risk score model

In this study, 429 PCa patients were randomly allocated into
training and testing sets at a 1:1 ratio, and the training set was
employed to develop a risk score model based on ARGs.
Univariate Cox analysis, employing the R package “survival”,
was conducted to identify ARGs significantly associated with
BCR of PCa at a significance criterion of p < 0.05. Subsequently,
to mitigate the risk of overfitting the model, the least absolute
shrinkage and selection operator (LASSO) regression algorithm
along with 10-fold cross-validation were employed to narrow
down the candidate ARGs. Finally, multivariate Cox analysis was
performed to select ARGs independently predicting the
prognosis of PCa. A risk model was then constructed based on
the prognostic ARGs, with the formula: (coefficient × the
expression of EEF1A2) + (coefficient × the expression of RET)
+ (coefficient × the expression of FOSL1) + (coefficient × the
expression of PCA3).

Additionally, to stratify all qualified individuals into high-
and low-risk groups, the median risk score was used as
the threshold. To illustrate the survival discrepancies
between individuals in high- and low-risk categories, Kaplan-
Meier survival analysis was conducted, utilizing the “survival”
and “survminer” packages in R. The model’s performance to

predict was assessed by conducting the time-dependent
receiver operating characteristic (ROC) curve analysis,
executed with the “timeROC” package in R. Validation
of the model was also carried out in the independent
validation set.

2.3 Validation of risk model

To confirm the effectiveness of the prognostic model based
on ARGs, the GSE70770 and GSE46602 cohorts were selected as
external validation sets. Using the pre-established formula,
the risk score of each sample in these two cohorts was
calculated. Subsequently, based on the median risk score, all
samples from the two datasets were grouped as either low- or
high-risk group.

2.4 Construction of ARGs-based nomogram

The clinical and pathological features, encompassing aspects like
age, T stage, N stage, and risk score, were compiled and utilized to
develop a nomogram model through the use of the “rms” package in
R. This model aimed to estimate the possibility of BCR-free survival
in PCa patients at 3, 5, and 8 years. Furthermore, univariate and
multivariate Cox regression analyses were employed to identify
independent prognostic factors from the risk score and various
Clinicopathological features.

FIGURE 1
Flowchart of data collection and study design.
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2.5 Functional enrichment analysis

To analyze the differentially expressed genes (DEGs),
“clusterProfiler” R package and the “ggplot2” R package were used
to identified the biological processes and signaling pathways based on
Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes
(KEGG) dataset. Additionally, the “c2.cp.reactome.v7.4.symbols.gmt”
was obtained from the MSigDE database, and the reactome pathway-
based analysis was carried out using the “GSVA” R package and the
“pheatmap” R package.

2.6 Analysis of immune infiltration landscape

The CIBERSORT algorithm utilizes the principle of linear support
vector regression to deconvolve the expression matrix of immune cell
subtypes to estimate the abundance of immune cells (Newman et al.,
2015). To examine the prevalence of diverse immune cell types in the
low- and high-risk groups, the CIBERSORT and CIBERSORTx (https://
cibersortx.stanford.edu/) were applied to estimate the level and
proportion of infiltration of different immune cells. Additionally, a
single-sample gene set enrichment analysis (ssGSEA) algorithm was
also used to evaluate the differences in immune cell infiltration levels
between the different risk groups, utilizing the “GSVA” package in R. The
disparities between the low-risk and high-risk groups were visualized
using the “ggplot2” package in R. In addition, the correlation between the
risk score values with the presence of immune infiltrating cells was also
investigated using CIBERSORT method.

2.7 Immunotherapy response and drug
sensitivity analysis

The immune evasion potential in PCa patient samples was
evaluated using the Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm based on data from the TIDE database (http://
tide.dfci.harvard.edu/login/). The half maximal inhibitory
concentration (IC50) and the expected response of PCa patients
to anticancer drugs were calculated with the “oncoPredict” package
in R utilizing data from the Genomics of Drug Sensitivity in Cancer
(GDSC) database. In addition, the outcomes were visually
represented with the “ggplot2” package in the R
programming language.

