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Introduction: Alzheimer’s disease (AD) is the most common neurodegenerative
disorder affecting the elderly population worldwide. Due to the multifactorial
nature of the disease, involving impairment of cholinergic neurotransmission and
immune system, previous attempts to find effective treatments have faced
challenges.

Methods: In such scenario, we attempted to investigate the effects of alpha-
glyceryl-phosphoryl-choline (α-GPC), a cholinomimetic molecule, on
neuroinflammation and memory outcome in the triple transgenic mouse
model of AD (3xTg-AD). Mice were enrolled at 4 months of age, treated orally
with α-GPC dissolved in drinking water at a concentration resulting in an average
daily dose of 100mg/kg for 8 months and sacrificed at 12 months of age.
Thereafter, inflammatory markers, as well as cognitive parameters,
were measured.

Results: Chronic α-GPC treatment reduced accumulation of amyloid deposits
and led to a substantial re-balance of the inflammatory response of resident
innate immune cells, astrocytes and microglia. Specifically, fluorescent
immunohistochemistry and Western blot analysis showed that α-GPC
contributed to reduction of cortical and hippocampal reactive astrocytes and
pro-inflammatory microglia, concurrently increasing the expression of anti-
inflammatory molecules. Whereas α-GPC beneficially affect the synaptic
marker synaptophysin in the hippocampus. Furthermore, we observed that α-
GPC was effective in restoring cognitive dysfunction, as measured by the Novel
Object Recognition test, wherein 3xTg-AD mice treated with α-GPC significantly
spent more time exploring the novel object compared to 3xTg-AD
untreated mice.
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Discussion: In conclusion, chronic treatment with α-GPC exhibited a significant
anti-inflammatory activity and sustained the key function of hippocampal synapses,
crucial for the maintenance of a regular cognitive status. In light of our results, we
suggest that α-GPC could be exploited as a promising therapeutic approach in early
phases of AD.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder representing the major cause of dementia worldwide,
characterized by an irreversible decline in episodic memory and a
general deterioration in overall cognitive ability (Knopman
et al., 2021).

So far, only treatments that address symptoms with limited
disease-modifying properties are available for Alzheimer’s disease
(AD) (Cummings et al., 2023). This underscores the substantial
unmet needs within the AD landscape. Despite numerous attempts
to introduce innovative neuroprotective treatments, the persistent
lack of satisfactory solutions remains a challenge (Kim, 2015).

AD is pathologically underpinned by accumulation of
extracellular amyloid-β (Aβ) plaques, intracellular neurofibrillary
tangles of hyperphosphorylated tau protein, resulting in synaptic
and neuronal loss as well as marked neuroinflammation (Holtzman
et al., 2011; Burgaletto et al., 2020).

Selective degeneration of cholinergic neurons of basal forebrain
and subsequent dysfunction of cholinergic transmission have long
been deemed as driving factors for disease development and,
therefore, have steadily directed the main therapeutic efforts in
the drug discovery process (Francis et al., 1999). Impairment of
forebrain cholinergic neurons, regulating innate immune responses
and inflammation, leads to cholinergic dysfunction (Canu et al.,
2017). Cholinergic precursors have been among the initial
therapeutic strategies attempting to counteract cholinergic
impairment and to relieve cognitive decline occurring in
dementia disorders. Among these, choline alphoscerate, also
known as alpha-glyceryl-phosphoryl-choline (α-GPC), is
considered one of the most suitable sources of choline (Parnetti
et al., 2001; Traini et al., 2013; Sagaro et al., 2023). Despite its
presence in the pharmaceutical market since 1987, α-GPC
experienced a decline in interest following the introduction of
cholinesterase inhibitors. Nevertheless, the last 10 years have
witnessed a resurgence of interest in this choline-containing
phospholipid, evident in numerous pre-clinical and clinical
studies (Traini et al., 2013; Traini et al., 2020; Roy et al., 2022;
Sagaro et al., 2023). Indeed, α-GPC, encompassing choline in its
structure, seems to have a significant effect in enhancing
acetylcholine (Ach) synthesis and release, due to its ability to
cross the blood-brain-barrier (BBB) (Parnetti et al., 2007). Several
preclinical studies have shown that α-GPC promotes learning and
memory in experimental aging models (Lopez et al., 1991; Traini
et al., 2013; Matsumura et al., 2015) and it has been proven effective
in reversing mnemonic deficits induced by scopolamine
administration (Sigala et al., 1992). Although beneficial effects of

