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One of the most important developments in psychopharmacology in the
past decade has been the emergence of novel treatments for mood
disorders, such as psilocybin for treatment-resistant depression.
Psilocybin is most commonly found in different species of mushroom;
however, the literature on mushroom and fungus extracts with potential
antidepressant activity extends well beyond just psilocybin-containing
mushrooms, and includes both psychedelic and non-psychedelic species.
In the current review, we systematically review the preclinical literature on
mushroom and fungus extracts, and their effects of animal models of
depression and tests of antidepressant activity. The PICO structure,
PRISMA checklist and the Cochrane Handbook for systematic reviews of
intervention were used to guide the search strategy. A scoping search was
conducted in electronic databases PubMed, CINAHL, Embase and Web of
Science. The literature search identified 50 relevant and suitable published
studies. These included 19 different species of mushrooms, as well as
seven different species of other fungi. Nearly all studies reported
antidepressant-like effects of treatment with extracts. Treatments were
most commonly delivered orally, in both acute and chronically
administered studies to predominantly male rodents. Multiple animal
models of depression were used, the most common being unpredictable
chronic mild stress, while the tail suspension test and forced swim test
were most frequently used as standalone antidepressant screens. Details
on each experiment with mushroom and fungus species are discussed in
detail, while an evaluation is provided of the strengths and weaknesses of
these studies.
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Introduction

Mood disorders remain among the most prevalent and disabling
of all psychiatric conditions. They also represent one of the leading
causes of worldwide disease burden (Friedrich, 2017; Collaborators,
2022). While many individuals affected by mood disorders respond
well to treatment, a significant proportion of people show either
partial or no response to antidepressant therapies (McLachlan,
2018). If an individual fails to respond to two or more trials of
standard antidepressant pharmacotherapy, they may be considered
“treatment-resistant” (Voineskos et al., 2020). Furthermore, many
individuals may show a therapeutic response to antidepressant
treatment but suffer side-effects that significantly reduce their
quality of life (Teng et al., 2022), resulting in reduced treatment
adherence (Hung, 2014; Rossom et al., 2016).

Clinical treatment options for those who do not respond well to
standard antidepressant therapies have historically remained
limited. However, in recent years, several landmark studies have
reported that administration of psychedelic drugs under controlled
conditions, typically in combination with psychotherapy, can
significantly reduce depressive symptoms (Griffiths et al., 2016;
Ross et al., 2016; Palhano-Fontes et al., 2019; Davis et al., 2021;
Eisenstein, 2022; Goodwin et al., 2022). Importantly, this includes
individuals with treatment-resistant depression (Carhart-Harris
et al., 2016). Additionally, in clinical trials reported to-date, the
side-effect profile of these compounds has appeared relatively
benign (Eisenstein, 2022) with no evidence of some of the side-
effects associated with other psychotropic medications, such as
weight gain and metabolic dysregulation (Boyda et al., 2013;
Boyda et al., 2021; Sepúlveda-Lizcano et al., 2023).

While the use of the term “psychedelic” has no official definition, it
typically refers to a drug that is able to alter perception, thoughts, feelings
and consciousness in humans (Hosanagar et al., 2021). Psychedelic drugs
are commonly categorized as either “classical” or “atypical” (Kamal et al.,
2023). The former category represents drugs with agonism or partial
agonism at the serotonergic 5-HT2A receptor, and includes tryptamines
(such as psilocybin and DMT), ergolines (such as LSD) and
phenethylamines (such as mescaline) (Kelmendi et al., 2022). The
atypical psychedelics have diverse mechanisms of action
(Aleksandrova and Phillips, 2021), which are not primarily at the 5-
HT2A receptor, and include drugs such as ketamine, ibogaine,muscimol
and salvinorin A (Kelmendi et al., 2022). At this point, it is important to
note that many compounds from both classes of psychedelic drugs have
their origins in commonly available mushrooms and other fungi.

Mushrooms and other fungi

Mushrooms are generally defined as the spore-producing fruiting
body of a fungus. Traditional medicine has used mushrooms, and fungi
in general, in medical treatment for centuries (Yadav and Negi, 2021;
Gravina et al., 2023), taking advantage of their numerous perceived
therapeutic benefits. Such properties have been reported to include
antimicrobial (Moussa et al., 2022), antibacterial, antioxidant,
hepatoprotective (Venturella et al., 2021), and antitumor (Pandya
et al., 2019) effects. More recently, researchers have investigated
“medicinal” mushrooms as potential alternatives or complements to
mainstream antidepressant treatments. For example, non-psychedelic

species such as Hericium erinaceus and Ganoderma lucidum have been
noted as having mood-improving qualities in humans (Nagano et al.,
2010; Fijałkowska et al., 2022), although head-to-head trials comparing
effects against standard antidepressant pharmacotherapies are lacking.
Nevertheless, the increasing body of evidence which indicates that
psilocybin (a psychedelic compound found in many species of
mushrooms (Strauss et al., 2022)) has potent antidepressant effects,
including in those with treatment-resistant depression (Haikazian et al.,
2023; Simonsson et al., 2023), supports the notion that mushrooms and
other fungi may hold significant therapeutic potential in this area.
However, given the enormous number of potential species of
mushroom and other fungi that could have antidepressant effects,
measured against the tremendous costs associated with conducting
clinical trials in humans, it is critical to determine which mushroom
and fungus species and their derivatives represent the best preclinical
leads for further development. In this context, it is vitally important to
understand which species have already demonstrated efficacy in
preclinical animal models of depression and specific screens for
antidepressant activity. The purpose of the present scoping review is
therefore to systematically identify which mushroom and fungus species
have been tested for antidepressant effects in specific preclinical models,
and to summarize and evaluate the results of these studies.

Materials and methods

The PICO structure, PRISMA checklist and the Cochrane
Handbook (Higgins and Green, 2011) for systematic reviews of
intervention were used to guide the search strategy. A scoping search
was conducted in electronic databases PubMed, CINAHL (via
EBSCO), Embase (via Ovid), and Web of Science, as previously
(Tse et al., 2014; Yuen et al., 2021; Lian et al., 2022). One preprint
source was found as a suggestion under another article and later
located on Google Scholar. The latest literature search was
conducted on 19 December 2023.

A combination of 26 individual search terms were used with the
following keywords: “mushroom” or “mushrooms” or “fungus” and
“depress*” or “antidepress*” and “animal” or “animal model”. Filters
excluding human studies or non-article sources were applied as needed.
Searches were also conducted using specific behavioural models/tests or
mushroom species as keywords. Studieswere limited to those using rodent
species as those reflect the expertise of the authors (Lu et al., 2005; Barr
et al., 2006; Hill et al., 2007; Boyda et al., 2014); however, it is important to
note that other species, such as zebrafish, represent additional valid animal
models of antidepressant efficacy (Braun et al., 2024).

Studies were included if they met the following criteria: 1) studies
tested a mushroom, fungus, or relevant mushroom derivative, and; 2)
used a rodent model or behavioural test of depression or screen of
antidepressant activity. Studies were excluded if they 1) were not
published in English, or; 2) were not full text original research
studies (i.e., conference abstracts, review papers).

A total of 546 articles were identified using Covidence (www.
covidence.org), with 241 duplicates removed, leaving 305 articles to
be screened. After title and abstract screening, 237 were deemed
irrelevant, leaving 68 studies for eligibility assessment. After full text
review, 18 studies were excluded, leaving 50 studies in the final
database. Figure 1 outlines a PRISMA flowchart of the study
selection process.
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Abstracts and full texts were screened by GK and CKW. Data
was extracted independently by GK and CKW with key variables
extrapolated and outlined in Supplementary Table S1. Any

discrepancies throughout the process were brought to
consensus by GK and CKW with the assistance of AMB
if required.

FIGURE 1
Literature review flow process.
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Results

The literature search identified 50 relevant and suitable
published studies. These included 19 different species of
mushrooms see Table 1, as well as seven different species of
other fungi see Table 2; there were also three studies that used
compounds which are common to multiple mushroom species.

