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Introduction: The relationship between sleep loss and cognitive impairment has
long beenwidely recognized, but there is still a lack of complete understanding of
the underlyingmechanisms and potential biomarkers. The purpose of this study is
to further explore the shared biological mechanisms and common biomarkers
between sleep loss and cognitive impairment.

Methods: The mitochondria-related genes and gene expression data were
downloaded from the MitoCarta3.0 and Gene Expression Omnibus (GEO)
databases. We identified the differentially expressed mitochondrial-related
genes by combing the differentially expressed genes (DEGs) in sleep
deprivation (SD) and mild cognitive impairment (MCI) datasets with
mitochondria-related gene lists. Shared DEGs were then further analyzed for
enrichment analysis. Next, the common biomarker was identified using two
machine learning techniques and further validated using two independent
GEO datasets. Then GSEA and GSVA were conducted to analyze the
functional categories and pathways enriched for the common biomarker.
Finally, immune infiltration analysis was used to investigate the correlation of
immune cell infiltration with the common biomarker in SD and MCI.

Results: A total of 32 mitochondrial-related differentially expressed genes were
identified in SD andMCI. GO analysis indicated that these genes were significantly
enriched for mitochondrial transport, and KEGG analysis showed they were
mainly involved in pathways of neurodegenerative diseases. In addition,
ATPAF1, which was significantly down-regulated in both SD and MCI, was
identified through machine learning algorithms as the common biomarker
with favorable diagnostic performance. GSEA and GSVA revealed that ATPAF1
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was mainly involved in metabolic pathways, such as oxidative phosphorylation,
acetylcholine metabolic process, valine, leucine and isoleucine degradation.
Immune infiltration analysis showed that the expression of ATPAF1 was
correlated with changes in immune cells, especially those key immune cell
types associated with SD and MCI.

Discussion: This study firstly revealed that mitochondrial dysfunction may be the
common pathogenesis of sleep loss and mild cognitive impairment and identified
ATPAF1 as a possible biomarker and therapeutic target involved in SD and MCI.

KEYWORDS

sleep deprivation, cognitive impairment, mitochondria, machine-learning, biomarkers,
immune infiltration

1 Introduction

Sleep is a fundamental requirement for both physical and
mental health. Unfortunately, sleep problems such as sleep loss
are becoming increasingly common in our hectic modern society
due to lifestyle changes (Altevogt and Colten, 2006; Grandner,
2012). Despite many unanswered questions regarding the
physiological function of sleep and the effects of sleep loss,
substantial evidence derived from experimental and clinical
studies indicates that sleep loss is associated with various
health problems, such as obesity, diabetes (Knutson and Van
Cauter, 2008), cardiovascular disease (Tobaldini et al., 2017), and
cancer (Chen et al., 2018). In addition, it is generally accepted
that getting enough sleep promotes neuronal plasticity,
maintains brain health, and enhances cognition; on the other
hand, insufficient sleep has the opposite impact and impairs
cognitive abilities (Ellenbogen, 2005; Walker and Stickgold,
2006). Moreover, there is increasing epidemiological evidence
of a close reciprocal association between mild cognitive
impairment (MCI) or Alzheimer’s disease (AD) and sleep
problems (Yaffe et al., 2014). For example, a recent meta-
analysis revealed that individuals with sleep problems were
1.55-, 1.65-, and 3.78-times more likely to develop AD, MCI,
and preclinical AD, respectively, than individuals without sleep
problems (Bubu et al., 2017). Therefore, sleep quality is a
potentially modifiable risk factor for cognitive decline and AD.
Recent studies on acute and chronic SD have elucidated the
cellular and molecular mechanisms underlying sleep loss and
cognitive deficits. Sleep loss may contribute to cognitive
impairment not only by influencing the homeostasis of
proteins, such as amyloid-β and tau (Xie et al., 2020; Morrone
et al., 2023), but also by modifying neuro-immune cross-talk
(Kaneshwaran et al., 2019; Parhizkar et al., 2023). However, a
complete understanding of the underlying mechanism is lacking.