2.8 Validation of prognostic genes

The Tumor Immune Single-Cell Hub (TISCH; http://tisch.
comp-genomics.org) was utilized for a comprehensive
investigation of the tumor microenvironment (TME)
heterogeneity, encompassing a wide range of datasets and cell
types. Therefore, we exploited the single-cell RNA sequencing
dataset PRAD_GSE141445 (Chen et al., 2021) from the TISCH
database for the analysis of the expression of identified ARGs in the
TME. To confirm the protein expression of prognostic genes
specifically in PCa tissues, immunohistochemistry data were
cross-referenced with the Human Protein Atlas (HPA; https://
www.proteinatlas.org/).

2.9 Statistical analysis

Continuous variables were evaluated using either the Wilcoxon
test or the t-test, depending on their suitability for the data. Spearman
correlation analysis was employed for correlational analyses. Kaplan-
Meier survival analysis was utilized for the generation of survival
curves, and comparisons between these curves were conducted
employing the log-rank test. A significance level of p < 0.05 was
considered suitable for all statistical assessments. All statistical analysis
were performed using R software (version 4.3.0).

3 Results

3.1 Identification of differentially
expressed ARGs

Gene expression data from both PCa samples and normal tissues in
the TCGA-PCa database were subjected to analysis, with 1822 DEGs
identified, comprising 1,052 downregulated and 770 upregulated genes
(Figure 2A). Subsequently, these DEGs overlapped with the 912 ARGs
extracted fromGeneCards. Finally, a total of 113 differentially expressed
ARGs was applied for further analysis. (Figure 2B).

3.2 Risk model construction based on the
ARGs prognostic signatures

To create a predictive signature for the biochemical recurrence
status in PCa patients, 429 individuals were randomly divided in equal
proportions into a training group (comprising 214 patients) and a
testing set (consisting of 215 patients). As shown in Figures 3A–C,
univariate Cox regression analysis and LASSO analysis were
conducted in the training set, identifying 7 ARGs associated with
the BCR rate. Moreover, the multivariate Cox regression analysis
found that 4 ARGs independently predictive of PCa prognosis, which
were selected to develop a risk prediction model (Supplementary
Figure S1A). The risk score was computed utilizing the following
formula: (0.261×EEF1A2 expression) + (−0.142×RET expression) +
(−0.196×FOSL1 expression) + (−0.184×PCA3 expression). Following
this, individuals with PCa were stratified according to the median risk
score, and then categorized into high- and low-risk groups. In the
training set, analysis of Kaplan-Meier survival curves implied that
individuals with elevated risk scores experienced a notably reduced
rate of BCR-free survival (Supplementary Figure S1B). The AUCwere
0.709, 0.765, and 0.808 for 3-, 5-, and 8-year BCR-free rates,
respectively (Supplementary Figure S1C). Risk plots revealed a
favorable relation between rising risk scores and the prevalence of
BCR in PCa (Supplementary Figure S1D). Furthermore, the
expression profiles of the four prognostic ARGs in both the
high-risk and low-risk groups were graphically depicted using
box plots and a risk heatmap. These findings revealed that
individuals with an elevated risk score demonstrated increased
expression of EEF1A2. In contrast, PCA3, RET, and
FOSL1 showed higher expression levels in the low-risk group,
as illustrated in Supplementary Figure S1E. The testing set was
then utilized for verification of the predictive accuracy of the risk
model. In Figures 3D,E, it is shown that there are significant
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FIGURE 2
Characterization of differentially expressed ARGs. (A) Volcano plot of DEGs in PCa. (B) Venn diagram of DEGs and ARGs.