Characteristics of animals used and drug
administration

The species used in all of the animal models were limited to rats
and mice: we did not find instances of other rodent species that have
been utilized as antidepressant screens (Kramer et al., 1998; Alo
et al., 2019). Fourteen of the studies used rats (Matsuzaki et al., 2013;
Minami et al., 2013; Tan et al., 2016; Liu C. et al., 2017; Song et al.,
2017; Wang et al., 2017; Huang et al., 2020; Nascimento et al., 2020;
Lin et al., 2021a; Zhang L. et al., 2021; Lin et al., 2021b; Anuar et al.,
2022; Cheng, 2023; Rakoczy et al., 2023), while the remaining
36 studies used mice to test for antidepressant-like effects (Zhou
et al., 2005; Nishizawa et al., 2007; Koo et al., 2008; Singh et al., 2014;
Tianzhu et al., 2014; Socala et al., 2015; Yao et al., 2015; Gupta et al.,
2016; Huang et al., 2016; Nakamichi et al., 2016; Song et al., 2016;
Xu, 2016; Bao et al., 2017; Liu Y. et al., 2017; Lin et al., 2017; Chiu
et al., 2018; Mahmoudi et al., 2018; Ryu et al., 2018; Jin et al., 2019; Li
et al., 2019; Song et al., 2020; Li H. et al., 2021; Li TJ. et al., 2021;
Zhang T. et al., 2021; Chong et al., 2021; Hossen et al., 2021; Park
et al., 2021; Singh et al., 2021; Zhao et al., 2021; Chou et al., 2022; Mi
et al., 2022; Xin et al., 2022; Yu et al., 2022; Ezurike et al., 2023; Zhao
et al., 2023; Hernandez-Leon et al., 2024). In terms of strains, 10 of
the rat studies used Sprague-Dawley, three included Wistar and one
used Long-Evans rats. For the mice studies, the most commonly
used strain was the C57BL/6 strain and sub-strains (12 studies),
followed by Institute for Cancer Research mice (seven studies), Swiss
Albino and Kunming mice (six studies each) and one study each
with BALB/c, CD1, Swiss Webster and NMRI strains. Two studies
did not mention the specific strains used (Li et al., 2019; Park et al.,
2021). The overwhelming majority of rat studies used male rats
(12 studies) compared to female rats (two studies (Minami et al.,
2013; Anuar et al., 2022)). All mice studies utilized males, most of
which included males only, while five studies used both male and
female mice (Singh et al., 2014; Song et al., 2016; Liu Y. et al., 2017;
Hossen et al., 2021; Ezurike et al., 2023), and one study did not
specify sex (Park et al., 2021). Thus, only 14% of studies used female
animals in their investigation.

Administration of mushroom or fungus derivatives to animals
was mostly through a single route of administration, although a
handful of studies used two different routes of administration (Yao
et al., 2015; Huang et al., 2016; Chou et al., 2022; Yu et al., 2022;
Hernandez-Leon et al., 2024). The most common route of
administration was oral (per os, p.o.), which accounted for more
than 50% of studies (29 of 55 instances of administration). Second
most common was treatment by intraperitoneal (i.p.) injection
(13 instances), followed by intragastric (i.g.) administration
(7 instances). Extracts were administered to animals in their food
in three separate studies (Nakamichi et al., 2016; Bao et al., 2017;
Anuar et al., 2022), by subcutaneous (s.c.) injection in two studies

(Chou et al., 2022; Yu et al., 2022), and by intravenous (i.v.)
administration in one study (Zhang L. et al., 2021).

The methods of extraction of mushroom and fungus derivatives
was reported in 28 studies. Methods included use of both polar and
non-polar solvents, with the most common ones including water
and various alcohols. For many of the studies where complex
extraction procedures were involved, including with non-polar
solvents, it was not possible to determine if the extracts that were
administered to animals also contained traces of these solvents (e.g.,
(Singh et al., 2021)), which could feasibly have an effect
on behaviour.

The duration of drug treatment varied significantly across the
studies, from acute doses with behavioural testing 30 min later
(Socala et al., 2015; Mahmoudi et al., 2018; Jin et al., 2019;
Zhang T. et al., 2021; Hossen et al., 2021; Park et al., 2021;
Hernandez-Leon et al., 2024), up to 92 days of continuous
administration (Anuar et al., 2022). Of the 50 studies, 13 were
acute (treatment over a span of <24 h) (Matsuzaki et al., 2013; Socala
et al., 2015; Yao et al., 2015; Gupta et al., 2016; Lin et al., 2017;
Mahmoudi et al., 2018; Jin et al., 2019; Zhang T. et al., 2021; Hossen
et al., 2021; Park et al., 2021; Singh et al., 2021; Rakoczy et al., 2023;
Hernandez-Leon et al., 2024), six were sub-acute (1–7 days)
(Nishizawa et al., 2007; Song et al., 2016; Bao et al., 2017;
Nascimento et al., 2020; Song et al., 2020; Yu et al., 2022), and
the remaining 31 studies involved chronic treatment (>7 days). The
mean duration of treatment for the chronic studies was 30.4 (±16.7)
days for the longest treated group in each study (some studies had
varying durations of treatment depending on the group). The modal
and median periods of treatment for chronic studies were both
28 days. Rats were more likely to be treated chronically, with only
two of the 14 rat studies involving acute treatment (Matsuzaki et al.,
2013; Rakoczy et al., 2023).

Animal models of depression and tests of
antidepressant activity

A variety of animal models of depression and antidepressant
screens were used to examine mushroom and fungus antidepressant
efficacy. By far the most common animal model used to induce a
depressive-like phenotype in rodents was the unpredictable chronic
mild stress paradigm (UCMS), with 14 studies implementing this
model (Zhou et al., 2005; Tianzhu et al., 2014; Tan et al., 2016; Liu C.
et al., 2017; Song et al., 2017; Wang et al., 2017; Li et al., 2019; Huang
et al., 2020; Lin et al., 2021a; Zhang L. et al., 2021; Lin et al., 2021b;
Zhao et al., 2021; Xin et al., 2022; Cheng, 2023); rats were used in the
majority (9) of these studies. The second most frequent model
involved the use of chronic restraint stress, in four mouse studies
(Nakamichi et al., 2016; Chiu et al., 2018; Chong et al., 2021; Zhao
et al., 2023). Two rat studies used ovariectomy procedures to model
menopausal depression (Minami et al., 2013; Anuar et al., 2022),
while high-dose corticosterone was administered to mice in two
studies (Chou et al., 2022; Yu et al., 2022). Other models included the
use of lipopolysaccharide (Yao et al., 2015), chronic social defeat
stress (Li H. et al., 2021), maternal separation (Mi et al., 2022),
ethanol binge drinking (Nascimento et al., 2020) and streptozotocin
to model diabetes-induced depression (Huang et al., 2016). To
determine that a depressive-like state had been induced by the
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TABLE 1 Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

Hericium erinaceus

Food Chronic (92 d) Methanol Rat Wistar Female Sham (n = 11)
OVX Model (n =
11)
OVX + HE (n =
10)
OVX + E2 (n = 8)

OVX 96 d Once n/a n/a Models menopausal
depression

Anuar et al.
(2022)

FST 5 min OVX Model*
1%#

p.o. Chronic (28 d) Ethanol Mouse ICR Male n = 10 per group
Control
CRS Model
CRS + HE (Low,
Medium, High)

CRS 14 d 2 h daily n/a Erinacine A Mycelium Chiu et al. (2018)

FST 5 min Once CRS Model***
100 mg/kg
200 mg/kg##

400 mg/kg##
TST

i.p. Chronic (28 d) Ethanol Mouse C57BL/6 Male n = 76 in total CRS 14 d 6 h daily n/a# n/a n/a Chong et al.
(2021)

SPT 2 h Once CRS Model***
10 mg/kg##

25 mg/kg##

TST 5 min CRS Model*
10 mg/kg
25 mg/kg##

s.c. Chronic (21 d) Alcohol Mouse SAMP8,
BALB/C

Male n = 8 per group
CORT Model
CORT + (Low,
Medium, High)
CORT +
Fluoxetine

CORT 21 d Daily 40 mg/kg Chlorella 0.1 mL chlorella + 6 mg
HE

0.2 mL chlorella + 12 mg
HE

0.4 mL chlorella + 24
mg HE

Chou et al. (2022)

p.o. FST Last 4 min of
6 min

Once CORT Model
0.25 mL/25 g
0.5 mL/25 g#

2.5 mL/25 g#

p.o. Chronic (9 d) n/a Mouse C57BL/6 Male n = 6
Control
Low dose
High dose

TST 15 min Daily for 9 d 75 mg/kg
150 mg/kg

% immobility
increased daily over

9 d period

n/a Mycelium; Uses TST-
induced depression
model, not screen

Li et al. (2021b)

p.o. Chronic (28 d) Ethanol Mouse C57BL/6 Male n/a
Control
HE (Low, High)

