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Endothelial cells form a single cell layer lining the inner walls of blood vessels and
play critical roles in organ homeostasis and disease progression. Specifically,
tumor endothelial cells are heterogenous, and highly permeable, because of
specific interactions with the tumor tissue environment and through soluble
factors and cell–cell interactions. This review article aims to analyze different
aspects of endothelial cell heterogeneity in tumor vasculature, with particular
emphasis on vascular normalization, vascular permeability, metabolism,
endothelial-to-mesenchymal transition, resistance to therapy, and the
interplay between endothelial cells and the immune system.
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Introduction

The endothelium of large and small vessels, including arteries characterized by
continuous endothelium, aligned in the direction of flow and without valves, veins,
characterized by continuous endothelium, not aligned in the direction of flow, with
valves, and capillaries, characterzied by endothelium adapted to the underlying tissues
and with phenotypic differences between different vascular beds (Ribatti et al., 2002;
Crivellato et al., 2007). Genetic and environmental factors influence endothelial
heterogeneity through the release of specific soluble factors or cell–cell interactions,
involved in determining specific vascular structure and function (Ribatti et al., 2002;
Crivellato et al., 2007). High permeability and fenestrations are dependent on the secretion
of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) (Dvorak
et al., 1992; Esser et al., 1998). Capillary endothelial cells show heterogenic characteristics
between different organs (continuous thick capillaries are present in skeletal muscle, cardiac
smooth muscle, and testes; thin continuous capillaries are present in the central nervous
system and dermis; sinusoids are present in the liver, spleen, and bone marrow; fenestrated
capillaries are present in endocrine glands), and also in single organs, such as in the kidney
where are present fenestrated endothelial cells in peritubular capillaries, discontinuous
endothelial cells in glomerular capillaries, and continuous endothelial cells in other regions
(Ribatti et al., 2009). In both between-organ and between-vessel type differences,
heterogeneity arises from the necessity for endothelial specialization. Endothelial cells in
these differing vascular beds have unique molecular functions that drive their particular
structure and molecular phenotype.

Endothelial cells are also able to secrete specific angiocrine factors, such as VEGF,
angiopoietin-2 (Ang-2), bone morphogenetic protein-2, -4 (BMP-2, -4), C-X-C motif
chemokine-12 (CXCL-12), fibroblast growth factor-2 (FGF-2), granulocyte colony-
stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-
CSF), insulin growth factor-1 (IGF-1), interleukin-3, -6, -8 (IL-3, IL-6, IL-8), pentraxin-
3 (PTX-3), placental growth factor (PlGF), platelet-derived growth factor (PDGF),
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transforming growth factor beta (TGF-β), able to modulate the
growth and morphogenesis of specific organs, such as the liver,
kidney, and bone marrow (Ribatti et al., 2023a; b, c), and are
involved also in cancer progression and metastasis (Maishi et al.,
2019; Butler et al., 2010).

A remarkable endothelial cell heterogeneity in different organs
has been demonstrated by single-cell RNA sequencing (scRNA-seq)
(Kalucha et al., 2020), which is altered in tumors, such as occurs in
breast cancer, where subsets of tumor endothelial cells are involved
in cancer metabolism and transport (Geldhof et al., 2022).
Moreover, endothelial cells from lung cancer compared to
normal endothelial cells show a strong signature in signaling
pathways such as the MYC and PI3K/Akt/mTOR (Lambrechts
et al., 2018). Pericytes in tumor vessels are present but abnormal,
lacking an intimate association with endothelial cells (Morikawa
et al., 2002), and VEGF inhibitors induce a close association of
pericytes with endothelial cells (Inoi et al., 2004).

This review article aims to analyze different aspects of
endothelial cell heterogeneity in tumor vasculature, with
particular emphasis on vascular normalization, vascular
permeability, metabolism, endothelial-to-mesenchymal transition,
resistance to therapy, and the interplay between endothelial cells and
the immune system.