FIGURE 3
Construction of risk model risk model based on the prognostic ARGs in PCa. (A) Univariate Cox regression analysis of the ARGs. (B,C) LASSO (least
absolute shrinkage and selection operator) regression. (D) K-M curves of BCR outcome between high- and low-risk score groups in the testing set. (E)
ROC curves for BCR-free predictive performance at 3-, 5-, and 8-year in the testing set. (F) The risk score distribution and BCR status of PCa patients in
the testing. (G,H) The boxplot and risk heatmap of the prognostic ARGs in the testing set.
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differences in the BCR-free survival rates among different risk
groups in the testing set. The AUC values for the BCR-free survival
rates at 3, 5, and 8 years are 0.721, 0.690, and 0.798, respectively,
indicating that the risk model based on ARGs has a good predictive
performance. Figures 3F–H display the risk distribution plots, gene
expression box plots, and risk heatmap of different risk groups in
the testing set.

3.3 Independent prognosis analysis of the
ARGs prognostic signature

We conducted both multivariate and univariate Cox regression
analyses on the comprehensive TCGA-PCa dataset to evaluate the
independence of the ARGs prognostic signatures for PCa. The

univariate Cox regression analysis unveiled a notable connection
between the BCR rate in PCa and factors such as risk score (HR =
1.364, p < 0.001), Gleason score (HR = 1.741, p < 0.001), N stage (HR =
1.845, p = 0.047), and T stage (HR = 2.891, p < 0.001) (Figure 4A). The
multivariate Cox regression analysis showed that the risk score (HR =
1.27, p < 0.001) and T stage (HR = 1.853, p = 0.048) were independent
prognostic indicators for PCa (Figure 4B). Subsequently, we developed a
new nomogram based on clinical pathological features and risk score to
predict the 3-, 5-, and 8-year BCR-free survival probabilities of PCa
patients (Figure 4C). To explore the prognostic value of the risk score
based on ARGs in different clinicopathological factors, we conducted
stratified subgroup analyses. As illustrated in Figure 4D, risk
stratification of the entire TCGA cohort showed that patients in the
high-risk group had notably poorer outcomes. Moreover, PCa patients
with different clinical pathological characteristics were divided into

FIGURE 4
The independence of the ARGs prognostic signatures for PCa. (A) Univariate Cox analysis and (B)multivariate Cox analysis shows the correlation of
the BCR-free occurrence and risk score, and clinicopathological factors. (C)A nomogrambased on the ARGs and clinicopathological factors. (D) The K-M
survival analysis in the different risk groups of PCa patients in the entire TCGA sets. The BCR-free rate of patients with PCa in the low- and high-risk group
among the (E) Age≤60; (F)N0. The box plots of correlation between risk scores and clinicopathological characteristics, including (G)Gleason score;
(H) T stage; (I) N stage.
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high-risk and low-risk groups based on the prognostic signature of
ARGs. Kaplan-Meier analysis displayed that the occurrence of BCR
showed a notably higher level in individuals with a high-risk score in
contrast to those in the low-risk group, particularly among individuals
aged ≤60 years and those with N0 status (Figures 4E,F). However, due
to small sample size or uneven distribution, in patients aged >60, with
different Gleason scores, and varying N and T stages, there was no
significant difference in BCR incidence (Supplementary Figure S2).
Furthermore, Figures 4G–I illustrated that higher risk scores are indeed
positively correlated with various adverse clinicopathological
characteristics, including higher Gleason scores, higher T stages, and

lymph node metastasis. These results indicated that the risk score
derived from ARGs can act as a prognostic factor that acts
independently in individuals with PCa. It could be effectively used
to predict the likelihood of BCR-free survival in PCa patients.