FST Last 4 min of
6 min

Once 20 mg/kg*
60 mg/kg*

n/a n/a Ryu et al. (2018)

TST

i.p. Subchronic (1 d) n/a Mouse C57BL/
6N

Male n = 11–12 per
group
Control
Control +
Amycenone
LPS Model
LPS + Amycenone

LPS 1 d Once n/a n/a Amycenone: hericenones/
hericium isolates (0.5%)
and amyloban (6%)
Use LPS to induce

depression

Yao et al. (2015)

p.o. FST 6 min Non-LPS
200 mg/kg

LPS
LPS Model**
200 mg/kg#

TST 10 min Non-LPS
200 mg/kg

LPS
LPS Model***
200 mg/kg##

(Continued on following page)
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

Ganoderma lucidum

p.o. Chronic (28 d) Ethanol Rat Sprague-
Dawley

Male n = 8 per group
Control
UCMS Model
UCMS + Gl-E
(Low, Medium,
High)
UCMS +
Fluoxetine

UCMS 28 d Daily n/a n/a Preprint; not peer-
reviewed

Cheng (2023)

SPT 3 h Once UCMS Model***
0.02 g/kg
0.1 g/kg#

0.5 g/kg##

p.o. Chronic (28 d) Ethanol Mouse Swiss
Albino

Both n = 5 per group
Control
EEGL (Low,
Medium, High)

FST Last 4 min of
6 min

Once Male
100 mg/kg*
200 mg/kg**
400 mg/kg**

Female
100 mg/kg*
200 mg/kg*
400 mg/kg**

n/a n/a Ezurike et al.
(2023)

Chronic (29 d) TST Male
100 mg/kg*
200 mg/kg**
400 mg/kg**

Female
100 mg/kg*
200 mg/kg*
400 mg/kg*

i.p. n/a n/a Mouse C57BL/6 Male SPT: n = 7 per
group
TST: n = 8–10 per
group
FST: n = 9–10 per
group
Control
Control + GLP
(Low, Medium,
High)
CSDS Model
CSDS + GLP
(Medium)
Imipramine

CSDS 10 d 5–10 min daily n/a n/a Polysaccharide Li et al. (2021a)

SPT 2 h Once CSDS Model***

Subchronic (5 d) FST Last 4 min of
6 min

Non-CSDS
1 mg/kg

5 mg/kg***
12.5 mg/kg

CSDS
5 mg/kg###

Acute (60 min) TST Non-CSDS
1 mg/kg
5 mg/kg*
12.5 mg/kg

CSDS
5 mg/kg#

p.o. Acute (60 min) Water Rat Sprague-
Dawley

Male Control (n = 8)
MAK (Low, High)
(n = 6)
Imipramine (n = 5)

FST 5 min Once 0.3 g/kg
1 g/kg*

n/a Mycelium Matsuzaki et al.
(2013)

i.p. Chronic (21 d) Ethanol + Ethyl
Acetate

Mouse C57BL/6J Male n = 11–13 per
group
Control
Control + GLT

MS 21 d 4 h daily n/a n/a Triterpenoids Mi et al. (2022)

SPT 24 h Once Non-MS
40 mg/kg

(Continued on following page)
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

MS Model
MS + GLT

MS
MS Model****
40 mg/kg####

FST 6 min Non-MS
40 mg/kg

MS
MS Model****
40 mg/kg###

TST Non-MS
40 mg/kg

MS
MS Model*
40 mg/kg#

Splash Test 5 min Non-MS
40 mg/kg

MS
MS Model****
40 mg/kg####

Nest Building 24 h Non-MS
40 mg/kg

MS
MS Model***
40 mg/kg####

p.o. Subchronic (3 d) Water Rat Wistar Male n = 6–9 per group
Control
Binge Drinking
(EtOH) Model
Binge + AEGI

Binge Drinking 35 d Weekly (daily
administration for 3
consecutive days)

n/a n/a Models binge drinking
induced depression

Nascimento et al.
(2020)

FST Last 3 min of
5 min

Once Binge Drinking
Model****

0.1 mL/100 g##

p.o. Acute (60 min) Petroleum Ether,
Chloroform,

Methanol, and Water
Methanol → Ethyl
Acetate, n-Butanol,

and Methanol
fractions

Mouse Swiss
Albino

Male n = 6 per group
Control
Extracts
Pet. Ether (Low,
Medium, High)
Chloroform (Low,
Medium, High)
Methanol (Low,
Medium, High)
Aqueous (Low,
Medium, High)
Imipramine
Fractions
E: Ethyl Acetate
(Very Low, Low,
Medium)
N: n-Butanol (Very
Low, Low, Medium)
MF: Methanol-
soluble fraction
(Low, Medium,
High)
Imipramine

FST Last 4 min of
6 min

Once Extracts
100 mg/kg*
200 mg/kg*

400 mg/kg* (for all
extracts)
Fractions

50 mg/kg – E*, N*
100 mg/kg – E*, N,

MF*
200 mg/kg – E*, N*,

MF*
400 mg/kg – MF*

n/a n/a Singh et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

i.g. Acute (30 min) Water Mouse Swiss
Albino

Male n = 11–12 per
group
Control
G. lucidum extract
(Very Low, Low,
Medium, High)

FST Last 4 min of
6 min

Once 50 mg/kg
100 mg/kg**
200 mg/kg***
400 mg/kg***

n/a Mycelium Socala et al.
(2015)

p.o. Chronic (28 d) Water Mouse C57BL/6 Male n = 10 per group
Control
Control + PGL
(Low, Medium,
High)
UCMS Model
UCMS + PGL
(Low, Medium.
High)
UCMS +
Fluoxetine

UCMS 56 d Daily n/a n/a Spore polysaccharide-
peptide

Zhao et al. (2021)

SPT 24 h Once UCMS Model**
100 mg/kg#

200 mg/kg##

400 mg/kg##

Acute (1 h)
Chronic (28 d)

FST Last 4 min of
6 min

Acute
100 mg/kg
200 mg/kg*
400 mg/kg**
Chronic

UCMS Model
100 mg/kg##

200 mg/kg##

400 mg/kg##

Acute (1 h) TST 100 mg/kg
200 mg/kg**
400 mg/kg**

Ganoderma applanatum

p.o. Acute (30 min) Ethanol and Water Mouse Swiss
Albino

Both n = 5 per group
Control
Ethanol (Low,
High)
Aqueous (Low,
High)
Diazepam [i.p.]

TST 6 min Once Ethanol
200 mg/kg
400 mg/kg
Aqueous
200 mg/kg
400 mg/kg

n/a n/a Hossen et al.
(2021)

p.o. Acute (60 min) Petroleum Ether,
Chloroform,

Methanol, and Water

Mouse Swiss
Albino

Male n = 6 per group
Control
Extracts
Pet. Ether (Low,
Medium, High)
Chloroform (Low,
Medium, High)
Methanol (Low,
Medium, High)
Aqueous (Low,
Medium, High)
Imipramine

FST Last 4 min of
6 min

Once Extracts
100 mg/kg*
200 mg/kg*

400 mg/kg* (for all
extracts)

n/a n/a Singh et al. (2021)

Ganoderma philippii

p.o. Acute (60 min) Petroleum Ether,
Chloroform,

Methanol, and Water

Mouse Swiss
Albino

Male n = 6 per group
Control
Extracts
Pet. Ether (Low,
Medium, High)

FST Last 4 min of
6 min

Once Extracts
100 mg/kg*
200 mg/kg*

400 mg/kg* (for all
extracts)

n/a n/a Singh et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

Chloroform (Low,
Medium, High)
Methanol (Low,
Medium, High)
Aqueous (Low,
Medium, High)
Imipramine