Sleep is a period of low metabolic demand that serves metabolic
functions (Morselli et al., 2012; Aalling et al., 2018). Given the
central metabolic function of mitochondria, they play important
roles in regulating sleep and vice versa (Hartmann and Kempf,
2023). Besides the production of ATP, mitochondria also perform a
variety of functions, ranging from the generation of metabolites and
reactive oxygen species (ROS) to the regulation of nuclear gene
expression and epigenetics (Kowaltowski et al., 2009; Chandel, 2014;
Tatar and Sedivy, 2016). Emerging evidence now indicates that
mitochondria are central regulators of cognitive function (Khacho

et al., 2019; Alexander et al., 2021). Mitochondrial dysfunction,
including impaired mitochondrial biogenesis, disruption of the
mitochondrial electron transport chain, increased ROS
production, and changes in mitochondrial dynamics, have been
observed in both AD and MCI (Gan et al., 2014; Onyango et al.,
2016; Apaijai et al., 2020; Wang et al., 2020; Ashleigh et al., 2023).
The mechanisms underlying mitochondrial dysfunction induced by
sleep problems that trigger cognitive impairment are not well
understood.

Nevertheless, there is lack of research combining the
transcriptomic signatures of insufficient sleep status in humans
with MCI patients for analysis, which may provide an
opportunity to investigate the mechanisms of cognitive
dysfunction during sleep loss and identify potential biomarkers
and treatment strategies. Therefore, this study aimed to
investigate the association between SD and MCI using data from
the Gene Expression Omnibus (GEO) database. We used
differentially expressed genes (DEGs) for functional enrichment
analysis and different machine learning approaches for biomarker
identification and investigated the diagnostic value of biomarker
expression in SD and MCI. In addition, the biological role of this
biomarker was analyzed to explore its potential role in disease
development and progression. Finally, we determined the
proportion of immune cell infiltration related to the biomarker.
Using this data, we aimed to provide new insights into the biological
mechanisms of SD-induced cognitive impairment and propose new
ideas for dual-purpose prevention strategies.

2 Materials and methods

2.1 Data collection and preprocessing

The GEO database (https://www.ncbi.nlm.nih.gov/geo/)
provided all of the gene expression datasets used in this study.
Four datasets, numbered GSE39445, GSE140829, GSE56931, and
GSE63061, were selected for this study. These datasets were profiled
using microarrays of peripheral blood samples. Among them,
GSE39445 and GSE56931 showed insufficient sleep status in
humans. GSE39445 consists of two groups: individuals
underwent SD for 39–41 h as the sleep restriction group, and
individuals underwent 10 h of sleep opportunities each day for
1 week as the sleep extension group (Moller-Levet et al., 2013).
In GSE56931, participants underwent a 24-h normal sleep/wake

Frontiers in Pharmacology frontiersin.org02

Liu et al. 10.3389/fphar.2024.1387569

https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1387569


cycle (baseline) and 38 h of continuous wakefulness (sleep
deprivation), followed by subsequent recovery sleep (recovery)
(Arnardottir et al., 2014). In this study, the sleep restriction
group in GSE39445 and sleep deprivation group in
GSE56931 were considered the SD groups, while the sleep
extension group in GSE39445, and baseline and recovery groups
in GSE56931 were considered the control groups in our analysis. In
addition, GSE140829 and GSE63061 were downloaded from the
NCBI GEO database, both of which included gene expression data
for patients with MCI and healthy controls. The GSE140829 dataset
contained 134 MCI samples and 249 normal samples (Nachun et al.,
2019), and GSE63061 contained 110 patients with MCI and
134 control individuals (Sood et al., 2015). In this work, hub
genes associated with SD and MCI were found using
GSE39445 and GSE140829, and validated using GSE56931 and
GSE63061, respectively. For background correction and data
normalization, we used the R package “limma” to handle the raw
data from these datasets.

2.2 Screening mitochondria-related
differentially expressed genes

The coding genes for all proteins found in the mitochondrial
membrane, matrix, cristae, and mitochondria-associated endoplasmic
reticulum membranes were referred to in this study as mitochondria-
related genes (MRGs). A total of 1,136 MRGs was acquired from the
human MitoCarta3.0 database (https://www.broadinstitute.org/
mitocarta/mitocarta30-inventory-mammalian-mitochondrialproteins-
and-pathways) (Rath et al., 2021). Next, using the R package “limma”
with p < 0.05, we carried out a t-test difference analysis to find DEGs
between SD or MCI and control samples. A heatmap is used to
display the resulting differential gene expression data. The
intersection of the genes among the MRGs, SD DEGs, and MCI
DEGs groups was then shown using the R package “VennDiagram”.