Tumor endothelial cells

Tumor endothelial cells are characterized by immaturity and
leaky, lack of perivascular cell coverage, and loss of basement
membrane (Baluk et al., 2003; di Tomaso et al., 2005) favoring
the passage of T cells (Di Russo et al., 2017), form arteriovenous
shunts (a category of vessels with a very low resistance to flow), show
chaotic and sluggish blood flow, which does not follow a
unidirectional path, and proceed in alternating directions
(Chaplin et al., 1987; Mc Donald and Baluk, 2002; Mc Donald
and Choyke, 2003). Only 0.1%–3% of all normal endothelial cells
turn over daily declining with age (Schwartz and Benditt, 1973),
whereas in tumors, endothelial cell turnover may be 20–2,000 times
the rate in normal tissues (Hobson and Denekamp, 1984). Vessels
are more numerous at the tumor-host interface, whereas the internal
portions are less vascularized. Glomeruloid microvascular
proliferations, consisting of poorly organized structures
resembling renal glomeruli, have been found in different human
tumors (Straume et al., 2003). Alternative vascularization
mechanisms, different from classic angiogenesis, have been
described in tumors, including vascular co-option, vasculogenic
mimicry, and intussusceptive microvascular growth (Ribatti and
Pezzella, 2021).

Tumor endothelial cells are genetically unstable with embryonic
characteristics promoting pro-tumor and anti-inflammatory
behavior (St Croix et al., 2000; Seaman et al., 2007; Huijbers
et al., 2022). The gene expression patterns of vascular endothelial
cells derived from normal and malignant colorectal tissues have
been investigated (St Croix et al., 2000), showing that among
79 transcripts differentially expressed, 46 were elevated and
33 were expressed at lower levels in tumor-associated endothelial
cells. The transcriptional profiling results of tumor endothelial cells
frommultiple studies andmultiple tumor types have been compared

(Aird, 2009), showing that a few overexpressed genes were shared by
different tumors including matrix metalloproteinase 9 (MMP9)
(ovary and breast), HEYL (breast and colon), and secreted
protein acidic and rich in cysteine (SPARC) (breast and colon
and brain), whereas most genes were limited to one tumor type
or invasive tumors. The upregulation of several genes, such as lysyl
oxidase (Osawa et al., 2013), suprabasin (Alam et al., 2014), and
biglycan (Yamamoto et al., 2012) enhances the migration and tube-
forming capacity of tumor endothelial cells. Upregulated expression
of stemness genes such as stem cell antigen-1 (Sca-1) and MDR-1
(Matsuda et al., 2010) and aldehyde dehydrogenase (ALDH)
(Ohmura-Kakutani et al., 2014) has been demonstrated in tumor
endothelial cells, as a part of the tumor endothelial cell population
(Nagy and Dvorak, 2012; Goveia et al., 2020). CD133+ tumor
endothelial cells have a higher frequency of aneuploidy than the
CD133- ones, suggesting that tumor endothelial cells originating
from progenitor cells are involved in inducing genetic instability in
these cells (Akino et al., 2010). Progenitor-derived tumor endothelial
cells that express CD133 are undifferentiated, highly proliferative
cells (Rafii et al., 2002).

In tumor endothelial cells proangiogenic molecules, including
VEGF receptor (VEGFR)-1, −2, −3, VEGF-D, Tie-2, and Ang-1 are
upregulated when compared with normal endothelial cells
(Bussolati et al., 2003), favoring a proangiogenic phenotype
(Matsuda et al., 2010). Moreover, tumor endothelial cells show
different responsiveness to epidermal growth factor (EGF) (Amin
et al., 2006), adrenomedullin (Tsuchiya et al., 2010), and VEGF
(Matsuda et al., 2010) compared with normal endothelial cells.

Endothelial cells from high metastatic tumors show
upregulation of VEGF, VEGFR-1, VEGFR-2, MMP-2, MMP-9,
and display increased Akt phosphorylation compared with low
metastatic ones (Ohga et al., 2012).