3.4 Validation of risk model based on
GEO cohorts

To assess the predictive precision of the risk model, we applied the
same methodologies to the GSE70770 and GSE46602 cohorts, utilizing

FIGURE 5
Validation of risk model based on GEO cohorts. K-M curves of BCR-free rate between high- and low-risk score groups in the (A) GSE70770, (F)
GSE46602. The AUC of the risk model in the (B)GSE70770, (G)GSE46602. The risk score distribution and BCR status of PCa patients in the (C)GSE70770,
(H) GSE46602. The boxplots of the prognostic ARGs in the (D) GSE70770, (I) GSE46602. The risk heatmap of the prognostic ARGs in the (E) GSE70770,
(J) GSE46602.
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them as external validation sets. Multivariate Cox regression analysis in
both cohorts exhibited the independence of the ARGs prognostic
signatures (Supplementary Figure S3). Survival analysis unveiled that
patient with low-risk scores displayed notably higher rates of BCR-free
survival in comparison to those with high-risk scores (Figures 5A,F),
aligning with the observations from the TCGAdataset. The AUC values
in the GSE70770 dataset were 0.753, 0.810, and 0.649 for 3-, 5-, and 8-
year BCR-free survival predictions, respectively. The AUC values for 1-,
3-, and 5-year BCR-free occurrence in theGSE46602 dataset were 0.812,
0.886, and 0.897, respectively (Figures 5B,G). Figures 5C–E,H–J visually
represents the distribution of risk scores, the expression levels of the four
prognostic ARGs, and the BCR status of individuals within the two
external validation sets. These data implied that the riskmodel performs
well in terms of prognosis.

3.5 Functional enrichment analysis of the
differentially expressed ARGs

The underlying biological functions and molecular mechanisms
of ARGs were revealed using functional enrichment analysis. ARGs
in PCa were shown to be significantly abundant in processes such as
cell-substrate adhesion, peptidyl-tyrosine phosphorylation, control
of protein serine/threonine kinase activity, cell-matrix adhesion, and
anoikis regulation (Figure 6A). The findings of the GSVA
enrichment analysis revealed the signature signaling pathways of

ARGs for PCa patient in the high- and low-risk groups (Figure 6B).
According to KEGG analysis, ARGs in PCa were largely implicated
in the PI3K-Akt signaling pathway, the MAPK signaling pathway,
and focal adhesion (Figure 6C). The outcomes implied that ARGs
might have a substantial role in the migration and metastasis of PCa.

3.6 Immune infiltration analysis

For assessing the pattern of immune cell infiltration in patients
with PCa, the CIBERSORT, CIBERSORTx and ssGSEA algorithms
were applied, focusing on two risk subgroups. The CIBERSORT
analysis showed that the high-risk group displayed a considerably
greater proportion of most immune cells. In contrast, the low-risk
group had a larger percentage of resting dendritic cells, activated
dendritic cells, activated mast cells, and eosinophils, as depicted in
Figure 7A. CIBERSORTx is an updated version of CIBERSORT, and
the results of both analyses were relatively consistent. Notably,
CIBERSORTx identified more cell types, such as plasma cells and
CD8 T cells, which showed higher infiltration levels in the high-risk
group (Figure 7B). The ssGSEA algorithm demonstrated that
individuals with a low-risk score showed a larger portion of mast
cells, T cells, T follicular helper cells (TFH), T helper two cells (Th2),
and myeloid-derived suppressor cells (MDSC). Conversely, the
fraction of effector memory CD4 cells and memory B cells was
greater in the high-risk group (Figure 7C). A correlation analysis was

FIGURE 6
Functional enrichment analysis of the differentially expressed ARGs in the different risk groups. (A) The results of GO enrichment analysis. (B) GSVA
analysis shows the REACTOME term of PCa patients in the different risk groups. (C) KEGG enrichment analysis of the differentially expressed ARGs.
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conducted to investigate the relationship between the abundance of
immune cells and the risk score. This analysis revealed that the risk
score was in a positive relationship with the presence of memory
B cells and activated NK cells, while it showed a negative
association with activated dendritic cells and mast cells (Figures
7D–G). Overall, our data suggested a correlation between ARGs
risk model and the immune infiltration landscape in
patients with PCa.