2.3 Gene ontology and kyoto encyclopedia
of genes and genomes enrichment analysis

The biological roles of DEGs were further investigated by using
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) enrichment analyses. GO analysis is a popular
bioinformatics technique for gene annotation of cellular
component (CC), molecular function (MF), and biological
process (BP), while KEGG is extensively utilized to comprehend
biological mechanisms and functions. The GOplot program package
was used to visualize the GO and KEGG analyses, with a cutoff p <
0.05. Enrichment analysis of target genes in transcription factor
targets was performed using the Metascape database (https://
metascape.org/gp/index.html#/main/step1).

2.4 Identification of key candidate genes
using machine learning

The key candidate genes for SD and MCI were screened using
two machine learning methods: random forest (RF) and least

absolute shrinkage and selection operator (LASSO). LASSO is a
regularization and variable selection method for statistical models
that constructs a penalty function to solve complex collinear data
and develop a relatively refined model (Tibshirani, 2011). RF, on the
other hand, is developed by Breiman, which uses decision trees to
train classification samples and generates predictions based on the
classification outcomes (Breiman, 2001). The R packages “glmnet”
(Friedman et al., 2010) and “randomForest” (Breiman, 2018) were
used to conduct the LASSO regression and RF analysis.

2.5 Differential expression and ROC analysis
of the common biomarker

The “limma” R package was utilized to compare the differential
expression of the characteristic gene between SD orMCI and control
samples in training and validation sets. A boxplot was used to show
differences in gene expression. In addition, the diagnostic impact of
the characteristic gene in training and validation sets was assessed by
computing the area under the curve (AUC) of a receiver-operating
characteristic (ROC) curve using the “pROC” R package (Robin
et al., 2011).

2.6 GSEA and GSVA

The functional categories and pathways enriched for the
common biomarker were analyzed using GO and KEGG
enrichment analysis based on gene set variation analysis
(GSVA) and gene set enrichment analysis (GSEA), in order to
further investigate the possible role of the common biomarker in
SD and MCI. GSEA and GSVA were carried out using the R
packages “clusterprofiler” (Yu et al., 2012) and “GSVA”
(Hanzelmann et al., 2013). The reference gene set was
determined to be h.all.v6.2.symbols.gmt from the Molecular
Signatures Database, using a cut-off criterion of < 0.05 as a
significant threshold.

2.7 Immune cell infiltration analysis

The percentage of immune cells in each group was ascertained
using the single-sample GSEA (ssGSEA) method. Based on the
expression levels of immune cell-related genes generated from the
expression profiles, the ssGSEA algorithm was used to examine the
infiltration abundance of 28 immune cell types and the correlation
between common biomarkers and immune-infiltrating cells. In
addition, the packages “limma,” “reshape2,” “tidyverse,” and
“ggplot2” were used to evaluate and display the outcomes.

2.8 Statistical analysis

Depending on the features of the data distribution, non-
parametric tests or t-tests were used to assess the statistical
significance of the differences between the two groups. R
4.2.3 was used for all analyses. A threshold of p < 0.05 was
established for statistical significance.
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3 Result

3.1 Screening mitochondria-related
differentially expressed genes

The flow diagram in Figure 1 served as the guide for conducting
this study. We used the expression profiling datasets GSE39445 and
GSE140829 to screen for DEGs in the SD andMCI groups, respectively.
A total of 1926 DEGs was obtained from the SD dataset, including
561 upregulated DEGs and 1,365 downregulated genes. In addition,
3,815 DEGs were identified in the MCI dataset using differential
expression analysis, of which 2,151 genes had upregulated
expression, and 1,664 genes had downregulated expression. As
shown in Figures 2A, B, we employed heatmaps to present the
results of DEGs among different samples in the SD and MCI datasets.

To examine the interrelationship between mitochondrial
dysfunction and cognitive impairment induced by SD, we employed
the MitoCarta 3.0 database to identify MRGs, and then, performed a
cross-comparative analysis to obtain mitochondria-related DEGs. The
Venn diagram shows that 32 overlapping MRGs were identified in the
SD and MCI datasets (Figure 2C). The majority of the mitochondria-

related DEGs were found to be correlated with each other and to exhibit
a high and substantial degree of correlation in the SD andMCI datasets,
according to our correlation analysis conducted to examine the
correlation of gene expression between each of theDEGs (Figures 2D, E).

