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Background: Immune checkpoint inhibitors (ICIs) can induce immune-related
adverse events (irAEs). Liquid biomarkers to predict irAE occurrence are urgently
needed. We previously developed an ELISA system to specifically detect soluble
PD-L1 (sPD-L1) with PD-1-binding capacity (bsPD-L1). Here, we investigated the
relationship between sPD-L1 and bsPD-L1 in gastric cancer (GC) and non-small cell
lung cancer (NSCLC) treated with PD-1/PD-L1 blockade and their association
with irAEs.

Methods:We examined sPD-L1, bsPD-L1, matrix metalloproteinases (MMPs), and
proinflammatory cytokine levels by ELISA in plasma samples from 117 GC patients
prior to surgery and 72 NSCLC patients prior to and at 2 months after ICI
treatment (anti-PD-1, n = 48; anti-PD-L1, n = 24). In mice treated with anti-
PD-1/PD-L1 antibodies (Abs), sPD-L1 levels and localization of Abs were
examined by ELISA and immunohistochemistry, respectively.

Results:sPD-L1 was detectedwith higher frequency in GC patients than in NSCLC
patients, whereas bsPD-L1 was detected with similar frequencies in GC and
NSCLC patients. sPD-L1 levels were correlated with IL-1α, IL-1β, TNF-α, and IL-6
levels, while bsPD-L1 levels were correlated with MMP13, MMP3, and IFN-γ levels.
In NSCLC patients, anti-PD-L1, but not anti-PD-1, treatment increased sPD-L1,
which was associated with irAE development, but not with clinical outcomes. In
mice, trafficking of anti-PD-L1 Abs to lysosomes in F4/80+ macrophages resulted
in sPD-L1 production, which was suppressed by treatment with lysosomal
degradation inhibitor chloroquine and macrophage depletion.
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Conclusion: Anti-PD-L1-mediated lysosomal degradation induces sPD-L1
production, which can serve as an indicator to predict irAE development during
anti-PD-L1 treatment.
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Introduction

Immune checkpoint inhibitors (ICIs) targeting programmed cell
death 1 (PD-1) and its ligand, PD-L1, can induce durable anti-tumor
response, but can also cause immune-related adverse events (irAEs)
(Martins et al., 2019; Hommes et al., 2020). irAEs affect almost any
organs and are sometimes fatal. Additionally, the onset of irAEs is
unpredictable. Therefore, biomarkers to predict irAE occurrence are
urgently needed.

Our early studies demonstrated the inhibitory role of PD-1/
PD-L1 signaling in anti-tumor immune response (Freeman et al.,
2000; Iwai et al., 2002; Iwai et al., 2005; Okazaki et al., 2013). PD-
L1 is constitutively expressed on endothelial cells and
macrophages in peripheral tissues (Freeman et al., 2000).
Proinflammatory cytokines such as tumor necrosis factor
(TNF)-α and interferon (IFN)-γ induce PD-L1 expression in
various cell types, including immune, parenchymal, and tumor
cells (Freeman et al., 2000). Upon ligation with PD-L1, PD-1
inhibits T cell proliferation and effector functions (Freeman
et al., 2000; Okazaki et al., 2013). Both anti-PD-1 and anti-
PD-L1 monoclonal antibodies (mAbs) enhance the T cell
response, but the difference in their mechanism of action is
not fully understood.

In addition to the membrane-bounded form, PD-L1 also has
a soluble form (sPD-L1) (Wan et al., 2006; Chen et al., 2011).
Many studies have conflicting results on the function of sPD-L1
(Frigola et al., 2011; Rossille et al., 2014; Wang et al., 2015). sPD-
L1 is produced via several mechanisms (Chen et al., 2011;
Dezutter-Dambuyant et al., 2016; Zhou et al., 2017; Chen
et al., 2018; Gong et al., 2019), including RNA splicing,
exosomal secretion, and proteolytic cleavage by matrix
metalloproteinases (MMPs). We previously developed an
ELISA system to specifically detect PD-1-binding sPD-L1
(bsPD-L1) (Takeuchi et al., 2018), and found that bsPD-L1
can function as an endogenous PD-1 blocker (Ando et al.,
2024). Plasma bsPD-L1 is strongly correlated with
MMP13 levels. bsPD-L1 and MMP13 levels are associated
with intra-tumoral T cell infiltration and loss of extracellular
matrix integrity, respectively, in the tumor microenvironment.
The levels of MMP13 and its activator, MMP3, change during ICI
treatment. Furthermore, the combination of bsPD-L1 and MMPs
may serve as a non-invasive tool to predict the efficacy of ICIs.
However, the relationship between bsPD-L1 and sPD-L1, and
their difference in clinical significance remain unknown.