Ganoderma brownii

p.o. Acute (60 min) Petroleum Ether,
Chloroform,

Methanol, and Water

Mouse Swiss
Albino

Male n = 6 per group
Control
Extracts
Pet. Ether (Low,
Medium, High)
Chloroform (Low,
Medium, High)
Methanol (Low,
Medium, High)
Aqueous (Low,
Medium, High)
Imipramine

FST Last 4 min of
6 min

Once Extracts
100 mg/kg*
200 mg/kg*

400 mg/kg* (for all
extracts)

n/a n/a Singh et al. (2021)

Ganoderma sp.

i.v. Chronic (21 d) n/a Rat Sprague-
Dawley

Male Sham (n = 8)
MCAO (n = 7)
PSD Model (n = 7)
PSD + GAA (Low,
Medium, High)
(n = 8)

PSD (UCMS) 21 d Daily n/a n/a Ganoderic acid
(triterpenoid)

Performs MCAO to
induce stroke conditions

Use UCMS to
establish PSD

Zhang et al.
(2021a)

SPT 3 h Once PSD Model̂̂
10 mg/mL
20 mg/mL#

30 mg/mL##

^̂p < 0.01 v.s. MCAO
group

Grifola frondosa

Food Subchronic:
Cohort 1 (5 d)
Cohort 2 (1 d)
Cohort 3 (5 d)

n/a Mouse CD-1 Male Cohort 1 (n = 14
per group)
Cohort 2 (n = 14
per group)
Cohort 3 (n =
10–11 per group)
For each cohort:
Control
Low
Medium
High
Imipramine

FST Last 4 min of
6 min

Once 1:4 GF:chow**
1:2 GF:chow**
1:1 GF:chow***

n/a Tested with multiple
cohorts

Bao et al. (2017)

Subchronic:
Cohort 1 (1 d)
Cohort 2 (5 d)
Cohort 3 (1 d)

Cohort 1 (n = 14
per group)
Cohort 2 (n = 13
per group)
Cohort 3 (n = 11
per group)

TST 1:4 GF:chow*
1:2 GF:chow**
1:1 GF:chow**
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

For each cohort:
Control
Low
Medium
High
Imipramine

Psilocybe cubensis

p.o. (whole)
i.p.

(extracts)

Acute (30 min) Methanol and Water Mouse Swiss
Webster

Male n ≥ 7 per group
Control
Whole Mushroom
(Very High)
Methanol (Low,
Medium, High)
Aqueous (Low,
Medium, High)
Fluoxetine [s.c.]
Imipramine [i.p.]

FST 5 min Once Whole Mushroom
1000 mg/kg*
Methanol
1 mg/kg

10 mg/kg**
100 mg/kg***
Aqueous
1 mg/kg**
10 mg/kg***
100 mg/kg***

n/a n/a Hernandez-Leon
et al. (2024)

i.p. Acute (30 min) Chloroform Mouse NMRI Male n = 8 per group
Control
PCE (Low, High)
PCE (Low) +
Ketamine
PCE (High) +
Ketamine
Ketamine
Fluoxetine

FST Last 4 min of
6 min

Once 10 mg/kg
40 mg/kg

For PCE (10 mg/kg):
PCE + Ketamine (1

mg/kg)***
For PCE (40 mg/kg):
PCE + Ketamine (1

mg/kg)***

Ketamine Alkaloid extract Mahmoudi et al.
(2018)

TST

Pleurotus eryngii

p.o. Chronic (84 d) Ethanol Rat Wistar Female Sham (n = 10)
OVX Model (n =
10)
OVX + P. eryngii
(n = 8)

OVX 84 d Once n/a n/a Models menopausal
depression

Minami et al.
(2013)

Chronic (79 d) FST 6 min Once OVX Model*
500 mg/kg#

i.p. Acute (30 min) Ethanol Mouse n/a n/a n = 4 per group
Control
EtOH Extract
Mixture (pellet)
R2 Fraction
Fluoxetine

FST 4 min Once EtOH Extract*
Mixture (pellet)**

R2 Fraction*
(all 20 mg/kg)

n/a EtOH Extract → Pellet →
R2: fractions increase in

purification levels

Park et al. (2021)

Pleurotus ostreatus

Food Subchronic (5 d) n/a Mouse CD-1 Male Control (n = 11)
PO (n = 11)
Imipramine (n =
10–11)

FST Last 4 min of
6 min

Once 1:2 PO:chow n/a n/a Bao et al. (2017)

Subchronic (1 d) TST

(Continued on following page)
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

Pleurotus citrinopileatus

Food Chronic (21 d) n/a Mouse C57BL/6J Male Control (n = 6)
Control + 10% (n
= 8)
CRS Model (n = 8)
CRS + 10% (n = 8)

CRS 21 d 4 h daily n/a n/a Antioxidant
ergothioneine (ERGO)
and golden oyster
mushroom extract

(GOME)

Nakamichi et al.
(2016)

Chronic (14 d) Control (n = 11)
10% GOME (n =
11)
ERGO (n = 6)
Ginkgo biloba
extract (n = 6)

FST 5 min

Once

10% GOME*
120 mg/100 g

ERGO*

Control (n = 15)
0.1% GOME (n = 6)
0.3% GOME (n = 6)
1% GOME (n = 12)
10% GOME (n = 15)

TST First 2 min of
3 min

0.1%
0.3%
1%*
10%*

Marasmius androsaceus

p.o. Subchronic (7 d) n/a Mouse Kunming Male n = 8 per group
Control
MEPS1 (High)
MEPS2 (Medium)
MEPS3 (Low)

FST 6 min Once 180 mg/kg
60 mg/kg*
30 mg/kg

n/a Extracellular
polysaccharide

Song et al. (2020)

TST 5 min 180 mg/kg*
60 mg/kg**
30 mg/kg

p.o. Chronic (28 d) n/a Rat Sprague-
Dawley

Male n = 10 per group
Control
UCMS Model
UCMS + MEPS
(Low, Medium,
High)

UCMS 56 d Daily n/a n/a Exopolysaccharides Song et al. (2017)

SPT 1 h Weekly for 7 weeks UCMS Model**
6 mg/kg
30 mg/kg#

150 mg/kg##

Model: significant
from day 14 to day

56
MEPS: 30 mg/kg and

150 mgm/kg
significant from day

49 to day 56

FST Last 5 min of
6 min

Once UCMS Model***
6 mg/kg#

30 mg/kg###

150 mg/kg###

TST UCMS Model***
6 mg/kg

30 mg/kg###

150 mg/kg###
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

p.o. Subchronic (7 d) n/a Mouse Kunming Both n = 10 per group
Control
MEPS (Low,
Medium, High)
Fluoxetine [i.g.]

FST Last 5 min of
6 min

Once 10 mg/kg
50 mg/kg
250 mg/kg*

n/a Exopolysaccharide Song et al. (2016)

TST 6 min 10 mg/kg
50 mg/kg*

250 mg/kg***

i.g. Chronic (14 d) n/a Mouse C57BL/6J Male n = 8 per group
IR
CRS Model
CRS + M

IR + Dp (CRS) 21 d 4 h daily n/a n/a Mycelium
Mice were irradiated with
13 Gy TAI to induce

intestinal radiation injury
CRS was used to induce

depression

Zhao et al. (2023)

FST Last 4 min of
6 min

Once CRS Model+++

CRS + M##

+++p < 0.001 v.s. IR
group

TST CRS Model++

CRS + M##

++p < 0.01 v.s. IR
group

Collybia maculata

i.p. Acute (immediate) n/a Mouse C57BL/6J Male n = 7–10 per group
Vehicle
Colly

FST 6 min Once 2 mg/kg n/a Colly: non-nitrogenous
sesquiterpene of C.

maculata

Gupta et al. (2016)

Poria cocos

p.o. Chronic (35 d) Water Rat Sprague-
Dawley

Male n = 7 per group
Control
Control + PCW
(Low, Medium,
High)
UCMS Model
UCMS + PCW
(Low, Medium,
High)

UCMS 35 d Daily n/a n/a Sclerotium Huang et al.
(2020)

Chronic (35 d) SPT 1 h Weekly for 5 weeks UCMS Model*
100 mg/kg#

300 mg/kg#

900 mg/kg
(After 4 weeks)