3.2 Gene ontology and kyoto encyclopedia
of genes and genomes enrichment analysis

Furthermore, using enrichment analysis of these overlapping genes
in transcription factor targets, we identified that the targets of the
32 MitoDEGs were primarily regulated by the zinc finger transcription
factor ZNF85 (GO: M30399), transcriptional repressor MXD1 (GO:
M40757), and master neural transcription factor BRN2 (GO: M12934),
as shown in Figure 2F. Subsequently, we performed GO functional
annotation and KEGG pathway enrichment analyses to further
understand the biological functions and signaling pathways involved
in these DEGs. Figure 2G showed the top 10 GO terms for BP, CC, and
MF, respectively. GO analysis showed that mitochondrial transport
(GO:0006839) was the most significant biological process, whereas
NADH dehydrogenase activity (GO:0003954) and thiolester hydrolase

FIGURE 1
The flowchart of the overall study procedures.
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activity (GO:0016790) were themost significantmolecular functions. In
terms of CC, these genes were mainly distributed in the mitochondrial
matrix (GO:0005759).

As shown in Figure 2H, KEGGpathway analysis results revealed the
32 MitoDEGs were mainly enriched in pathways of neurodegenerative
diseases, for example, Parkinson’s disease (hsa05012), prion disease
(hsa05020), pathways of neurodegeneration-multiple diseases

(hsa05022), Huntington’s disease (hsa05016), amyotrophic lateral
sclerosis (hsa05014) and Alzheimer disease (hsa05010). The
identification of these DEGs could help us obtain a key entry point
for studying the cognitive impairment induced by SD, which could lead
to an improved understanding of the underlying mechanisms of SD-
induced cognitive impairment and facilitate the identification of new
therapeutic targets.

FIGURE 2
Screening mitochondria-related differentially expressed genes and enrichment analysis (A) Heatmap of differentially expressed genes (DEGs)
between SD and control group in GSE 39445. The DEGs with upregulated expression are indicated in red, and the DEGs with downregulated expression
are shown in blue. (B)Heatmap of DEGs between MCI and control group in GSE 140829. The DEGs with upregulated expression are indicated in red, and
the DEGs with downregulated expression are shown in blue. (C) The Venn diagram shows the overlap of candidate genes among mitochondria-
related genes (MRGs), SD DEGs, and MCI DEGs. (D) Correlation matrix of the expression levels of the 32 MitoDEGs in GSE 39445. The size of the colored
squares represents the strength of the correlation; the red color indicates a positive correlation, and the blue color indicates a negative correlation. *
indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. (E) Correlation matrix of the expression levels of the 32 MitoDEGs in GSE 140829. (F) The
enrichment analysis in Transcription Factor Targets of mitochondrial related differentially expressed genes. (G) GO functional enrichment analysis. (H)
KEGG pathway enrichment analysis.
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3.3 Identification of key candidate genes
using machine learning

Based on the aforementioned analysis, it was found that these
mitochondria-related DEGs may affect the disease process of cognitive
impairment induced by SD through different functions and pathways.
Therefore, based on the 32 MitoDEGs, we combined two different
machine learning algorithms, LASSO and RF, to screen key DEGs from

the SD and MCI datasets. The LASSO logistic regression algorithm
identified 27 candidate genes from the 32 MitoDEGs based on the SD
dataset GSE39445, and five candidate genes were identified using the RF
algorithm (Figures 3A–C). Similarly, based on the MCI dataset
GSE140829, 18 candidate genes were identified using LASSO
regression, and five candidate genes were identified using the RF
algorithm (Figures 3D–F). A venn diagram was plotted to present
the overlapping candidate genes among the aforementioned four

FIGURE 3
Identification of key candidate genes using machine learning algorithms (A) LASSO coefficient profiles of the 32 MitoDEGs in GSE 39445. Cross-
validation is used to select the optimal tuning parameter (λ). (B,C) Screening candidate genes in GSE 39445 using random forest. The correlation plot
between the number of random forest trees and model error is shown. Ranking of input variables in the random forest model based on
MeanDecreaseGini to classify SD and control groups. (D) LASSO coefficient profiles of the 32 MitoDEGs in GSE 140829. (E,F) Screening candidate
genes in GSE 140829 using random forest. The correlation plot between the number of random forest trees and model error is shown. Ranking of input
variables in the random forest model based on MeanDecreaseGini to classify MCI and control groups. (G) The Venn diagram shows the overlap of
candidate genes between the four groups.
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groups, and ATP synthase mitochondrial F1 complex assembly factor 1
(ATPAF1), a nuclear gene encoding a 31–32-kDa mitochondrial
protein essential for ATP synthase F1 assembly and ATP synthase
activity, was identified as the key candidate gene (Figure 3G).