Activin-like receptor kinase 1 (ALK1) expression in tumor
endothelial cells is a prognostic factor for metastasis of breast
cancer, because pharmacologic targeting of ALK1 provided long-
term therapeutic benefit in mouse models of mammary carcinoma,
accompanied by strikingly reduced metastatic colonization (Cunha
et al., 2015). Prolyl hydroxylase domain protein 2 (PHD2) deficiency
normalized tumor blood vessels, associated with a reduction of
tumor cell intravasation and metastasis (Mazzone et al., 2009).
Biglycan is upregulated in tumor endothelial cells of metastatic
tumors, facilitating the migration of toll-like receptor 2/4+tumor
cells, which increases circulating tumor cells and lung metastasis
(Maishi et al., 2016).

Tumor endothelial cells and vessel
normalization

Vessel normalization through anti-VEGF agents improves
perfusion and more efficient local delivery of oxygen, decreases
vascular leakiness, and reduces intratumoral hypoxia improving
pericyte recruitment (Jain, 2001; Huang et al., 2012) allowing drug
delivery and immune cell infiltration, and increasing the sensitivity
of the tumor cells to radiation and chemotherapy.

VEGFR2 blockade induces upregulation of Ang1 which
promotes endothelial cell junctions thickening and stabilization
of endothelial cells (Winkler et al., 2004). Moreover, VEGF
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blockade resulted in reduced interstitial fluid pressure, and tissue
edema, increased perfusion, and enhanced oxygenation and drug
delivery to the tumor core. The transient effect of tumor vascular
normalization might be associated either with excessively high and
continuous administration of anti-angiogenic drugs or the
development of drug resistance due to the activation of other
pro-angiogenic factors (Bergers and Hanahan, 2008).

Tumor endothelial cells and vascular
permeability

Plasma components extravasate across vascular endothelium by
paracellular (through inter-endothelial cell junctions) and
transcellular [caveolae, fenestrae and vesiculo-vacuolar organelles
(VVOs)] routes. Tumor vessel leakiness occurs through VVOs and
trans endothelial cell pores resulting from VVOs activated by VEGF
(Feng et al., 1999; Ribatti and Tamma, 2018).

Although tumor vessels can have barrier defects large enough
for hemorrhage, plasma leakage in tumors is limited by reduced
driving force due to poor vascular perfusion and high interstitial
pressure resulting from impaired lymphatic drainage (Mc Donald
and Baluk, 2002; Jain et al., 2014.) High tumor interstitial fluid
pressure causes blood vessel collapse and impedes blood flow, and
delivery of therapeutics to the central region of the tumor, causing
hypoxia in tumor tissue (Boucher and Jain, 1992). Hypoxia, in
turn, makes tumor cells resistant to radiation therapy, induces
numerous genes that make tumor cells resilient to cytotoxic drugs,
causes genetic instability within tumor cells, and triggers genetic
mutations making the tumor cells more malignant and prone to
metastasis. Low permeability tumors may overexpress Ang-1 and
under express VEGF or PlGF, whereas those with high permeability
may lack Ang-1 or overexpress its antagonist Ang-2 (Jain and Munn,
2000). Hypoxia and the secretion of angiogenic cytokines, favor tumor
revascularization through the mobilization of bone marrow-derived
endothelial progenitor cells (Gao et al., 2009).