Chronic (28 d) FST 5 min Once 100 mg/kg*
300 mg/kg*
900 mg/kg*

Lentinula edodes

p.o. Acute (2 h)
Chronic (14 d)

n/a Mouse ICR Male n = 5 per group
Control
Pilopool

FST Last 4 min of
6 min

Once Acute
10 mL/kg*
Chronic
10 mL/kg

Pilopool mixture:
30% of L. edodes/shiitake

extract +
30% water-soluble

chitosan, 30% Allium
sativum L. extract, 0.5% of
Dioscorea batatas D., and

0.5% of bamboo salt

n/a Koo et al. (2008)

(Continued on following page)
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

Armillaria mellea

p.o. Chronic (35 d) Water Rat Sprague-
Dawley

Male n = 7 per group
Control
UCMS Model
UCMS + WAM
(Low, Medium,
High)
UCMS +
Fluoxetine

UCMS 35 d Daily n/a n/a n/a Lin et al. (2021a)

Chronic (34 d) SPT 1 h Once UCMS Model**
250 mg/kg#

500 mg/kg#

1000 mg/kg#

Chronic (30 d) FST 5 min 250 mg/kg####

500 mg/kg####

1000 mg/kg####

i.p. Acute (30 min) Ethyl Acetate Mouse ICR Male n = 10 per group
Control
PSAM (Lowest,
Very Low, Low,
Medium, High,
Very High,
Highest)
Fluoxetine

FST Last 4 min of
6 min

Once 0.05 mg/kg
0.1 mg/kg
0.5 mg/kg*
1 mg/kg*
5 mg/kg*
20 mg/kg
50 mg/kg

n/a Protoilludane
sesquiterpenoid aromatic

esters

Zhang et al.
(2021b)

TST 0.05 mg/kg
0.1 mg/kg
0.5 mg/kg*
1 mg/kg**
5 mg/kg*
20 mg/kg*
50 mg/kg

For PSAM (0.1 mg/
kg):

PSAM + Fluoxetine
(5 mg/kg)*

PSAM + Reboxetine
(2.5 mg/kg)**

Fluoxetine
Reboxetine

Agaricus brasiliensis

p.o. Chronic (30 d) Water Mouse Kunming Male n = 10 per group
Control
UCMS Model
UCMS + AWE

UCMS 28 d Daily n/a n/a n/a Xin et al. (2022)

TST Last 5 min of
6 min

Once UCMS Model*
3 g/kg#

Xylaria sp.

i.g. Chronic (28 d) n/a Rat Sprague-
Dawley

Male n = 6–9 per group
Control
UCMS Model
UCMS + Wuling
powder (Low,
Medium, High)
UCMS +
Fluoxetine

UCMS 42 d Daily n/a n/a Wuling mycelia powder Tan et al. (2016)

SPT 1 h Weekly for 6 weeks UCMS Model***
0.5 g/kg#

1 g/kg###

2 g/kg###

Model: significant
from week 2 to week

6
Wuling: significant

from week 6

(Continued on following page)
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TABLE 1 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different mushroom species. Subchronic and chronic treatment schedules include daily
administration of drug unless otherwise stated.

Route Treatment
duration

Extraction
method

Rodent
species

Strain Sex Sample size Behavioural
test or model

Test
duration

Test
frequency

Doses
tested

Combined with Other notes Reference
number

Antrodia cinnamomea

p.o. Chronic (16 d) n/a Mouse Kunming Both n = 24 per group
Control
AC (Low, Medium,
High)

Weight-loaded FST n/a Once 0.1 g/kg
0.3 g/kg**
0.9 g/kg**

n/a Mycelium
Does not focus on

depression nor use valid
screen

Liu et al. (2017b)

Mushrooms (General)

i.p. Acute (60 min) n/a Mouse ICR Male n = 10 per group
Er, ErF, ErS, ErN
(Low, High)
ErN (Very Low,
Low, Medium,
High)
Fluoxetine
Er (Low) +
Fluoxetine
Er (Low) +
Tianeptine
Er (Low) +
Reboxetine

FST Last 4 min of
6 min

Once All derivatives:
5 mg/kg – Er*, ErF*,

ErS*, ErN**
20 mg/kg – Er*,
ErF*, ErS*, ErN**

ErN:
0.1 mg/kg*
0.5 mg/kg
1 mg/kg*
5 mg/kg**

For ErN (0.5 mg/
kg):

ErN + Fluoxetine (5
m/g/kg)

ErN + Tianeptine
(15 mg/kg)**

ErN + Reboxetine
(2.5 mg/kg)**

Fluoxetine
Tianeptine
Reboxetine

Ergosterol and derivatives Lin et al. (2017)

i.g. Subchronic (1 d)
Injected 3 times (23.5
h, 5 h, and 1 h prior to

test)

n/a Rat Long
Evans

Male n = 10 per group
Control
Psilocybin
Baeocystin
Norbaeocystin
Aeruginascin
Fluoxetine

FST 5 min Once Psilocybin*
Baeocystin

Norbaeocystin*
Aeruginascin
(all 1 mg/kg)

n/a Baeocystin,
norbaeocystin,

aeruginascin: tryptamine
alkaloids and analogs of

psilocybin
Preprint; not peer-

reviewed

Rakoczy et al.
(2023)

s.c. Subchronic (3 d) n/a Mouse ICR Male n = 10 per group
Control
CORT Model
CORT + p-CA

CORT 23 d Daily 20 mg/kg n/a P-Coumaric acid (p-CA) Yu et al. (2022)

i.p. SPT 24 h Once CORT Model***
75 mg/kg###

FST Last 4 min of
6 min

CORT Model*
75 mg/kg#

*p < 0.05, **p < 0.01, ***p <0.001, ****p < 0.0001 compared to control.
#p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 compared to model/vehicle.

Acute (< 1 d), Subchronic (1–7 d), Chronic (> 7 d).

Abbreviations: FST = forced swim test; TST = tail suspension test; OVX = ovariectomy; UCMS = unpredictable chronic mild stress; CORT = corticosterone; SPT = sucrose preference test; CRS = chronic restraint stress; CSDS = chronic social defeat stress; PSD = post-

stroke depression; MS = maternal separation; LPS = lipopolysaccharide; MCAO = middle cerebral artery occlusion; HE = Hericium erinaceus; Gl-E = Ganoderma lucidum extract; EEGL = ethanol extract of Ganoderma lucidum; GLP = Ganoderma lucidum

polysaccharide; MAK = Ganoderma lucidum mycelia; GLT = Ganoderma lucidum triterpenoid; AEGI = aqueous extract of Ganoderma lucidum; PGL = Polysaccharide-peptide of Ganoderma lucidum; GAA = Ganoderic acid; PCE = Psilocybe cubensis extract; PO =

Pleurotus ostreatus; EtOH = ethanol; MEPS = exopolysaccharide polysaccharide ofMarasmius androsaceus; PCW = Poria cocos water extract; WAM = water extract of Armillaria mellea; PSAM = Protoilludane sesquiterpenoid aromatic esters from Armillaria mellea;

AWE = Agaricus brasiliensis water extract; AC = Antrodia cinnamomea; Er = Ergosterol; IR = intestinal radiation; E2 = 17β-estradiol; Dp = depression; i.p. = intraperitoneal; p.o. = per os (oral); i.g. = intragastric; s.c. = subcutaneous; i.v. = intravenous.
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TABLE 2 Summary of rodent depressionmodels and behavioural tests used to screen for antidepressant effects in different non-mushroom species of fungi.
Subchronic and chronic treatment schedules include daily administration of drug unless otherwise stated.