In this study, we investigated plasma bsPD-L1 and sPD-L1 levels
in GC and NSCLC patients treated with PD-1/PD-L1 blockade. We
found that anti-PD-L1, but not anti-PD-1, treatment induced sPD-
L1 production, which may serve as a non-invasive tool to
predict irAEs.

Materials and methods

Patients and specimens

This study included 117 patients diagnosed with GC between
2017 and 2020 at the Department of Gastrointestinal and Hepato-
Biliary-Pancreatic Surgery in Nippon Medical School Hospital,
Japan. Blood samples were collected from patients before surgery.

The study also included 72 patients diagnosed with NSCLC
between 2017 and 2019 at the Department of Pulmonary Medicine
and Oncology in NipponMedical School Hospital, Japan. Blood was
collected from patients prior to and at 2 months after the initiation
of checkpoint immunotherapy (nivolumab, n = 20; pembrolizumab,
n = 28; atezolizumab, n = 16; durvalumab, n = 8). Nivolumab
(3 mg/kg, every 2 weeks), pembrolizumab (200 mg/body, every
3 weeks), or atezolizumab (1,200 mg/body, every 3 weeks) was
administered until disease progression or unacceptable adverse
events in a clinical setting. Durvalumab (10 mg/kg, every
2 weeks) was administered after curative chemoradiotherapy.

RECIST v1.1 was used to assess the efficacy of immunotherapy.
Patients with progressive disease (PD) who were not evaluable for
response by RECIST were determined by the treating physician as
PD. We assessed disease control [DC; complete response (CR) +
partial response (PR) + stable disease (SD)] at 2 months.

Baseline clinical and demographic data were collected from patient
medical records. The study protocols (B-2019-005, and 28-09-646) were
reviewed and approved by the Ethics Committee of Nippon Medical
School. All participants provided written informed consent. This study
was conducted in accordance with the Declaration of Helsinki.

Animal experiments

C57BL/6 (B6) mice were purchased from Oriental Yeast Co., Ltd.
(Tokyo, Japan). Mice were intravenously injected with 100 μg of anti-PD-
1 (clone: J43, Invitrogen, Waltham, MA, United States of America, #16-
9985-85) or anti-PD-L1 (clone: MIH5, Invitrogen #16-5982-85) mAbs,
and then blood was collected at several timepoints. To induce
inflammation, mice were intraperitoneally injected with
Lipopolysaccharide (LPS) (10mg/kg, Sigma-Aldrich, St. Louis, MO,
United States of America, #L6511). To inhibit lysosomal degradation,
mice were intraperitoneally injected with chloroquine (100mg/kg/day,
Sigma-Aldrich, #C6628) for 3 days prior to administration of Ab or LPS.
To deplete macrophages, mice were intravenously injected with
clodronate-containing or control liposomes (12.5 mg/kg, Hygieia
Bioscience, Osaka, Japan, #16001003) at 24 h prior to Ab
administration. All mice were maintained at the animal facility of
Nippon Medical School. All animal experiments were approved by the
Animal Care and Use Committee of NipponMedical School (2020-018).
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Enzyme-linked immunosorbent
assay (ELISA)

Human sPD-L1 and bsPD-L1 concentrations were
measured as described previously (Takeuchi et al., 2018).
Human MMP3, MMP9, MMP13, IL-1α, IL-1β, IL-6, TNF-α,
and IFN-γ, and mouse sPD-L1 concentrations were determined
using ELISA kits (R&D Systems, Minneapolis, MN,
United States of America, #DY513, #DY911, #DY511,
#DY200, #DY201, #DY206, #DY210, #DY285B, and

#DY1019, respectively), in accordance with the
manufacturer’s instructions.