3.7 Immunotherapy response analysis

Given the wide range of immune infiltration among PCa
patients, we investigated the response to immunotherapy in
distinct risk groups. The TIDE analysis indicated that high-risk
PCa patients exhibited notably higher TIDE scores in contrast to

individuals in the low-risk group (Figure 8A). This suggested that
individuals with a high-risk score might have a diminished reaction
to immune checkpoint therapy. Additionally, the high-risk group
demonstrated elevated scores for MDSC, TAM.M2, and exclusion,
while showing a lower dysfunction score (Figures 8B–E).

3.8 Drug sensitivity analysis

To evaluate the response to chemotherapeutic drugs in the two
subgroups, we carried out a drug sensitivity analysis. The outcomes
indicated that the IC50 values of sabutoclax, vinblastine, rapamycin,
sepantronium bromide (YM155), docetaxel, mitoxantrone, and
paclitaxel were notably greater in the low-risk group. However, it
was observed that the high-risk group had a higher IC50 for
AZD8055, as indicated in Figures 9A–H. The findings

FIGURE 7
Immune infiltration analysis of PCa patients in risk groups. (A) The fraction of 19-type immune cells in different risk groups. (B)Differences in immune
infiltration of 22-type immune cells. (C) The proportion of 11-type immune cells in different risk groups. (D–G) The correlations between the four immune
cells abundance and risk scores.
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highlighted the diverse efficacy benefits of the selected
chemotherapeutic drugs on individuals with PCa in various risk
groups and could offer guidance for the selection of chemotherapy
for PCa patients.

3.9 Validation of prognostic genes

Based on the information available on the HPA website, we
observed that the EEF1A2 gene in the risk model exhibited high
expression in PCa cases, while the RET and FOSL1 genes showed
moderate or weak expression (Figure 10A). Furthermore, we
leveraged the single-cell RNA sequencing dataset
GSE141445 from the TISCH database to investigate the
expression of four ARGs within the TME. The
GSE141445 dataset comprise 18 cell clusters and eight
intermediate cell types, the distribution and quantity of these
clusters were depicted (Figure 10B). Figures 10C,D showed the
expression levels of the genes EEF1A2, RET, FOSL1, and
PCA3 in each cell type within the dataset. These data indicated
that these four ARGs may contribute in the tumor
microenvironment of PCa.

4 Discussion

Early recurrence is associated with a heightened risk of
metastasis in PCa, with 24%–34% of patients with BCR
progressing to metastatic disease (Pound et al., 1999; Boorjian
et al., 2011). Anoikis pertains to a distinctive form of
programmed cell death that is initiated when cells disconnect
from the extracellular matrix and become isolated from
neighboring cells. This mechanism significantly contributes to
inhibiting tumor invasion and metastasis. Consequently,

evaluating BCR risk based on the anoikis signature is essential
for improving the accuracy of PCa prognosis.

In this research, we identified four ARGs that are associated with
the risk of BCR in PCa. Utilizing these genes, we constructed a risk
model to forecast BCR in PCa using the TCGA dataset, and
subsequently, we verified the model in two GEO datasets.
Kaplan-Meier survival analysis exhibited a significantly higher
risk of BCR in the high-risk group in comparison to the low-risk
group. ROC analysis confirmed the effectiveness of the prognostic
model in predicting BCR events at 3-, 5-, and 8-year intervals. It was
worth noting that the majority of BCR times for patient samples in
the GSE46602 dataset were less than 8 years. Consequently, we
conducted ROC analysis to validate the prognostic model’s
performance in predicting 1-, 3-, and 5-year BCR events. The
multivariate and univariate Cox regression analyses showed that
the risk score derived from ARGs could serve as a standalone
prognostic indicator for forecasting BCR-free survival in
individuals with PCa. Additionally, we carried out a nomogram
to visually represent the influence of the risk score and various
clinicopathological characteristics on 3-, 5-, and 8-year BCR-free
survival. Taken together, the risk model, based on 4 ARGs,
demonstrated accurate assessment capabilities for predicting the
BCR risk in PCa patients.