Tumor endothelial cells and
metabolism

Emerging evidence has suggested that endothelial metabolism
allows endothelial cells to adapt to the tissue-specific functions are
supply the tissue with the necessary nutrients that it imports from
the circulating blood. Dysregulation of endothelial cell metabolism
has been associated with many diseases including atherosclerosis,
diabetes, neovascular eye disease, and cancer. Glycolysis-related
genes are overexpressed in the transcriptomic signature of tumor
endothelial cells (Rohlenova et al., 2020). Glucose uptake and
glycolysis are higher in tumor endothelial cells (Garcia-Caballero
et al., 2022). Dysfunctional metabolism in tumor endothelial cells
produces excessive lactate and 2-hydroxyglutarate (2-HG),
inhibiting the cytotoxic functions of T cells (Tyrakis et al., 2016).
Altered glycolysis in tumor endothelial cells due to an upregulated
expression of glycolysis genes, contributes to structural deformities
observed in tumor blood vessels (Cantelmo et al., 2016). Tumor
endothelial cells proliferate under lactic acidosis caused by tumor
cell glycolytic metabolism, and the pH regulator, carbonic anhydrase

2 (CAII), is involved in resistance to low pH in tumor endothelial
cells (Annan et al., 2020).

Tumor endothelial cells and endothelial
to mesenchymal transition

Endothelial cells may de-differentiate into mesenchymal stem-
like cells (Medici and Kalluri, 2012), a process named endothelial to
mesenchymal transition (EndoMT) (Ribatti, 2022). During EndoMT,
endothelial cells lose endothelial markers, including platelet
endothelial cell adhesion molecule-1 (PECAM-1), Tie-2, and
vascular endothelial (VE)-cadherin, and acquire mesenchymal
markers, including N-cadherin, fibroblast specific protein-1
(FSP-1), alpha-smooth muscle actin (αSMA), types I/III collagen,
and vimentin. The endothelial cytoskeleton rearrangement associated
with EndoMT promotes intravasation and extravasation of tumor
endothelial cells (Reymond et al., 2013).

Tumor-induced EndoMT is associated with the activation of
pro-inflammatory pathways in endothelial cells (Nie et al., 2014).
Endothelial cells undergoing tumor induced EndoMT express
higher levels of the VEGF gene (Hong et al., 2018), and EndoMT
contributes to metastatic extravasation and intravasation (Dudley
et al., 2012). In glioblastoma, tumor endothelial cells secrete
extracellular vesicles which induce mesenchymal reprogramming
of cancer cells (Adnani et al., 2002).

Tumor endothelial cells and resistance
to therapy

Renal carcinoma endothelial cells are resistant to vincristine
(Bussolati et al., 2003), and hepatocellular carcinoma endothelial
cells are resistant to 5-fluorouracil and Adriamycin (Xiong et al.,
2009; Ohga et al., 2012). Endothelial cells of metastatic melanoma
have a higher expression of MDR-1 (Akiyama et al., 2012) and
ALDH and are resistant to paclitaxel (Hida et al., 2017).
IGFBP7 expressed by tumor endothelial cells suppresses IGF1R
signaling and the stem-cell-like property of tumor cells.
Chemotherapy triggers tumor endothelial cells to suppress
IGFBP7, and the upregulation of IGF1 activates the FGF4-
FGFR1-ETS2 pathway and accelerates the conversion of tumor
cells to chemo-resistant tumor stem-like cells (Cao et al., 2017).

Vasculogenic mimicry and vascular co-option are involved in
intrinsic and acquired resistance. Vasculogenic mimicry is associated
with poor prognosis, reduced survival, and a high risk of cancer
recurrence (Li et al., 2016). Histological examination of glioma
bioptic specimens of patients who died after receiving treatment
with cediranib, an inhibitor of VEGFR-2 (di Tomaso et al., 2011),
or bevacizumab (de Groot et al., 2010) demonstrated that glioma cells
grow around pre-existing vessels in a non-angiogenic fashion.

Tumor endothelial cells and the
immune system

Tumor endothelial cells promote the loss of protective anti-
cancer immunity, the so-called “endothelial anergy” (De Sanctis
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et al., 2018), corresponding to the unresponsiveness of tumor
endothelial cells to pro-inflammatory stimulation, impeding the
adhesion and migration of immune cells (Griffioen et al., 1996;
Lambrechts et al., 2018). Endothelial anergy is reversible (several
therapeutic approaches have been developed to reverse tumor
endothelial cell anergy and thus favor the intra-tumoral
recruitment of anti-tumor immune cells) and may be used as a
therapeutic strategy, suggesting that blocking this mechanism in
tumor endothelial cells favors the influx of immune cells (Facciabene
et al., 2017). It has been demonstrated that anti-angiogenic therapy
could revert endothelial cell anergy, allow leukocytes to infiltrate
tumors, and stimulate anti-tumor immunity (Nowak-Sliwinska
et al., 2023).