Immunohistochemistry

Mice were intravenously injected with 100 μg of Alexa 488-
labeled mAb, and then organs were harvested 24 h later.
Cryosections were fixed and permeabilized by Cytofix/Cytoperm
solution (BD Biosciences, Franklin Lakes, NJ, United States of

FIGURE 1
Detection of sPD-L1 and bsPD-L1 in the plasma of GC and NSCLC patients. (A) Baseline sPD-L1 and bsPD-L1 levels in plasma samples from GC
patients (n = 117) and NSCLC patients (n = 72). (B) Correlation between baseline sPD-L1 and bsPD-L1 levels in GC and NSCLC patients. r indicates the
correlation coefficient. (C) sPD-L1 levels and (D) bsPD-L1 levels in plasma samples from NSCLC patients prior to and at 2 months after ICI treatment. (E)
Kinetic change of sPD-L1 and (F) bsPD-L1 levels in NSCLC patients prior to and at 2months after anti-PD-1 (n = 48) or anti-PD-L1 (n = 24) treatment.
r indicates the correlation coefficient. Horizontal lines indicate the mean. Statistical significance was calculated using the Mann–Whitney U test (A, E, and
F). *p < 0.05; ****p < 0.0001; ns, not significant.
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America, #554722) and stained with anti-B220-PE (BioLegend, San
Diego, CA, United States of America, #103208) and anti-F4/80-
Alexa Fluor 647 (BioLegend, #123122) mAbs. To examine
subcellular localization of mAbs, cryosections were stained with
anti-Rab7 (Abcam, Cambridge, UK, #ab137029) or anti-LAMP1
(Abcam #ab24170) Abs in combination with anti-F4/80-Alexa Fluor
647, followed by anti-rabbit IgG-Cy3 (Jackson ImmunoResearch,
West Grove, PA, United States of America, #711-166-152). The
sections were mounted with Prolong Gold with DAPI (Invitrogen,
#P36931) and analyzed by confocal microscopy (Olympus, Tokyo,
Japan, #FV1200). Images were processed using Imaris software,
version 9.7.1(Oxford Instruments, Abingdon, UK).

Statistical analysis

Mann-Whitney U test or Student’s t-test was used to compare
numerical variables, and Pearson’s chi-squared test was used to
compare categorical variables. Receiver operator characteristic
(ROC) curve, along with area under the ROC (AUC), was used
to assess the discriminatory ability of the numerical variables. All
tests were two-tailed, and p-values <0.05 were considered
statistically significant. All statistical analyses were performed
using JMP software, version 13 (SAS Institute, Cary, NC,
United States of America) and Prism software, version 8
(GraphPad, San Diego, CA, United States of America).

Results

Detection of sPD-L1 with higher frequency
in GC patients than in NSCLC patients

We examined baseline sPD-L1 and bsPD-L1 levels in plasma
samples from 117 GC patients and 72 NSCLC patients (Figure 1A).
sPD-L1 was detected with higher frequency in GC patients (90/117,
76.9%) than in NSCLC patients (6/72, 8.3%), whereas bsPD-L1 was
detected with similar frequencies in GC patients (17/117, 14.5%) and
NSCLC patients (17/72, 22.2%). The average sPD-L1 level in GC
patients was higher than that in NSCLC patients (693 ± 2668 and
125 ± 837 pg/mL, respectively), while the average bsPD-L1 level in
NSCLC patients was higher than that in GC patients (2237 ±
7,960 and 216 ± 823 pg/mL, respectively). We found a stronger
correlation between sPD-L1 and bsPD-L1 levels in GC patients than
in NSCLC patients (correlation coefficient [r] = 0.8105 and r =
0.4232, respectively; Figure 1B). These results suggest different
expression patterns of sPD-L1 and bsPD-L1 between GC
and NSCLC.

Increased sPD-L1 levels during anti-PD-
L1 treatment in NSCLC patients

Next, we investigated kinetic changes of sPD-L1 and bsPD-L1 in
NSCLC patients during ICI treatment. Pretreatment patient
characteristics are summarized in Supplementary Table S1. No
significant differences were found in any of the variables between
anti-PD-1- and anti-PD-L1-treated groups. At 2 months of

treatment, sPD-L1+ patients were increased (Figure 1C), while
bsPD-L1+ patients were unchanged (Figure 1D). Subgroup
analysis revealed that anti-PD-L1 treatment increased sPD-L1
levels, but not bsPD-L1 levels (Figures 1E,F).