In this study, we identified 4 ARGs for the construction of a BCR
risk model in PCa. Among these ARGs, patients with a high-risk
score reported greater EEF1A2, RET, and FOSL1 levels, but
PCA3 expression was reduced. Previous investigations elucidated
some correlations between these genes and the tumorigenesis and
pathophysiology of cancer. EEF1A2, a coding gene crucial for
protein translation elongation, has been demonstrated to exhibit
altered expression in numerous cancers (Cristiano, 2022), which
actively participate in the initiation and progression of various
cancer types during carcinogenesis (Anand et al., 2002; Hassan
et al., 2020; Jia et al., 2021). EEF1A2 was reported to facilitate the

FIGURE 8
Immunotherapy response analysis of PCa patients. (A) TIDE score (B) MDSC score (C) TAM.M2 score (D) T-cell dysfunction score (E) T-cell
exclusion score.
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migration, invasion, and metastasis of pancreatic cancer cells by
activating Akt and upregulating MMP-9 expression (Xu et al., 2013).
Inhibiting EEF1A2 leaded to a significant upregulation of apoptotic
pathway proteins (caspase3, BAD, BAX, PUMA), while elevated
levels of EEF1A2 promoted the proliferation and suppress apoptosis
of PCa cells (Sun et al., 2014).Worst et al. observed that EEF1A2 was
overexpressed in PCa with higher Gleason scores, and patients with
increased EEF1A2 expression had markedly shortened BCR-free
survival (Worst et al., 2017). These findings implied that
EEF1A2 played a role in the transformation and progression of
PCa, which was consistent with our observations of elevated
EEF1A2 expression in high-risk populations. RET is a receptor
tyrosine kinase, which can mediate cell proliferation, survival,
migration, and is associated with the progression of various
tumors (Hu et al., 2023). Our data indicated that high expression
of RET was linked to poor prognosis in PCa patients. It was reported
that RET expression played a crucial role in the survival,
proliferation, and anoikis resistance of medullary thyroid
carcinoma cells (Lian et al., 2017). In PCa, RET is expressed in

all PCa cell lines, and RET signaling can activate the AKT or ERK
pathways, promoting PCa transformation-related phenotypes by
activating the p70S6 kinase (Ban et al., 2017). Knocking down or
pharmacologically inhibiting the RET kinase in various mouse and
human neuroendocrine PCa models significantly diminished PCa
tumor growth and cellular vitality (VanDeusen et al., 2020). These
results suggested that RET was conducive to the development of
malignant characteristics in PCa cells, and further investigation of
the clinical potential of RET gene was warranted. The FOSL1 gene is
responsible for encoding Fos-related antigen 1 (FRA1), which is
elevated in breast cancer, colorectal cancer, lung cancer, and various
other malignancies (Jiang et al., 2020). Our data also indicated
FOSL1 gene was biomarker high expressed in PCa patients. It was
reported that the oncogene K-Ras elevated the expression of
ITGA6 through FOSL1 inducing resistance to anoikis (Zhang
et al., 2017). High expression of FOSL1 in PCa could enhance
the proliferation and metastasis of PCa cells by modulating the EMT
pathway (Luo et al., 2018). Therefore, as a promoter of EMT,
FOSL1 may have a significant impact on PCa carcinogenesis.

FIGURE 9
Analysis of drug sensitivity of PCa patients in the different risk groups. (A) Sabutoclax (B) Vinblastine (C) AZD8055 (D) Rapamycin (E) Sepantronium
Bromide (YM155) (F) Docetaxel (G) Mitoxantrone (H) Paclitaxel.
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Prostate Cancer Antigen 3 (PCA3) is a specific type of long non-
coding RNA (lncRNA) found in the prostate. The levels of PCA3 in
urine were commonly used as diagnostic biomarkers for PCa
(Lemos et al., 2019). Lauer et al. found that the upregulation of
lncRNA PCA3 and the downregulation of PRUNE2 might be early
(rather than late) molecular events in the progression of prostate
tumors, but were unrelated to BCR (Lauer et al., 2023). Another
study also suggested that PCA3 appeared to be an important marker