α-GPC have been extensively reported in experimental models, only
sparse research have assessed the mechanisms underlying such
effects. Recently, in vitro experiments have revealed the α-GPC
protective role upon Aβ toxicity by setting into motion
neurotrophins-signaling pathways (Burgaletto et al., 2021) and by
counteracting inflammation associated with AD (Cantone et al.,
2024). Notably, the heightening of cholinergic transmission
contribute to suppression of glial pro-inflammatory cytokines
production, as well as the enhancement of Aβ clearance, synaptic
plasticity and memory (Buckingham et al., 2009). This intricate
interplay between neuroinflammation and cholinergic transmission
responses underscores the complexity of AD pathogenesis and
highlights potential therapeutic targets aimed at mitigating
disease progression.

In such scenario, the primary aim of our study was to explore,
for the first time, whether the chronic treatment with α-GPC could
contribute to an immune rebalance, and whether this phenomenon
correlated with an improvement of the cognitive outcome in AD. To
address this objective, we employed the 3xTg-AD mouse model,
which accurately replicates AD pathology and cognitive decline,
allowing us to assess, through methods such as fluorescent
immunohistochemistry, Western blot analysis and behavioral test,
α-GPC’s impact on neuroinflammation, synaptic function, and
cognitive performance (Figure 1).

2 Materials and methods

2.1 Animals

Male 3xTg-AD (Oddo et al., 2003) mice [B6129-
Psen1tm1MpmTg (APPSwe, tauP30L) 1Lfa/J] [14] and wild-type
mice (B6129SF2/J) were purchased from Jackson Laboratories. The
3xTg-AD, overexpressing mutant APP (APPSwe), PSEN1
(PS1M146V), and hyperphosphorylated tau (tauP301L), were
originally generated by co-injecting two independent transgene
constructs encoding human APPSwe and tauP301L (4R/0 N)
(controlled by murine Thy1.2 regulatory elements) in single-cell
embryos harvested from mutant homozygous PS1M146V knock-in
mice. Age-matched wild-type mice of mixed genetic background
129/C57BL6 were used as controls. The mice were maintained on a
12-h light/dark cycle in temperature and humidity-controlled
rooms, and food and water were available ad libitum. Animal
experiments were conducted in accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals (FELASA). The animal study protocol was
approved by the Italian Ministry of Health (authorization n.552/
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2020-PR) and conducted following the European Community
directive guidelines for the use of animals in laboratory (2010/63/
EU) and the Italian law (D.Lgs. 26/2014).

2.2 Drug administration and
experimental groups

Alpha-glyceryl-phosphoryl-choline (α-GPC) was purchased
from Italfarmaco, Milano, Italy. Twenty-two 3xTg-AD and
twenty-two wild-type mice were enrolled at 4 months of age and
four study groups were used: (i) wild-type plus vehicle (water) (n =
11); (ii) wild-type plus 100 mg/kg/day α-GPC (n = 11); (iii) 3xTg-
AD plus vehicle (water) (n = 11); and (iv) 3xTg-AD plus 100 mg/kg/
day α-GPC (n = 11); (mouse weight = 25 ± 5 g). Animals belonging
to the second and fourth group received α-GPC dissolved in
drinking water at a concentration resulting in an average daily
dose of 100 mg/kg according to the procedure detailed elsewhere
(Amenta et al., 1991). Animals were sacrificed after 8 months of
treatment via CO2 inhalation.

2.3 Protein extraction

Brain samples of 3xTg-AD and age-matched wild-type mice
were dissected in ice-cold Hank’s balanced salt solution (HBSS:
137 mM NaCl, 5.4mM KCl, 0.45 mM KH2PO4, 0.34 mM
Na2HPO4, 4 mM, NaHCO3, 5 mM glucose; pH 7.4) and then
stored at −80 °C, until use. Brain tissues were lysed in a lysis

buffer containing 150 manacle, 50 mM Tris–HCl (pH 7.5), 5 mM
EDTA, 1 mM Na3VO4, 30 mM sodium pyrophosphate, 50 mM
NaF, 1 mM acid phenyl-methyl-sulphonyl- fluoride, 5 mg/mL
aprotinin, 2 mg/mL leupeptin, 1 mg/mL pepstatin, 10% glycerol,
and 0.2% TritonTM X-100. The homogenates were then centrifuged
at 14000 rpm for 10 min at 4°C. The protein concentration of the
supernatant was determined by the Bradford method
(Bradford, 1976).