Correlation between sPD-L1 and
proinflammatory cytokine levels

It has been reported that PD-L1 is selectively cleaved by
MMP13 and MMP9, in vitro (Dezutter-Dambuyant et al., 2016).
We investigated the relationship between baseline MMPs and sPD-
L1 or bsPD-L1 in NSCLC patients (Figure 2A). MMP13 levels were
strongly corelated with bsPD-L1 levels, but weakly correlated with
sPD-L1 levels. MMP3 levels were moderately correlated with bsPD-
L1, but not with sPD-L1. MMP9 levels were not correlated with
either sPD-L1 or bsPD-L1. These results suggest that MMP13 may
be involved in the generation of bsPD-L1 rather than sPD-L1.

We investigated the relationship between proinflammatory
cytokines and sPD-L1 or bsPD-L1 levels (Figure 2B). sPD-L1
levels were strongly correlated with IL-1α, IL-1β, TNF-α, and IL-
6, whereas bsPD-L1 levels were weakly correlated with these
cytokines, suggesting that inflammation may be involved in the
generation of sPD-L1 rather than bsPD-L1. Furthermore, IL-10, an
anti-inflammatory cytokine, showed a strong or weak correlation
with sPD-L1 or bsPD-L1 levels, respectively (Figure 2C). On the
other hand, IFN-γ levels were weakly correlated with bsPD-L1 levels
(r = 0.2631), but not with sPD-L1 levels (Figure 2D), suggesting that
bsPD-L1, but not sPD-L1, may regulate T cell response.

To examine whether inflammation might induce sPD-L1
production, mice were intraperitoneally injected with LPS. As a
result, LPS treatment increased the levels of sPD-L1 as well as
proinflammatory cytokines such as IL-1β, TNF-α, and IL-6
(Figure 3A), suggesting that inflammation may be involved in the
production of sPD-L1.

Internalization of anti-PD-L1 mAb by mouse
F4/80+ macrophages

To examine the mechanism of sPD-L1 production during
immunotherapy, mice were treated with anti-PD-1 or anti-PD-
L1 mAb (Figure 3B). Consistent with NSCLC patients, sPD-L1
levels were increased in mice treated with anti-PD-L1 mAb, but
not with anti-PD-1 mAb. sPD-L1 levels began to increase at day 1,
reached a peak at day 3 and remained detectable at day 7 of anti-PD-
L1 mAb administration.

To investigate the tissue distribution of anti-PD-L1 mAb in vivo,
mice were treated with fluorescently labeled anti-PD-L1 mAb. Splenic
F4/80+ macrophages accumulated intracellular fluorescence
(Figure 3C). The anti-PD-L1 mAb was localized predominantly
inside the cells, with little remaining on the cell surface. However,
the fluorescently labeled anti-PD-1 mAb remained almost exclusively
on the surface of splenic F4/80+macrophages. The internalization of
anti-PD-L1 mAb with punctate staining was also observed in liver and
bone marrow F4/80+ macrophages (Figure 3C; Supplementary Figure
S1). These results suggest that the injected anti-PD-L1 mAb was
internalized by macrophages in various tissues.
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Macrophages as the source of sPD-L1 during
anti-PD-L1 treatment

To examine whether macrophages might be involved in the Ab-
mediated sPD-L1 production, mice were treated with clodronate-
containing liposomes to delete macrophages prior to the anti-PD-
L1 mAb administration. sPD-L1 levels were lower in mice treated
with clodronate-containing liposomes than in those treated with
control liposomes (Figure 3D), suggesting that macrophages are the
source of sPD-L1 during anti-PD-L1 treatment.

To investigate the subcellular localization of anti-PD-L1mAb, mice
were injected with the fluorescently labeled anti-PD-L1 mAb. After
24 h, liver sections were stained with anti-Rab7 or anti-Lamp1 Ab
(Figure 3E). Rab7 and Lamp1 are markers of late endosome and
lysosome, respectively. Anti-PD-L1 staining was highly punctate in
F4/80+macrophages. Some co-localization was observed between anti-
PD-L1 and anti-Lamp1 Abs, suggesting that the anti-PD-L1 mAb may
traffic to lysosomes in F4/80+ macrophages after internalization.