Cordyceps militaris

p.o. Chronic
(34 d)

Water Rat Sprague-
Dawley

Male n = 6 per group
Control
UCMS Model
UCMS + CW
(Low, Medium,
High)
UCMS +
Fluoxetine

UCMS 34 d Daily n/a n/
a

n/a Lin et al.
(2021b)

SPT 1 h Once UCMS Model***
125 mg/kg###

250 mg/kg#

500 mg/kg#

i.g. Chronic
(42 d)

n/a Mouse ICR Male n = 20 per
group
Control
UCMS Model
UCMS + COR
(Low, High)
UCMS +
Fluoxetine

UCMS 42 d Daily n/a n/
a

Cordycepin (3’-
deoxyadenosine):
component of C.

militaris

Tianzhu et
al. (2014)

SPT 12 h Twice
(Weeks
3 and 6)

Week 3
UCMS Model
20 mg/kg
40 mg/kg
Week 6

UCMS Model**
20 mg/kg##

40 mg/kg##

FST Last
4 min
of

6 min

Once UCMS Model**
20 mg/kg#

40 mg/kg##

TST Twice
(Weeks
3 and 6)

Week 3
UCMS Model
20 mg/kg
40 mg/kg
Week 6

UCMS Model**
20 mg/kg##

40 mg/kg##

i.g. Chronic
(28 d)

Water Mouse Kunming Male n = 12 per
group
Control
PCM (Low,
Medium, High)

Weight-
loaded FST

n/a Once 40 mg/kg*
80 mg/kg*
160 mg/kg*

n/
a

Polysaccharide
Does not focus on
depression nor use

valid screen

Xu (2016)

Cordyceps sinensis

p.o. Subchronic
(5 d)

Supercritical
Fluid and Hot

Water

Mouse C57BL/6 Male n = 17 per
group
Control
Supercritical
(Low, Medium,
High)
Aqueous (Low,
Medium, High)

TST 6 min Once Supercritical
2.5 mL/kg
5 mL/kg*
10 mL/kg*
Aqueous
500 mg/kg
1000 mg/kg
2000 mg/kg

n/
a

n/a Nishizawa
et al.
(2007)

p.o. Chronic
(30 d)

n/a Mouse Swiss
Albino

Both n = 6 per group
Control
Natural C.
sinensis (Low,
Medium, High)
Lab-cultured
Mycelia (Low,
Medium, High)
Fluoxetine

Photoactometer n/a Once NC
100 mg/kg
300 mg/kg*
500 mg/kg*

LCM
100 mg/kg
300 mg/kg*
500 mg/kg*

n/
a

Mycelium Singh et al.
(2014)

Paecilomyces tenuipes

p.o. Chronic
(28 d)

Water Rat Sprague-
Dawley

Male n = 10 per
group
Control
UCMS Model
UCMS +
PTNE (Low,
Medium, High)
UCMS +
Fluoxetine

UCMS 56 d Daily n/a n/
a

Cultured mycelium Liu et al.
(2017a)

FST Last
5 min
of

6 min

Once UCMS Model***
0.04 g/kg##

0.2 g/kg###

1 g/kg###

p.o. Chronic
(21 d)

Alcohol and
Water

Mouse n/a Male n = 10 per
group
Control
Control + AE
(Low, Medium,
High)
Control + WE
(Low, Medium,
High)

UCMS 21 d Daily n/a n/
a

Mutant P. tenuipes
strain M98
Mycelium

Li et al.
(2019)

SPT 1 h Once UCMS
UCMS Model*

Alcohol
0.05 g/kg
0.25 g/kg
2.5 g/kg#

Water

(Continued on following page)
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TABLE 2 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different non-mushroom
species of fungi. Subchronic and chronic treatment schedules include daily administration of drug unless otherwise stated.

Control +
Fluoxetine
UCMS Model
UCMS + AE
(Low, Medium,
High)
UCMS + WE
(Low, Medium,
High)
UCMS +
Fluoxetine

0.04 g/kg
0.2 g/kg
2 g/kg#

Chronic (15
d), Chronic

(21 d;
UCMS)

FST Last
4 min
of

6 min

Non-UCMS
Alcohol
0.05 g/kg
0.25 g/kg
2.5 g/kg*
Water

0.04 g/kg
0.2 g/kg
2 g/kg**
UCMS

UCMS Model*
Alcohol
0.05 g/kg
0.25 g/kg
2.5 g/kg#

Water
0.04 g/kg#

0.2 g/kg
2 g/kg#

TST Non-UCMS
Alcohol
0.05 g/kg*
0.25 g/kg
2.5 g/kg
Water

0.04 g/kg*
0.2 g/kg
2 g/kg*
UCMS

UCMS Model*
Alcohol
0.05 g/kg
0.25 g/kg
2.5 g/kg
Water

0.04 g/kg
0.2 g/kg#

2 g/kg#

Paecilomyces hepiali

p.o. Chronic
(28 d)

Water Rat Sprague-
Dawley

Male n = 6 per group
Control
UCMS Model
UCMS + PHC
(Low, Medium,
High)
UCMS +
Fluoxetine

UCMS 56 d Daily n/a n/
a

n/a Wang et al.
(2017)

SPT 2 h Once UCMS Model**
0.08 g/kg
0.4 g/kg#

2 g/kg##

FST Last
5 min
of

6 min

UCMS Model*
0.08 g/kg#

0.4 g/kg
2 g/kg##

Ophiocordyceps formosana

i.p. Subchronic
(5 d)

n/a Mouse C57BL/6 Male Control (n = 6)
STZ Model (n
= 8)
STZ + OFE (n
= 8)
STZ +
Rosiglitazone
(n = 8)

STZ 5 d Daily 40 mg/kg n/
a

Uses STZ to induce
diabetes

Models diabetes-
induced depression

Huang et
al. (2016)

p.o. Chronic
(28 d)

TST 6 min Once STZ Model*
25 mg/mL#

Penicillium sp.

i.p. Acute
(30 min)

n/a Mouse ICR Male n = 8 per group
36 groups
Control
2a–2i
3a–3r
4a–4g
Fluoxetine

FST Last
4 min
of

6 min

Once 0.1 mL/20 g*
*28 compounds

showed significant
antidepressant effect
(26.23% – 89.96%

decrease in
immobility time vs.

control)

n/
a

Compounds are
derivatives of P. sp.

Jin et al.
(2019)

(Continued on following page)
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animal models, which could then be reversed by compounds with
antidepressant activity, behavior was predominantly assessed with
three main tests, which included the forced swim test (FST)
(19 studies), tail suspension test (TST) (13 studies) and sucrose
preference test (SPT) (16 studies)—multiple studies used two or
more of these tasks. One study assessed behavior in the splash test as
well as nest building (Mi et al., 2022), while one study measured
locomotor activity and neuromuscular endurance (Singh et al.,
2014). Twenty one of the 50 studies did not use an animal model
of depression per se, and tested antidepressant activity solely with
standalone antidepressant screens. This included 18 studies which
used the FST and 10 that used the TST (seven studies used both);
only two of these 21 studies used rats (Matsuzaki et al., 2013;
Rakoczy et al., 2023).

Antidepressant effects of mushroom extracts
The Kingdom Fungi encompasses many known species which

can be further classified into subgroups by the mechanism with
which they reproduce and disseminate their spores (Boundless,
2024). Fungi subcategories include mushrooms, as well as other
fungi such as moulds and yeasts. Mushrooms from the genus
Psilocybe are of particular interest as many from the genus are
known to contain the psychoactive compounds psilocybin and
psilocin. This includes the species Psilocybe cubensis, which has
been demonstrated to be able to alleviate depression and anxiety
symptoms in clinical trials (Ross et al., 2016; Goodwin et al., 2022).
Other mushrooms species such as H. erinaceus and G. lucidum do
not necessarily contain psychoactive compounds, but are still of
interest in models and studies of depression. Most research
investigating the use of medicinal mushrooms and their extracts
to treat depression has been in preclinical settings, rather than in
clinical trials.

Of the 19 species of mushroom tested for antidepressant-like
activity in the current review, the most common one wasG. lucidum,
in nine studies Table 1. Two studies used UCMS and reported 28-
day treatment with doses of 100–500 mg/kg, p.o. exerted
antidepressant-like effects in the SPT (Cheng, 2023) and both the
SPT and FST (Zhao et al., 2021). A 5 mg/kg, i.p. dose in mice exerted
antidepressant-like effects in the TST and FST after chronic social
defeat stress (Li H. et al., 2021), while effects in mice subjected to the
maternal separation model were reversed with a 21-day treatment
with 40 mg/kg, i.p. of extract (Mi et al., 2022); 100 mg/kg, p.o. also

reversed immobility in the FST in a binge-alcohol model
(Nascimento et al., 2020). Antidepressant screens found positive
effects with chronic doses of 100–1,000 mg/kg, p.o. in the FST and
TST (Matsuzaki et al., 2013; Socala et al., 2015; Singh et al., 2021;
Ezurike et al., 2023). Significant antidepressant-like effects were
observed with the UCMS model with Ganoderma sp. extracts (21-
day, 20–30 mg/kg, i.v.) (Zhang L. et al., 2021); in this study, the
authors did not specify with species of Ganoderma the active
compound ganoderic acid-a was extracted from.