2.4 Western blot analysis

Equal amounts of proteins (50 µg) were separated by 8%–15%
SDS- PAGE gels and transferred onto Hybond ECL nitrocellulose
membranes (10600003, Amersham Life Science, Buckinghamshire,
UK). The membranes were blocked with 5% non-fat dry milk in
PBST for 1 h at RT and were then probed overnight at 4°C on
orbital shaker with the following appropriate primary antibodies:
mouse anti-β-amyloid (1:500, SIG-39320, Covance, Princeton,
New Jersey, United States of America) mouse anti-
synaptophysin (1:500, ab8049, Abcam, Cambridge, UK), goat
anti-Iba1 (1:1000, NB100-1028, Novus Biologicals, Littleton,
Colorado), mouse anti-GFAP (1:500, sc-166458, Santa Cruz
Biotechnology Inc., Santa Cruz, CA, United States of America),
rabbit anti-iNOS (1:500, sc-7271, Santa Cruz Biotechnology Inc.),
rabbit anti-IL-10 (1:200, 250713, Abbiotec, San Diego, CA,
United States of America;), rabbit anti-TNF-α (1:1000, NB600-
587, Novus Biologicals). Mouse anti-β-Actin (1:1000, sc-47778,
Santa Cruz Biotechnology Inc.) primary antibody was used as an

FIGURE 1
Schematic representation of the main steps of in vivo experiments. Wild-type (WT) and 3xTg-AD mice were treated orally with vehicle or α-GPC
(100 mg/kg/day) dissolved in drinking water for 8 months. At 12 months of age, animals performed Novel Object Recognition test or were sacrificed and
tissues were collected to perform protein analysis.
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internal control to validate the right amount of protein loaded in
the gels. Then the membranes were washed with PBS-T and
probed with the appropriate horseradish peroxidase-conjugated
secondary antibodes (sheep anti-mouse NXA931V, Amersham
Life Science or a donkey anti-rabbit NA934V, Amersham Life
Science or a mouse anti-goat sc-2354, Santa Cruz Biotechnology
Inc.) for 1 h at room temperature in 5% non-fat dry milk. After
washing with PBS-T, protein bands were visualized by enhanced
chemiluminescence (Thermo Fisher Scientific, Inc, Massachussets,
United States of America) and scanned with the iBright
FL1500 Imaging System (Thermo Fisher Scientific).
Densitometric analysis of band intensity was performed with
the aid of ImageJ software version 1.53v (developed by NIH,
freeware, available online: https://imagej.nih.gov/ij/, accessed on
6 November 2023).

2.5 Immunofluorescence

Mice were deeply anesthetized and intracardially perfused
with ice-cold 4% paraformaldehyde (PFA). Collected brain
tissue specimens were fixed overnight in 10% neutral-
buffered formalin (Bio-Optica). After overnight washing, they
were dehydrated in graded ethanol and paraffin-embedded
taking care to preserve their anatomical orientation. Tissue
sections of 5 µm were then cut and mounted on silanized
glass slides and air dried. To remove the paraffin, slides were
immersed in xylene two times, for 10 min each; rehydrated with
graded ethanol, 100%, 95%, 70%, and 50%, two times for 10 min
each; and transferred to distilled water. Antigens were retrieved
in sodium citrate buffer (10 mM sodium citrate, 0.05% Tween-
20, pH 6.0) by microwave for 10 min, followed by rinsing with
distilled water. The slides were then washed in PBS containing
0.025% Tween-20 (PBS-T) twice for 5 min each, blocked in 5%
BSA/0.3% PBST for 1 h at room temperature, in humid
chamber, and incubated overnight at 4°C with BSA 1% and
the following primary antibodies: mouse anti-β-Amyloid (1:
200, SIG-39320, Covance), or goat anti-Iba1 antibody (1:100,
NB100-1028, Novus Biologicals) or a rabbit anti-IL-10 antibody
(1:200, 250713, Abbiotec) or a rabbit anti-GFAP antibody (1:
500, Z0334, Dako, Glostrup, Denmark), or a mouse anti-NOS2
antibody (1:250, sc-7271, Santa Cruz) or a rabbit anti-TNFα
antibody (1:100, NB600-587, Novus Biologicals) or a mouse
anti-synaptophysin antibody (1:100, ab8049, Abcam).
Antibodies were applied directly onto sections before
overnight slide incubation (4°C) in a humid chamber. For
immunopositivity reactions and fluorescence detection, after
washing in PBST three times for 5 min each, sections were
incubated with the corresponding fluorescent-labeled
secondary antibodies in the dark for 1 h at room
temperature: Alexa Fluor 546 donkey anti-goat IgG (A11056,
Thermo Fisher Scientific, Inc.) or Alexa Fluor 488 donkey anti-
rabbit (A21206, Thermo Fisher Scientific) or Alexa Fluor
488 donkey anti-mouse (A21202, Thermo Fisher Scientific)
or Alexa Fluor 546 donkey anti-mouse (A10036, Thermo
Fisher Scientific). Finally, for staining of nuclei and
stabilization of fluorescent signals, slides were covered in
mounting medium (F6057, Fluoroshield with DAPI; Sigma-