Ab binding to cell surface molecules often triggers endocytosis of
antigen/Ab complexes, which are delivered to lysosomes for
degradation (Zhang et al., 2019). To examine whether lysosomal
degradation might be involved in sPD-L1 production, mice were
treated with chloroquine prior to the anti-PD-L1 mAb
administration. sPD-L1 levels were significantly decreased in
chloroquine-treated mice compared with untreated mice
(Figure 3F). Conversely, chloroquine treatment did not suppress
LPS-induced sPD-L1 production (Figure 3G). These results suggest
that lysosomal degradation plays an important role in Ab-mediated
sPD-L1 production, but not in LPS-induced sPD-L1 production.

Elevated sPD-L1 in NSCLC patients with
irAEs during anti-PD-L1 treatment

We investigated whether the sPD-L1 change was associated with
clinical response to ICIs in NSCLC patients (Figure 4A). At

FIGURE 2
Correlation between baseline sPD-L1 and proinflammatory cytokine levels in NSCLC patients. (A) Correlation between baseline MMPs (MMP3,
MMP9, and MMP13) and sPD-L1 or bsPD-L1 levels in NSCLC patients (n = 72). (B) Correlation between baseline proinflammatory cytokines (IL-1α, IL-1β,
TNF-α, and IL-6) and sPD-L1 or bsPD-L1 levels in NSCLC patients (n = 72). (C)Correlation between baseline IL-10 and sPD-L1 or bsPD-L1 levels in NSCLC
patients (n = 72). (D) Correlation between baseline IFN-γ and sPD-L1 or bsPD-L1 levels in NSCLC patients (n = 72). r indicates the correlation
coefficient.
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2 months of treatment, 33 of 48 anti-PD-1-treated patients and 17 of
24 anti-PD-L1-treated patients obtained DC. No significant
difference was found in the sPD-L1 change between patients with

DC and PD in both treatment groups. We also examined the
association of the sPD-L1 change with irAE development
during ICI treatment (Figure 4B). After ICI treatment, 20 of