for early-stage or less invasive tumors of PCa, however, the gene
expression levels of PCA3 and PRUNE2, as well as the PCA3/
PRUNE2 ratio, could differentiate whether patients experience BCR
events (Dias-Neto et al., 2017). The differences in BCR outcomes
between these two studies might be attributed to the cohorts
included. Our findings were in line with the latter results,
indicating that PCA3 expression was higher in the group of
individuals with low risk of BCR compared to that in the high-

FIGURE 10
Validation of prognostic genes of ARGs. (A) Based on the HPA database, the immunohistochemical results for EEF1A2, RET and FOSL1. (B)
Annotations for all cell types in GSE141445 and the proportion of each cell type. (C, D) Proportions and expressions of FOSL1, EEF1A2, PCA3 and RET.
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risk group. In summary, EEF1A2, RET, and FOSL1 could serve as
prognostic risk factors for PCa. Conversely, PCA3 was negatively
correlated with PCa prognosis. The risk model based on these four
ARGs not only could be a prognostic marker for BCR in PCa but also
had the potential to be a novel prospective target gene for
PCa treatment.

We also conducted GO, KEGG, and GSEA enrichment studies on
the ARGs to better understand their putative biological roles and
molecular processes. As anticipated, these genes exhibited close
associations with the biological processes involving the regulation of
anoikis and were also linked to the signaling pathways of PI3K-Akt and
MAPK. According to current research reports, silencing
eEF1A2 significantly reduced the occurrence of hepatocellular
carcinoma by inhibiting the PI3K/Akt/NF-κB signaling transduction
(Qiu et al., 2016). Activating RET alterations have been shown to enhance
the activity of the PI3K/AKT and MAPK pathways, thereby promoting
the proliferation and development of various types of tumor cells
(Brzezianska and Pastuszak-Lewandoska, 2011; Regua et al., 2022). In
melanoma, sustained expression of FOSL1 was associated with
continuous overactivation of the MAPK pathway (Maurus et al.,
2017). Further, the process of anoikis resistance reported in several
studies is indeed related to the pathways we identified. Anoikis resistance
has been reported to induce alterations in the Ras/ERK and PI3K/Akt
signaling pathways, as well as matrix remodeling, in endothelial cells (de
Sousa Mesquita et al., 2017). Depleting mitochondrial DNA in prostate
epithelial cells induces the cell to develop anoikis resistance and enhances
its invasive ability by activating the PI3K/Akt2 signalling pathway (Moro
et al., 2009). Activation of the Src kinase-mediated MAPK pathway was
associated with angiogenesis in osteosarcoma cells anoikis resistance
(Gao et al., 2019). These studies suggested that ARGs may play a role in
the anoikis process of PCa by regulating the PI3K-Akt and MAPK
signaling pathways, further investigation is necessary to validate this
hypothesis.

Infiltrating immune cells serves a complex biological function in
PCa development. Studies have shown that low levels of mast cells in
cancer tissue are associated with poor outcomes such as BCR and
metastasis in PCa (Hempel et al., 2017; Sfanos, 2022). This is
consistent with our results of less mast cell infiltration in the
high-risk group. Our study found that the BCR high-risk group
had a higher proportion ofM1macrophages, which is consistent with
previous research, indicating that infiltrating M1macrophages are an
important adverse prognostic factor for BCR in PCa (Andersen et al.,
2021). Moreover, this study also showed that the infiltration level of
neutrophils significantly increases in the high-risk group. A study has
shown that enhancing the cytotoxicity of neutrophils in the bone
might be beneficial for the treatment of patients with bone metastatic
PCa (Costanzo-Garvey et al., 2020). Therefore, neutrophils may have
important therapeutic implications for bone metastasis patients in
the high-risk group. Furthermore, previous studies have reported
high levels of tumor-infiltrating CD8 T cells associated with BCR in
PCa (Ness et al., 2014), as well as specimens from patients in the
high-risk group and those with recurrence or progression of PCa
showing more B-cell infiltration (Woo et al., 2014). These findings
are consistent with our results, indicating a higher level of infiltration
of CD8 T cells and B cells in the high-risk group for BCR. It is worth
noting that although the samples in the single-cell RNA sequencing
dataset were not risk stratified, the proportions of B cells and CD8+