Aldrich, Milan, Italy) and secured with a
coverslip. Fluorescence images were captured using a Zeiss
Observer. Z1 microscope equipped with the Apotome.2 acquisition
system (Zeiss LSM 700, Jena, Germany).

2.6 Novel object recognition (NOR) test

The NOR test was performed as previously described with
minor modifications (Torrisi et al., 2023). The behavioral test was
performed in regularly illuminated (40 ± 1 lux) grey open fields
(44 × 44 × 40 cm, cat. no. 47432, Ugo Basile, Gemonio, Italy). The
objects were different in shape, color and size (4 × 4 × 4 cm to 6 ×
6 × 6 cm). They were fixed to the floor of the apparatus to
circumvent displacements during the test. The researchers
handled animals on alternate days during the week preceding
the stress procedure. Animals were acclimatized to the testing
room 1 h before the beginning of the tests. A 2-day pretest was
performed to acclimatize mice to the apparatus as well as to
prevent neophobia during the test. Mice were placed into the
empty apparatus and allowed to freely explore for 15 min on day
1. Mice were instead allowed to explore the apparatus with two
objects (different from those eventually used during the test) for
10 min during the day 2. The objects were placed in two corners
of the apparatus, 10 cm far from the side walls. The test consisted
of one sample phase and one test phase interspersed with 24 h
delay in order to assess long-term recognition memory. During
the sample phase (day 3), animals were placed in the center of the
apparatus and allowed to explore two identical copies of an object
for a total of 10 min. During the test phase, mice were allowed to
explore for 10 min a copy of the familiar object previously
explored in the sample phase, and a novel object never
encountered. Mice performing a total exploration of the
objects below 5 s were excluded from the analysis. If the long-
term recognition memory is intact, mice typically explore more
the novel object rather than the familiar object. Cognitive
performance during the test session was showed using the
discrimination index (DI), calculated using the following
formula: [(time spent exploring the novel object–time spent
exploring the familiar object)/total exploration time]. The
percentage of exploration of each object during the test
session were also quantified. Behavioral experiments were
carried out, recorded and analyzed by two expert researchers.
The exploration of the objects was manually scored by the
researchers. Each open field was cleaned with a 20% ethanol
solution between sessions to minimize the impact of olfactory
cues. A 12 h light/12 h dark cycle with was used. All behavioral
experiments were performed during the light phase
(9.00 a.m.–4.00 p.m.).