FIGURE 3
Intracellular trafficking of anti-PD-L1 mAb in mouse F4/80+ macrophages. (A) Plasma sPD-L1 and proinflammatory cytokine levels in mice after 2 h
of treatment with Lipopolysaccharide (LPS). (B) Plasma sPD-L1 levels in mice at the indicated time points after administration of PBS, anti-PD-1, or anti-
PD-L1 mAb. (C)Mice were injected with PBS, Alexa 488-labeled anti-PD-1, or anti-PD-L1mAb (green), and then organs were harvested 24 h later. Spleen
sections were stained with anti-F4/80 (red) and anti-B220 (blue) mAbs. Liver sections were stained with anti-F4/80 mAb (red) and DAPI (blue). Scale
bars indicate 20 µm. (D)Micewere treated with clodronate-containing or control liposomes and then injectedwith anti-PD-L1mAb. Blood samples were
collected 24 h later, and sPD-L1 levels were analyzed by ELISA. (E)Mice were injected with Alexa 488-labeled anti-PD-L1 mAb (green), and then organs
were harvested 24 h later. Liver sections were stained with anti-Rab7 or anti-LAMP1 Ab (red) in combination with anti-F4/80 mAb (blue). Scale
bars indicate 20 µm. (F)Mice were treated with chloroquine (CQ) for 3 days and then injected with anti-PD-L1 mAb. Blood samples were collected 24 h
later and sPD-L1 levels were analyzed by ELISA. (G)Mice were treated with CQ for 3 days and then injected with LPS. Blood samples were collected 2 h
later and sPD-L1 levels were analyzed by ELISA. Horizontal lines indicate the mean. Statistical significance was calculated using the Student’s t-test (A, D,
F, and G). *p < 0.05; **p < 0.01; ns, not significant.
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FIGURE 4
Increased sPD-L1 levels in NSCLC patients with irAEs during anti-PD-L1 treatment. (A) Comparison of the sPD-L1 change between patients with
disease control (DC, n = 33) and progressive disease (PD, n = 15) at 2months of anti-PD-1 treatment (left), or between patients with DC (n = 17) and PD (n =
7) at 2months of anti-PD-L1 treatment (right). (B)Comparison of the sPD-L1 change between patients with irAEs (n = 20) andwithout irAEs (n = 28) during
anti-PD-1 treatment (left), or between patients with irAEs (n = 11) and without irAEs (n = 13) during anti-PD-L1 treatment (right). (C) ROC curve
analysis of the sPD-L1 change to predict DC in patients with anti-PD-1 or anti-PD-L1 treatment. (D) ROC curve analysis of the sPD-L1 change to predict
irAEs in patients with anti-PD-1 or anti-PD-L1 treatment. (E) Comparison of the sPD-L1 change between patients with acute irAEs (n = 10) and without
acute irAEs (n = 14) during anti-PD-L1 treatment (left), or between patients with chronic irAEs (n = 4) and without chronic irAEs (n = 20) during anti-PD-
L1 treatment (right). (F) ROC curve analysis of the sPD-L1 change to predict acute or chronic irAEs in patients with anti-PD-L1 treatment. (G) A schematic
diagram of anti-PD-L1 treatment. (H) sPD-L1 levels prior to (left) and 2months after (middle) treatment with atezolizumab (n = 16) or durvalumab (n = 8).
sPD-L1 change (right) in patients during treatment with atezolizumab (n = 16) or durvalumab (n = 8). (I) Comparison of the sPD-L1 change between
patients with acute irAEs (n = 4) and without acute irAEs (n = 12) during atezolizumab treatment (left), or between patients with acute irAEs (n = 6) and
without acute irAEs (n = 2) during durvalumab treatment (right). (J) ROC curve analysis of the sPD-L1 change to predict acute irAEs in patients treatedwith
atezolizumab or durvalumab. The Horizontal lines indicate the mean. Statistical significance was calculated using the Student’s t-test (A, B, E, H, and I).
*p < 0.05; ns, not significant.
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48 anti-PD-1-treated patients and 11 of 24 anti-PD-L1-treated
patients developed irAEs. Patients with irAEs experienced
significantly greater increase in sPD-L1 than patients without
irAEs during anti-PD-L1 treatment (p = 0.0321), but not during
anti-PD-1 treatment.

We performed ROC analysis to assess the discriminatory ability of
the sPD-L1 change during anti-PD-L1 treatment. The AUC of the sPD-
L1 change to predictDCwas 0.563, indicating a lowdiscriminatory ability
of change in sPD-L1 for clinical outcomes (Figure 4C). Conversely, the
AUC of the sPD-L1 change to predict irAE was 0.769, suggesting a
relatively high discriminatory ability (Figure 4D). These results suggest the
potential utility of sPD-L1 change to predict irAEs during anti-PD-
L1 treatment. Of the 24 patients treated with anti-PD-L1, 10 developed
irAEs during the acute phase (within the first 2months of treatment), and
4 during the chronic phase (after 2months of treatment) (Figure 4E). The
AUC of the sPD-L1 changes predicting irAE in the acute and chronic
phases were 0.721 and 0.590, respectively (Figure 4F).

The anti-PD-L1-treated patients were then subdivided into
atezolizumab-treated (without radiotherapy) and durvalumab-
treated (with radiotherapy) groups (Figure 4G). There was a
trend toward greater increases in sPD-L1 in the durvalumab-
treated group compared to the atezolizumab-treated group, but
the difference was insignificant (p = 0.0511, Figure 4H). Within
2 months of treatment, acute irAE occurred in 4 of 16 atezolizumab-
treated patients and 6 of 8 durvalumab-treated patients (Figure 4I).
Patients with acute irAEs had significantly greater increase in sPD-
L1 than those without acute irAEs during atezolizumab treatment
(p = 0.0407), but not during durvalumab treatment. The AUC of the
sPD-L1 change to predict acute irAE during atezolizumab treatment
was 0.896 (Figure 4J), indicating a high discriminatory ability.