T cells in them were similar to those in the high-risk group in

immune infiltration, and these immune cells may play a similar role
in TME of PCa.

TIDE analysis was used to evaluate the potential clinical
efficacy of immunotherapy in different risk groups. An
elevated TIDE score implied an increased possibility of tumor
immune escape, indicating lower benefits from immune
checkpoint inhibitor (ICI) therapy for patients (Jiang et al.,
2018). Our findings indicated a higher TIDE score in the
high-risk group, which suggested that immunotherapy might
be less effective in this group of patients. In addition, we
calculated the sensitivity of different risk groups to PCa
chemotherapeutic agents using drug sensitivity analysis.
Clinical trials of commonly used chemotherapy drugs for PCa
have shown that using vinblastine or paclitaxel in combination
with estramustine can treat patients with locally advanced or
hormone-refractory PCa (Hudes et al., 1992; Zelefsky et al., 2000;
Kelly et al., 2001; Urakami et al., 2002). The combination of
docetaxel with androgen deprivation therapy (ADT) increased
survival for those with metastatic hormone-sensitive PCa
(Kyriakopoulos et al., 2018). Extensive clinical trials were
established the therapeutic efficacy of agents such as
rapamycin (Armstrong et al., 2010), sepantronium bromide
(YM155) (Tolcher et al., 2012), and mitoxantrone (de Bono
et al., 2010) in the treatment of PCa. In summary, the analysis
of chemotherapeutic drug sensitivity offered new theoretical
support for the clinical pharmacological management of PCa
potentially.

There are limitations for this study. Firstly, the clinical
cohort of all PCa cases in this study was obtained from
public databases, and the sample size was limited. Future
work will include larger clinical samples to enhance the
accuracy of the results. Secondly, the outcomes of this study
lacked validation through in vitro experiments. We will verify
the expression patterns of these four key genes in the clinical
samples using qPCR and immunohistochemistry, thereby
increasing the reliability of the conclusions. Lastly, the
potential mechanisms by which the four anoikis-related genes
regulated the prognosis of PCa patients are required further
investigation.

5 Conclusion

In conclusion, we developed a novel model incorporating
four ARGs for predicting the risk of BCR in PCa. Our results
offered a glimpse into the molecular and immunological
characteristics of ARGs in PCa. In addition, we did a
preliminary assessment of immunotherapy response and
chemotherapeutic drug sensitivity in PCa patients from
various risk groups. Collectively, this study potentially offered
vital guidance for predicting BCR events in PCa.
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SUPPLEMENTARY FIGURE S1
Construction and validation of risk model risk model. (A) Multivariate Cox
regression analysis of the ARGs. (B) The risk score distribution and BCR
status of PCa patients in the training set. (C) K-M curves of BCR outcome
between high- and low-risk score groups in the training set. (D) ROC curves
for BCR-free predictive performance at 3-, 5-, and 8-years in the training set.
(E-F) The boxplot and risk heatmap of the prognostic ARGsin the training set.

SUPPLEMENTARY FIGURE S2
The BCR-free rate of patients with PCa in the low- and high-risk group
among the (A) Age > 60 ; (B) Gleason score > 7; (C) Gleason score <= 7 ; (D)
N1; (E) T2; (F) T3/T4 .

SUPPLEMENTARY FIGURE S3
Validation of risk model based on GEO cohorts. The multivariate Cox
regression analysis in two cohorts (A) GSE70770 (B) GSE46602.
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