2.7 Statistical analysis

Data were analyzed using the analysis of variance (ANOVA),
followed by Bonferroni post hoc test. Vertical bars are means ±
S.E.M. Statistical significance was set at a *p-value <0.05. The graphs
and statistical evaluation were made using Graph Pad Prism (Ver. 8,
La Jolla, United States).
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FIGURE 2
Chronic administration of α-GPC is linked with reduced Aβ-plaques in 3xTg-ADmice. (A) Immunohistochemical staining for Aβ-plaques in the brain
of wild-type and 3xTg-ADmice, treated either with vehicle or α-GPC. Original magnification 5x; inset 20x. The inserts in photos represent the respective
area magnified. (A9) Respective mean fluorescence intensity (MFI) analysis of the immunofluorescence signal. Western blot analysis of Aβ protein
expression in the hippocampus (B) and cortex (C) ofwild-type and 3xTg-ADmice, following chronic treatment with α-GPC or vehicle and respective
densitometric analysis (B9,C9) (HC = hippocampus; CX = cortex). Data are expressed asmeans ± S.E.M. One-way ANOVA and the Bonferroni post hoc test
were used to determine statistical significance. *p < 0.05. WT: wild-type (n = 3/group); AD: 3xTg-AD mice (n = 3/group).
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FIGURE 3
Chronic treatment with α-GPC is associated with reduction of gliosis in 3xTg-ADmice. (A) Immunohistochemical staining for GFAP and iNOS in the
brain of wild-type and 3xTg-AD mice, treated either with vehicle or α-GPC. Original magnification 5x; inset 20x. The inserts in photos represent the
respective areas magnified, DG = dentate gyrus; CA2-CA3 = cornu ammonis 2–3; CX = cortex. (B,C and D) Respective mean fluorescence intensity (MFI)
analysis of the immunofluorescence signal in the different brain areas. Data are expressed as means ± S.E.M. One-way ANOVA and the Bonferroni
post hoc test were used to determine statistical significance. *p < 0.05. WT: wild-type (n = 3/group); AD: 3xTg-AD mice (n = 3/group).
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FIGURE 4
Western blot analysis of GFAP and iNOS protein expression in the hippocampus (A) and cortex (B) of wild-type and 3xTg-ADmice, following chronic
treatment with α-GPC or vehicle and respective densitometric analysis (A9,B9) (HC = hippocampus; CX = cortex). Data are expressed as mean ± S.E.M.
Differences between groups were considered significant at *p < 0.05 (One-way ANOVA followed by Bonferroni post hoc test). WT: wild-type (n = 3/
group); AD: 3xTg-AD mice (n = 3/group).
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3 Results

3.1 α-GPC chronic treatment reduces beta-
amyloid plaques formation in 3xTg-AD mice

The most prominent feature of AD is the aggregation of the
amyloid-β peptide (Walker, 2020). In order to explore the potential
of chronic α-GPC treatment in modulating the formation of Aβ
plaques, the expression of Aβ immunopositive deposits was
evaluated in brain tissues of 3xTg-AD mice. Immunofluorescence
experiments revealed widespread Aβ plaques in the brain of 3xTg-
AD untreated mice, while mice that underwent α-GPC chronic
treatment exhibited a marked reduction in plaque formation
(Figure 2A). Furthermore, Western blot analysis unveiled a
significant reduction in hippocampal and cortical expression of
amyloid-β in 3xTg-AD animals subjected to chronic α-GPC
treatment (Figures 2B, C).

3.2 Chronic treatment with α-GPC is
associated with reduction of gliosis in 3xTg-
AD mice

Reactive gliosis is considered a key abnormality in
neurodegenerative diseases, representing one of the most
important mechanisms in AD neuropathology (De Sousa, 2022).
Therefore, with the aim to verify whether chronic treatment with α-
GPC could affect reactive gliosis features, expression of GFAP and
iNOS (Asiimwe et al., 2016) was evaluated in brain tissues (cortex
and hippocampus) of 3xTg-AD mice. Immunofluorescent labeling
revealed that 3xTg-ADmice showed a broad astrocytic activation, as
demonstrated by the increased expression of GFAP, which co-
localized with iNOS, in both hippocampus and cortex, as
compared to WT mice (Figure 3). Notably, the expression of
both GFAP and iNOS was dramatically decreased in α-GPC
treated animals. Consistently with immunohistochemical data,
Western blot analysis corroborate the significative reduction of
marker expression in α-GPC treated animals in both
hippocampus (Figure 4A) and cortex (Figure 4B).

3.3 Proinflammatory microglia is blunted by
α-GPC chronic treatment in 3xTg-AD mice

Microglia housekeeping functions are essential to maintain
brain health (Tremblay et al., 2011). In contrast, chronic
activation of microglia, which occurs in AD, causes brain
inflammation leading to neuronal death (Wang et al., 2023). To
assess the potential of chronic α-GPC treatment in modulating
microglia activation, brain tissues were stained with the microglial
marker Iba1 and TNF-α, a pro-inflammatory cytokine.
Immunofluorescent staining revealed a widespread glia activation
in 3xTg-AD mice, as evidenced by the increase in expression of
microglial Iba1 co-localized with TNF-α in both hippocampus and
cortex. Remarkably, chronic treatment with α-GPC clearly
attenuated microgliosis in such brain areas of 3xTg-AD mice
(Figure 5). These data were consistent with those obtained by
Western blot analysis and, eventually revealed that Iba1-positive

cells were significantly decreased in α-GPC treated animals when
compared with untreated AD mice. Moreover, Western blot results
also demonstrated a substantial decrease in Iba1 and TNF-α
expression levels in the hippocampus and cortex of 3xTg-AD
mice following α-GPC treatment (Figures 7A, B).