Hericium erinaceus was examined in seven studies. Extracts
(25 mg/kg, i.p. and 200–400 mg/kg, p.o.) for 28 days reversed the
effects of chronic restraint stress in the SPT, TST (Chong et al., 2021)
and FST (Chiu et al., 2018). Doses of 12–24 mg (combined with
Chlorella Vulgaris), p.o. for 21 days significantly reversed immobility
in the FST caused by treatment with high dose corticosterone (Chou
et al., 2022). A single oral dose of 200 mg/kg reversed increased
immobility in the FST and TST caused by lipopolysaccharide (Yao
et al., 2015), while 28-day administration at 20–60 mg/kg, p.o.
decreased immobility in the TST and FST (Ryu et al., 2018).

For other mushroom species examined, effects were observed
with the UCMS model with Marasmius androsaceus (28-day,
30–150 mg/kg, p.o.), Poria cocos (35-day, 100–300 mg/kg, p.o.)
(Huang et al., 2020), Armillaria mellea (35-day, 250–1,000 mg/kg,
p.o.) (Lin et al., 2021a), Agaricus brasiliensis (30-day, 3,000 mg/kg,
p.o.) (Xin et al., 2022) and Xylaria sp. (28-day, 500–2000 mg/kg, i.g.)
(Tan et al., 2016). Other animal models included antidepressant-like
effects in a model of menopausal depression (Pleurotus eryngii, 79-
day, 500 mg/kg, p.o.) (Minami et al., 2013), chronic restraint stress
(Pleurotus citrinopileatus, 14-day, 1,200 mg/kg, in food) (Nakamichi
et al., 2016) (M. androsaceus, 14-day, i.g.) (Zhao et al., 2023) and
high-dose corticosterone (P-coumaric acid–compound found in
some mushrooms, 3-day, 75 mg/kg, i.p.) (Yu et al., 2022).

As an antidepressant screen, studies using the standalone FST
and TST reported significant antidepressant-like effects with
Ganoderma applanatum, Ganoderma philippii, and Ganoderma
brownii (single dose, 100–400 mg/kg, p.o.) (Singh et al., 2021),
Grifola frondosa (1/5-days, in a 1:1-1:4 ratio of Griflola frondosa
powder to rat chow ratio) while Pleurotus ostreatus had no effect in
the same study (Bao et al., 2017), P. cubensis (single dose.
1,000 mg/kg, p.o. (Hernandez-Leon et al., 2024), and single dose
10–40 mg/kg, i.p., combined with ketamine) (Mahmoudi et al.,
2018), P. eryngii (single dose, 20 mg/kg, i.p.) (Park et al., 2021),

TABLE 2 (Continued) Summary of rodent depression models and behavioural tests used to screen for antidepressant effects in different non-mushroom
species of fungi. Subchronic and chronic treatment schedules include daily administration of drug unless otherwise stated.

Beauveria sp.

i.g. Chronic
(21 d)

n/a Mouse Kunming Male n = 10 per
group
Control
UCMS Model
UCMS + BCEF
(Low, Medium,
High)
UCMS +
Moclobemide

UCMS 21 d Daily n/a n/
a

BCEF0083:
bioactive compound

Zhou et al.
(2005)

SPT 24 h Once UCMS Model**
25 mg/kg##

50 mg/kg##

100 mg/kg##

*p < 0.05, **p < 0.01, ***p <0.001, ****p < 0.0001 compared to control
#p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 compared to model/vehicle

Acute (< 1 d), Subchronic (1–7 d), Chronic (> 7 d)

Abbreviations: FST = forced swim test; TST, tail suspension test; UCMS, unpredictable chronic mild stress; SPT, sucrose preference test; STZ, streptozotocin(-induced diabetes); CW, Cordyceps

militaris water extract; COR, Cordycepin; PCM = polysaccharide of Cordyceps militaris; PTNE = Paecilomyces tenuipes N45 aqueous extract; AE, alcohol extract; WE, water extract; PHC,

Paecilomyces hepiali extract; OFE, Ophiocordyceps formosana extract; BCEF = bioactive compound from entomogenous fungi; i.p. = intraperitoneal; p.o. = per os (oral); i.g. = intragastric.
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M. androsaceus (7-day, 50–250 mg/kg, p.o.) (Song et al., 2016; Song
et al., 2020), Lentinula edodes (single dose 10 ml/kg p.o., [30% water
soluble chitosan, 30% Allium sativum extract, 30% L. edodes extract,
0.5% Dioscorea Batatas extract, 0.5% bamboo salt extract]) (Koo
et al., 2008), A. mellea (single dose, 5–20 mg/kg, i.p.) (Zhang T. et al.,
2021), as well as ergosterol and derivatives (single dose,
0.1–20 mg/kg, i.p.) (Lin et al., 2017), and the mushroom extracts
psilocybin and norbaeocystin (three doses over 24 h, 1 mg/kg, i.g.)
(Rakoczy et al., 2023). No antidepressant effect was observed for
Collybolide (a fungal metabolite; 2 mg/kg, i.p.) extract (Gupta
et al., 2016).

Antidepressant effects of fungus extracts
For the seven species of fungus that do not produce

mushrooms, antidepressant activity was examined using the
UCMS model in six studies Table 2. Antidepressant-like effects
on the SPT and/or FST were observed with Cordyceps militaris (34-
day, 125–500 mg/kg, p.o.) (Lin et al., 2021b) and (42-day,
20–40 mg/kg, i.g.) (Tianzhu et al., 2014), Paecilomyces tenuipes
(28-day, 40–1,000 mg/kg, p.o.) (Liu C. et al., 2017) and (21-day,
40–2,500 mg/kg, p.o.) (Li et al., 2019), Paecilomyces hepiali (28-
day, 80–2000 mg/kg, p.o.) (Wang et al., 2017) and Beauveria
sp. (21-day, 25–100 mg/kg, i.g.) (Zhou et al., 2005). Treatment
with Ophiocordyceps formosana (28-day, 2.5 mg, p.o.) reversed
TST deficits in a streptozotocin-induced model of diabetic
depression (Huang et al., 2016). Three studies used standalone
animal antidepressant screens, in which Cordyceps sinensis
decreased immobility in the TST (5-day, 5–10 ml/kg, p.o.)
(Nishizawa et al., 2007) and locomotor activity (30-day,
300–500 mg/kg, p.o.) (Singh et al., 2014), while a wide range of
Penicillium sp. derivatives (single dose, 30 mg/kg, i.p.) were active
in the FST (Jin et al., 2019).

Discussion

In the current analysis, we have summarized the main findings
from a scoping review of the effects of mushroom and fungus
extracts in preclinical tests of antidepressant efficacy. While this
topic covers a broad range of compounds and techniques, several
important themes are evident. Firstly, a large number of different
species exhibit antidepressant-like activity, including 19 species of
mushrooms and seven species of other fungi. For each of these,
there can be multiple derivatives with their own antidepressant-
like effects; for example, one study with Penicillium sp. identified
28 individual compounds with antidepressant-like effects in the
FST (Jin et al., 2019), including some with more potent effects than
the positive control fluoxetine. Thus, it appears that there is
significant potential for novel compounds with antidepressant
activity within these organisms. While this includes mushrooms
with extracts that have traditionally been associated with
psychoactive properties, such as P. cubensis, other novel
compounds were identified with antidepressant-like effects. For
example, P-coumaric acid was found to exhibit antidepressant-like
effects after high dose corticosterone treatment (Yu et al., 2022);
and was previously reported to exert pro-cognitive and anxiolytic
effects in rodents (Scheepens et al., 2014; Kim et al., 2017; Ghaderi
et al., 2022). Several of the species evaluated in this review have

been tested in humans, confirming benefits for clinical depression.
The antidepressant effects of psilocybin and psilocin, which are
present in multiple of the current mushroom species are now well
established (Griffiths et al., 2016; Ross et al., 2016; Davis et al.,
2021; Eisenstein, 2022; Goodwin et al., 2022). In addition, one
study showed that menopausal women experienced a reduction in
depression and anxiety after 4 weeks of Hericium erinaceus intake
(Nagano et al., 2010) while another showed a non-significant trend
of reduced depression in women with fibromyalgia who received
micromilled G. lucidum carpophores for 6 weeks (Pazzi
et al., 2020).