Discussion

In this study, we investigated the relationship between sPD-L1 and
bsPD-L1 in GC and NSCLC patients. sPD-L1 was detected with higher
frequency in GC patients than in NSCLC patients, whereas bsPD-L1
was detected with similar frequencies in GC and NSCLC patients. In
NSCLC patients, bsPD-L1 levels were almost unchanged during ICI
treatment (Figures 1C, D), whereas anti-PD-L1, but not anti-PD-1,
treatment increased sPD-L1 levels (Figure 1E). The sPD-L1 increase
was associated with irAE development, but not with clinical outcomes
(Figure 4). These results suggest that the sPD-L1 change can serve as an
indicator to predict irAEs during anti-PD-L1 treatment.

Our results revealed the mechanism and source of sPD-L1
production during anti-PD-L1 treatment. Consistent with NSCLC
patients, sPD-L1 levels were increased in mice treated with anti-PD-
L1 mAb, but not with anti-PD-1 mAb. We observed trafficking of the
anti-PD-L1mAb to lysosomes in F4/80+macrophages in various tissues
(Figures 3C, E). Treatment with chloroquine inhibited the sPD-L1
increase induced by the anti-PD-L1 mAb, suggesting the involvement
of lysosomal digestion in sPD-L1 production (Figure 3F). Furthermore,
depletion of macrophages by clodronate-containing liposomes
suppressed the anti-PD-L1-induced sPD-L1 increase (Figure 3D),
suggesting that macrophages are the major source of sPD-L1 during
anti-PD-L1 treatment. Our findings suggest that themechanismof anti-
tumor effect by anti-PD-L1mAb ismore likely to be degradation of PD-
L1 rather than blockade of PD-1/PD-L1 signaling.

We also found that sPD-L1 production might be influenced by
the tumor location. sPD-L1 was detected with much higher
frequency in GC patients than in NSCLC patients (Figure 1A).
We observed a stronger correlation between sPD-L1 and bsPD-L1
levels in GC patients than in NSCLC patients (Figure 1B). Because
the gastrointestinal tract contains many digestive enzymes
compared with lung tissues, it is likely that bsPD-L1 degradation
by digestive enzymes contributes to sPD-L1 production.

bsPD-L1 levels were correlated withMMP13, MMP3, and IFN-γ
levels (Figure 2A, D), while sPD-L1 levels were correlated with IL-
1α, IL-1β, TNF-α, and IL-6 levels (Figure 2B). We speculate that
MMP-mediated cleavage might be involved in bsPD-L1 production,
whereas inflammation might be involved in sPD-L1 production. We
have previously reported that glycosylation of bsPD-L1 is important
for its binding to PD-1 (Takeuchi et al., 2018). MMP-mediated PD-
L1 cleavage may retain its conformational structure and glycosylated
sites necessary for PD-1 binding. We found that sPD-L1 levels were
increased in LPS-induced inflammation model, but not suppressed
by chloroquine treatment (Figure 3A, G). These results suggest that
mechanisms other than lysosomal degradation may be involved in
LPS-induced sPD-L1 production. We also note that durvalumab-
treated patients showed a trend toward a greater increase in sPD-L1
than atezolizumab-treated patients (Figure 4H). Since radiation
therapy precedes durvalumab treatment, radiation-induced
inflammation may enhance sPD-L1 production.

In this study, we demonstrated the association of sPD-L1 increase
with irAE development, but not with clinical outcomes during anti-PD-
L1 treatment (Figure 4). We have recently demonstrated that bsPD-L1
can function as an endogenous PD-1 blocker and serve as a biomarker
for predicting the efficacy of ICIs (Ando et al., 2024). Unlike bsPD-L1,
sPD-L1 without PD-1-binding ability does not have immunological
functions to enhance T cell response. However, sPD-L1 production
might reflect PD-L1 degradation in peripheral tissues, which causes a
breakdown of peripheral tolerance leading to irAE development. Thus,
the sPD-L1 change during anti-PD-L1 treatment may serves as an
indicator to predict irAEs. Indeed, sPD-L1 change showed a high
discriminatory ability to predict acute irAE development during
atezolizumab treatment (Figure 4J). Considering the results that
sPD-L1 levels reached a peak at day 3 of anti-PD-L1 administration
in the mouse model, the time interval to assess sPD-L1 changes should
be shortened for early diagnostics. Since sPD-L1 and bsPD-L1 have
different clinical values, the combination of sPD-L1 and bsPD-L1might
represent a powerful non-invasive diagnostic tool to improve cancer
immunotherapy by preventing side effects and stratifying patients.
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