3.4 α-GPC chronic treatment switches
microglia towards a neuroprotective
phenotype in 3xTg-AD mice

To better explore the effect of α-GPC treatment in the
overshooting neuroinflammatory process in the 3xTg-AD mice
brain, IL-10 protein expression was qualitatively analyzed by
fluorescent immunohistochemistry and quantitatively measured
by means of Western blot analysis in hippocampal and cortical
lysates of the same animal groups. Immunofluorescence
experiments revealed that microglia expressing Iba1, highly
represented in untreated 3xTg-AD mice, exhibited a dampened
expression of IL-10. On the other hand, α-GPC treatment
increased IL-10 expressing microglia (Figure 6). Consistently,
Western blot analysis showed that, while the expression of the
anti-inflammatory cytokine IL-10 was low in the cortex of WT
and 3xTg-AD mice, its expression became detectable in animals
undergone the α-GPC treatment. Likewise, the severe reduction of
hippocampal levels of IL-10 in 3xTg-AD mice was rescued by α-
GPC treatment (Figures 7A, B).

3.5 Beneficial effect of α-GPC treatment on
neuronal plasticity in 3xTg-AD mice

Synapse loss and defective synaptic transmission strongly
correlates with cognitive decline in neurodegenerative diseases
including AD (Counts et al., 2014). To test whether α-GPC could
restore neuronal plasticity in 3xTg-AD mice, we measured
synaptophysin expression in the hippocampus and the cortex. As
displayed in Figure 8, immunofluorescence staining showed that,
while synaptophysin immunoreactivity was decreased in untreated
3xTg-ADmice, chronic treatment with α-GPC contributed to a clear
recovery to levels similar to WT controls. Western blot results also
showed that α-GPC treatment significantly reversed the
downregulated expression of synaptophysin in the hippocampus
of 3xTg-AD mice (Figure 9A). On the other hand, no significant
change in cortical synaptophysin expression was
detected (Figure 9B).

3.6 Chronic treatment with α-GPC rescues
the long-term recognition memory deficits
of 3xTg-AD mice

Considering that 3xTg-AD mice represent a transgenic model
useful to study episodic memory deficits (Cantarella et al., 2015), we
tested the hypothesis that a chronic treatment with α-GPC could
rescue the episodic-like memory deficits showed by 3xTg-AD mice
in the Novel Object Recognition (NOR) test (Figure 10A). Analysis
of the Discrimination Index (DI) revealed that while untreated
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FIGURE 5
α-GPC reduces the expression of proinflammatory markers in 3xTg-ADmice and blunts microglia activation. (A) Immunohistochemical staining for
Iba-1 and TNF-α in the brain of wild-type and 3xTg-AD mice, treated with either vehicle or α-GPC. Original magnification, 5x; inset 20x. The inserts in
photos represent the respective areas magnified (DG = dentate gyrus; CA2-CA3 = cornu ammonis 2–3; CX = cortex). (B–D) Respective mean
fluorescence intensity (MFI) analysis of the immunofluorescence signal in the different brain areas. Data are expressed as means ± S.E.M. One-way
ANOVA and the Bonferroni post hoc test were used to determine statistical significance. *p < 0.05. WT: wild-type (n = 3/group); AD: 3xTg-AD mice (n =
3/group).
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FIGURE 6
Anti-inflammatory cytokine IL-10 release is rescued by α-GPC treatment in 3xTg-AD mice. (A) Immunohistochemical staining for Iba1 and IL-10 in
the brain of wild-type and 3xTg-AD mice, treated either with vehicle or α-GPC. Original magnification 5x; inset 20x. The inserts in photos represent the
respective areas magnified (DG = dentate gyrus; CA2-CA3 = cornu ammonis 2–3; CX = cortex). (B–D) Respective mean fluorescence intensity (MFI)
analysis of the immunofluorescence signal in the different brain areas. Data are expressed as means ± S.E.M. One-way ANOVA and the Bonferroni
post hoc test were used to determine statistical significance. *p < 0.05. WT: wild-type (n = 3/group); AD: 3xTg-AD mice (n = 3/group).
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3xTg-AD mice were unable to discern between the familiar object
and the novel object, α-GPC treated 3xTg-AD mice significantly
discriminated between the two objects (Figure 10B; Treatment:

F (1, 15) = 16.03; p = 0.0012; Treatment x Genotype: F (1, 15) = 10.99;
p = 0.0047). Indeed, 3xTg-AD mice treated with α-GPC significantly
spent more time exploring the novel object while untreated 3xTg-AD

FIGURE 7
Western blot analysis of Iba1, TNF-α and IL-10 protein expression in the hippocampus (A) and cortex (B) of wild-type and 3xTg-AD mice following
chronic treatment with α-GPC or vehicle and respective densitometric analysis (A9,B9) (HC = hippocampus; CX = cortex). Data are expressed as mean ±
S.E.M. Differences between groups were considered significant at *p < 0.05 (One-way ANOVA followed by Bonferroni post hoc test). WT: wild-type (n =
3/group); AD: 3xTg-AD mice (n = 3/group).
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FIGURE 8
Effect of α-GPC treatment on neuronal plasticity in 3xTg-AD mice. (A) Immunohistochemical staining for Synaptophysin in the brain of wild-type
and 3xTg-AD mice, treated either with vehicle or α-GPC. Original magnification 5x; inset 20x. The inserts in photos represent the respective areas
magnified (DG = dentate gyrus; CA2-CA3 = cornu ammonis 2–3; CX = cortex). (B–D) Respective mean fluorescence intensity (MFI) analysis of the
immunofluorescence signal in the different brain areas. Data are expressed as means ± S.E.M. One-way ANOVA and the Bonferroni post hoc test
were used to determine statistical significance. *p < 0.05. WT: wild-type (n = 3/group); AD: 3xTg-AD mice (n = 3/group).
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mice spent approximately the same amount of time exploring both
objects (Figure 10C; Object: F(1, 30) = 101.8; p < 0.0001; Object x
treatment: F (1, 30) = 32.06; p < 0.0001; Object x genotype: F (1, 30) =
5.233; p = 0.0294; Object x treatment x genotype: F(1, 30) = 21.97; p <
0.0001). Both treated and untreated WT mice showed an intact
long-term recognition memory exploring more the novel object
rather than the familiar one (Figures 10B, C).

4 Discussion

Our study investigates the potential of choline alphoscerate
(α-GPC) in the evolving scenario of AD therapeutics, which is
often characterized by treatments with limited disease-
modifying properties (Sheikh et al., 2023). Among choline
precursors, α-GPC stands out as the most effective in
enhancing in vivo Ach release (Traini et al., 2013) and has
been suggested as a potential neuroprotective agent for various

pathological conditions associated with inflammatory
phenomena (Choi et al., 2020; Sagaro and Amenta, 2023;
Sagaro et al., 2023).

According to this evidence, in the present study we examined the
effects of long-term treatment with α-GPC on the inflammatory
response and cognitive function in 3xTg-AD mice.

The primary pathological hallmarks of AD include the presence
of extracellular amyloid plaques, predominantly composed of the Aβ
peptide (Furcila et al., 2018).

Recent preclinical studies have suggested that dietary choline
supplementation may serve as a preventive strategy for AD, by
averting memory deficits and reducing brain amyloid deposition
(Mellott et al., 2017; Bellio et al., 2024). Consistent with this, chronic
treatment with α-GPC was effective in decreasing the formation of
amyloid plaques in the 3xTg-AD brain.

Of crucial relevance, Aβ species possess the ability to activate
astrocytes and microglia, triggering neuroinflammation (Novoa
et al., 2022).

FIGURE 9
Western blot analysis of Synaptophysin protein expression in the hippocampus (A) and cortex (B) of wild-type and 3xTg-AD mice following chronic
treatment with α-GPC or vehicle and respective densitometric analysis (A9,B9) (HC = hippocampus; CX = cortex). Data are expressed as mean ± S.E.M.
Differences between groups were considered significant at *p < 0.05 (One-way ANOVA followed by Bonferroni post hoc test). WT: wild-type (n = 3/
group); AD: 3xTg-AD mice (n = 3/group).
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Neuroinflammation, characterized by a robust glial-mediated
inflammatory response (Burgaletto et al., 2020; Di Benedetto et al.,
2022) and increased production of proinflammatory cytokines in the
brain, indeed assumes a pivotal pathological role in AD,
detrimentally impacting cognition and memory (Heneka et al.,
2015; Cabinio et al., 2018).

Our results showed a reduction of microglia expressing TNF-α
and of astrocytes reactivity as shown by blunted expression of GFAP
and iNOS. Concurrently, the observed increased levels of the anti-
inflammatory cytokine IL-10 in the brain of α-GPC-treated animals
supported the hypothesis that precursor-mediated enhancement of
cholinergic transmission could reverse the sustained activation of
glia that fuels the neuroinflammatory machinery.