Endothelial cells regulate leukocyte extravasation through the
expression of adhesion molecules, such as selectins, intercellular
cellular adhesion molecule-1 (ICAM-1), vascular cellular adhesion
molecule-1 (V-CAM-1), PECAM-1, and through the weakening of
endothelial cell-cell contacts allowing transmigration of immune
cells (Wettschurek et al., 2019). Tumor endothelial cells fail to
express proper ICAM-1 and VCAM-1 levels (Huijbers et al.,
2022). The glycosylation of surface molecules modulates the
adhesive properties of tumor endothelial cells and can either
enhance or reduce immune cell migration (Chandler et al., 2019).
The vasoconstrictive peptide endothelin 1 (ET1) is associated with
ICAM-1 expression and the decreased presence of tumor-infiltrating
leukocytes (Buckanovich et al., 2008).

Tumor endothelial cells secrete IL-6 and CSF-1 which promote
anti-tumor alternative macrophage polarization by triggering Akt1/
mTOR pathway, resulting in anti-inflammatory and pro-
tumorigenic macrophage activation (Wang et al., 2018).
Endothelial cell-derived CXCL-12 promotes monocyte
recruitment and macrophage education by tumor cells (Alsina-
Sanchis et al., 2022). Endothelial cell-derived PGE2 and IL-10
restrict T-cell activity (Mulligan and Young, 2010).

Tumor endothelial cells downregulate genes responsible for
major histocompatibility complex (MHC) expression impeding
their antigen-presenting functions, thus contributing to tumor
immune evasion (Goveia et al., 2020). The binding of inhibitory
immune checkpoints (e.g., PD-1) on CD8+ cells with their ligands
(e.g., PD-L1 and PD-L2) on tumor endothelial cells inhibits T cell
activation and these ligands can be upregulated by tumor endothelial
cells on proinflammatory factors (Georganaki et al., 2018).

Discussion

In this review, we addressed the abnormality and heterogeneity
of tumor endothelial cells through the analysis of different aspects of
this heterogeneity, including vascular normalization, vascular
permeability, metabolism, endothelial-to-mesenchymal transition,
resistance to therapy, and the interplay between endothelial cells and
the immune system.

Endothelial cell heterogeneity can be quantified through
epigenomic, transcriptomic, and proteomic studies. The

characterization and understanding of endothelial cell
heterogeneity have advanced in the past years, due to the
development of single-cell OMICs approaches. ScRNA-seq
methods for tissue-derived cell suspensions and cultured cell
populations have been an area of intense development. Single-cell
transcriptional sequencing (scRNA-seq) techniques enable gene
expression analyses at a single cell level, investigating the
transcriptional output of cells in both normal and tumoral tissue
samples. Thanks to the identification of preferentially expressed
genes, gene expression study permits to identification of not only
different cell types, but also various cell states progression along the
cell cycle, different metabolic states, or rather the diversity within
each of the clusters defined as “cell types.” More work on vascular
single-cell analysis is required to establish the principles of
endothelial activation and their interpretation for the different
tissue challenges that require vascular adaptations (Pasut et al.,
2021; Becker et al., 2023).

The knowledge on tumor endothelial cell phenotypes is under
continuous development, even if their role in immune escape and
the response to immune and anti-angiogenic therapies should be
further analyzed and clarified. Notably, most human tumor types
contain varying numbers but only a small population of angiogenic
tumor endothelial cells, the targets of anti-angiogenic therapies,
contributing to the limited efficacy of and resistance to
these therapies.
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