Secondly, viewed as a whole, there are a number of both
strengths and limitations within this literature. A positive is that
the majority of studies administered compounds orally. While for
many, use of oral gavage on a daily basis is technically more
challenging than i.p. or s.c. drug administration in rodents
(Turner et al., 2011), it strongly increases the translational
validity of the studies, as human trials will be likely to use the
same route of administration and be affected by similar
pharmacokinetic processes, such as first-pass metabolism and low
bioavailability (Bicker et al., 2020). It is also promising that
antidepressant-like effects were observed across a wide duration
of treatments with psychedelic and non-psychedelic-containing
mushrooms and other fungi. Psychedelic compounds generally
induce rapid drug tolerance upon repeated administration
(Baumeister et al., 2014; Huang et al., 2022), where 5-HT2A
receptor desensitization and/or downregulation leads to
functional tolerance that can last several days (Buchborn et al.,
2015; de la Fuente Revenga et al., 2022). However, observations of
antidepressant-like effects weeks after treatment indicate that
therapeutic effects may be sustained with these compounds
(Aleksandrova and Phillips, 2021; Kelmendi et al., 2022). Various
psychedelics have been reported to enhance neuroplasticity
(synapto- and dendritogenesis) in frontocorticolimbic circuitry
and increase functional connectivity in the brain, presumably
reversing structural and functional deficits in depression
(Aleksandrova and Phillips, 2021; Kelmendi et al., 2022). These
psychedelic-induced structural and functional changes have been
shown to last for weeks to months in animal models and/or humans
and are thought to underlie the sustained therapeutic efficacy of
these compounds (Aleksandrova and Phillips, 2021; Kelmendi
et al., 2022).

While not necessarily a weakness, an extremely wide range of
doses of extracts were tested in the current studies. From Tables 1, 2,
these range from 1 mg/kg (Li H. et al., 2021; Rakoczy et al., 2023) to
3,000 mg/kg (Xin et al., 2022). Part of this reflects the effects of
different routes of administration. Most of the extracts were
administered orally, which is associated with a need for higher
dosing, and therefore many of these studies included doses in the
hundreds of milligrams per kilogram. But this wide range of dosing
also represents the likelihood that many of the extracts were in
early stage development, where the active compounds are
unknown, and so whole product, heterogeneous extracts are
used where the efficacy of active compounds may be modified
through both pharmacodynamic (e.g., receptor antagonism) and
pharmacokinetic (e.g., absorption) processes by many inactive
compounds. Thus, such studies are early-stage screens as part
of an iterative process (Reis et al., 2017), and in the case of positive
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effects in the antidepressant screen, this will lead to refinement of
extracts by further chemical analysis and result in greater potency,
with a lower dose needed.

Multiple different animal models of depression and antidepressant
screens were used to test for antidepressant-like effects. Although there
is no universally accepted definition, animal models of depression are
typically more complex and chronic than antidepressant screens, and
are used to emulate some feature(s) of depression, such as its symptoms
(face validity) or underlying biology (construct validity) (Geyer et al.,
1995; Willner, 1984; Belzung and Lemoine, 2011; van den Berg, 2022).
By contrast, antidepressant screens such as the TST and FST are acute
and were originally designed to identify novel antidepressant
compounds (predictive validity) without regard for similarity to the
human condition (Commons et al., 2017). The most commonly used
animal model of depression in the present studies was the UCMS
paradigm, which is based on the development of anhedonia following
exposure to chronic, variable stressors (Willner, 2017;Nollet, 2021). The
model has strong theoretical appeal, based on the chronic onset of the
antidepressant response, and performs well on key measures of validity
(Willner, 1997). Nevertheless, the model has been criticized on both
theoretical and practical grounds (Forbes et al., 1996; Barr and Phillips,
1998; Planchez et al., 2019; Markov and Novosadova, 2022), although a
recentmeta-analysis supported the utility of themodel when specifically
measuring anhedonia (Antoniuk et al., 2019). Thus, greater confidence
should be placed in those studies with mushroom and fungus extracts
that measured anhedonia (such as with the SPT) than those that did
not. Alternate models of depression were also conducted, such as
chronic social defeat stress (Li H. et al., 2021) and maternal
separation (Mi et al., 2022), but typically only in a single study;
given the importance of reproducibility within this field (Petković
and Chaudhury, 2022), the literature will benefit from similar
findings from alternate groups, or reproduction by the same groups
themselves. Additionally, there are a number of other well-established
and commonly used animalmodels of depression that should be used to
assess antidepressant activity with these extracts, including surgical,
pharmacological and genetic models (Barr and Phillips, 2002; Song and
Leonard, 2005; Barr et al., 2011; Overstreet, 2012; Overstreet and
Wegener, 2013; Vollmayr and Gass, 2013; Hendriksen et al., 2015;
Czéh et al., 2016; Aleksandrova et al., 2019).

Slightly under half of the studies (22) utilized antidepressant
screens such as the FST and TST, rather than models of
depression. In most cases, these studies were methodologically
sound, and used the appropriate controls, such as concurrent
testing for locomotor activity and positive drug controls
(Bogdanova et al., 2013; Yankelevitch-Yahav et al., 2015).
However, several studies utilized variants of the FST, such as
the “weight-loaded” FST (Xu, 2016; Liu Y. et al., 2017), whose
validity is less well determined, while one study ascribed
antidepressant-like effects based on changes in locomotor
activity (Singh et al., 2014), which is a behavior with low
specificity for depression. An additional concern was the small
proportion of female animals tested, given that major depression
is twice as common in women as in men: this issue is prevalent in
the field of animal models of neuropsychiatric disorders as a
whole (Kokras and Dalla, 2014), but future studies in this area

should consider including female animals (Gobinath et al., 2018).
Overall, however, the present review suggests that there is
significant potential for novel antidepressant drug
development with mushroom and fungus extracts provided
that models and screens are conducted with high integrity.
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Glossary

FST forced swim test

TST tail suspension test

OVX ovariectomy

UCMS unpredictable chronic mild stress

CORT corticosterone

SPT sucrose preference test

CRS chronic restraint stress

CSDS chronic social defeat stress

STZ streptozotocin (-induced diabetes)

PSD post-stroke depression

MS maternal separation

LPS lipopolysaccharide

MCAO middle cerebral artery occlusion

HE Hericium erinaceus

Gl-E Ganoderma lucidum extract

EEGL ethanol extract of Ganoderma lucidum

GLP Ganoderma lucidum polysaccharide

MAK Ganoderma lucidum mycelia

GLT Ganoderma lucidum triterpenoid

AEGI aqueous extract of Ganoderma lucidum

PGL Polysaccharide-peptide of Ganoderma lucidum

GAA Ganoderic acid

PCE Psilocybe cubensis extract

PO Pleurotus ostreatus

EtOH ethanol

MEPS exopolysaccharide polysaccharide of Marasmius androsaceus

PCW Poria cocos water extract

WAM water extract of Armillaria mellea

PSAM Protoilludane sesquiterpenoid aromatic esters from Armillaria mellea

AWE Agaricus brasiliensis water extract

AC Antrodia cinnamomea

Er Ergosterol

CW Cordyceps militaris water extract

COR Cordycepin

PCM polysaccharide of Cordyceps militaris

PTNE Paecilomyces tenuipes N45 aqueous extract

AE alcohol extract

WE water extract

PHC Paecilomyces hepiali extract

OFE Ophiocordyceps formosana extract

BCEF bioactive compound from entomogenous fungi

IR intestinal radiation

E2 17β-estradiol

Dp depression

i.p. intraperitoneal

p.o. per os (oral)

i.g. intragastric

s.c. subcutaneous

i.v. intravenous
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