Recent in vitro data supported these findings, revealing the
ability of α-GPC to induce a shift of Aβ-activated microglia
towards a protective phenotype (Cantone et al., 2024).
Consistently, positive effect of α-GPC treatment on glial reaction
was also documented in the hippocampus of spontaneously
hypertensive rats, a model used to mimic neuropathological

changes occurring in vascular dementia (Tomassoni et al., 2006).
Indeed, it has been reported that cholinergic precursors exert an
anti-inflammatory role due to stimulation of the alpha seven
nicotinic acetylcholine receptor (α7 nAChR), via inhibition of
NLRP3 inflammasome (Pohanka, 2012). Accordingly, many
reports have endorsed the idea of the “cholinergic anti-
inflammatory pathway,” shedding light on the potential role of
α7 nAChR in mediating the anti-inflammatory effects of choline
(Pavlov et al., 2003).

Furthermore, as the disease progresses, severe alterations in
cholinergic synaptic transmission and subsequent synaptic loss
become increasingly evident (Thany and Tricoire-Leignel, 2011).

Synapses are the fundamental units of information transfer and
memory storage in the brain (Mayford et al., 2012). Synaptophysin,
an abundant pre-synaptic glycoprotein, is regarded as a truthful
indicator of neuronal synaptic density, it is indeed involved in
different processes, including the vesicle trafficking machinery
and synapse formation (Becher et al., 1999). Our results showed
that α-GPC was able to restore synaptophysin’s decreased

FIGURE 10
α-GPC rescued the long-term recognition memory deficits exhibited by 3xTg-AD mice in the NOR test. (A) Experimental procedure for the
assessment of the long-term (24-h delay) object recognition memory in WT and 3xTg-ADmice treated with α-GPC. (B) Discrimination index (DI) and (C)
exploration time (%) of familiar object (FO) and novel object (NO) calculated to evaluate the cognitive performance of mice during the test phase of the
NOR task. Two-way or three-way ANOVA followed by Bonferroni post hoc test: *p < 0.05. Values are expressed as means ± S.E.M. WT: wild-type
(n = 5/group); AD: 3xTg-AD mice (n = 5/group).
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expression in the hippocampus of 3xTg-AD mice. This finding is
corroborated by recent in vitro data, revealing that α-GPC
exerted its beneficial effects through the NGF/TrkA system,
knocked down in AD and, consequently, by sustaining the
expression level of synaptic vesicle protein synaptophysin
(Burgaletto et al., 2021). Hence, the observed absence of
synaptophysin alteration in cortex of 3xTg-AD mice is
consistent with previous studies conducted in different animal
model of AD (King and Arendash, 2002; Calon et al., 2004).

Hippocampal synapses represent an essential novelty detector,
playing a key role in comparing previously stored information with
new incoming aspects of a particular situation. The preference for a
novel object means that presentation of the familiar object persists in
animals’ memory (Sarkisyan and Hedlund, 2009; Cohen and
Stackman Jr, 2015).

Considering that heightened inflammation and a defective
synaptic transmission strongly correlates with the severity of
cognitive symptoms in AD (Counts et al., 2014; Selles et al.,
2018), we hypothesized that chronic treatment with α-GPC,
which sustains Ach release in the hippocampus, could potentially
counteract AD-related functional decline.

We observed that chronic treatment with α-GPC rescued the
episodic-like memory deficits showed by 3xTg-AD mice in the
Novel Object Recognition (NOR) test. Indeed, mice treated with
α-GPC significantly spent more time exploring the novel object
compared to the untreated mice.

This result aligns with several preclinical studies
performed in different experimental models of aging brain,
demonstrating that α-GPC facilitates learning and memory,
counteracting cognitive deficits (Blusztajn et al., 2017;
Kansakar et al., 2023).

In summary, our findings suggest that chronic treatment with α-
GPC could contribute to halt the progression of neurodegeneration
by mitigating neuroinflammatory features, known to be
dysregulated in AD and in other neurodegenerative disorders,
while also sustaining the key function of hippocampal synapses
in maintaining cognitive stability. Therefore, from a translational
perspective, it seems plausible to envision a therapeutic application
of α-GPC in early phases of AD, particularly during the onset of the
first and subtle signs of cognitive decline.
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