3.4 Differential expression and ROC analysis
of the common biomarker

Subsequently, we investigated ATPAF1 expression in the SD
and MCI datasets. The analysis of expression differences indicated
a significant downregulation of ATPAF1 in SD samples in both the
training and validation sets (p < 0.05; Figures 4A, E). In addition,
analysis of the MCI datasets showed that the expression of
ATPAF1 was significantly downregulated in both the training
and validation sets (Figures 4C, G), suggesting that this gene
may play an important role in both cognitive impairment and
sleep loss. Moreover, ROC curves were displayed and AUC was
computed to distinguish patients with SD and MCI from controls.
With AUCs of 0.572 and 0.578 in the SD datasets (Figures 4B, F),
and 0.635 and 0.587 in the MCI datasets (Figures 4D, H),
ATPAF1 showed a favorable diagnostic value.

3.5 GSEA and GSVA

As ATPAF1 was the key overlapping candidate gene
screened by two different machine learning algorithms and its
expression was downregulated in both the SD and MCI groups,

we speculated that ATPAF1 might be the primary driver among
the DEGs and was likely to be an effective target for drug
therapy. Therefore, we investigated the biological role of
ATPAF1 to explore its potential mechanism in the
development of cognitive impairment induced by SD. GSEA
was performed to investigate the function and pathways of
ATPAF1 in the SD and MCI datasets. According to GSEA
analysis results, in the SD dataset, “olfactory receptor
activity” and “sensory perception of smell” were the
negatively enriched GO terms (Figure 5A), while “olfactory
transduction” and “maturity onset diabetes of the young”
were the negatively enriched KEGG pathways (Figure 5B).
Furthermore, we found that in the MCI dataset, ATPAF1 was
positively enriched in “structural constituent of ribosome” and
“ribosomal subunit” based on GO terms (Figure 5C), as well as in
“ribosome” and “oxidative phosphorylation” based on KEGG
pathways (Figure 5D), thus indicating that ATPAF1 is involved
in regulating ribosomal protein synthesis and oxidative
phosphorylation.

Next, GSVA was performed to investigate the possible
biological functions of ATPAF1 (Figure 6). Among the
enriched GO terms and KEGG pathways, we focused on
“acetylcholine metabolic process” in the SD dataset, and
“septin cytoskeleton” and “valine leucine and isoleucine
degradation” in the MCI dataset. As one of the first
neurotransmitters identified in the central nervous system,
acetylcholine (ACh) plays a crucial role in learning and
memory (Huang et al., 2022). It promotes the conduction of
brain nerves and accelerates information transmission, whereas

FIGURE 4
Differential expression and ROC analysis of the common biomarker ATPAF1 (A,B) Expression validation and ROC curve analysis of ATPAF1 in the SD
training set GSE 39445. Blue indicates the control group, and red indicates the SD group. p < 0.05 indicates a significant difference. (C,D) Expression
validation and ROC curve analysis of ATPAF1 in the MCI training set GSE 140829. Blue indicates the control group, and red indicates the MCI group. p <
0.05 indicates a significant difference. (E,F) Expression validation and ROC curve analysis of ATPAF1 in the SD validation set GSE 56931. Blue indicates
the control group, and red indicates the SD group. p < 0.05 indicates a significant difference. (G,H) Expression validation and ROC curve analysis of
ATPAF1 in the MCI validation set GSE 63061. Blue indicates the control group, and red indicates the MCI group. p < 0.05 indicates a significant difference.
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a marked reduction in Ach levels is one of the major
characteristics of people with age-related memory loss and
AD (Arendt and Bigl, 1986; De Jaeger et al., 2013). Septins,
which are enriched in the mammalian nervous system, have been
found to be associated with Tau-based paired helical filament
core, and contribute to the formation of neurofibrillary tangle in
AD (Kinoshita et al., 1998; Hall and Russell, 2004). Furthermore,
the effects of the branched-chain amino acids isoleucine, leucine,
and valine on cognitive function have been studied previously.
Isoleucine, leucine, and valine are significantly associated with
the risk of dementia and AD owing to their regulation of the
phosphorylation of Tau protein (Tynkkynen et al., 2018).

3.6 Immune cell infiltration analysis

Using the ssGSEA method, we examined the percentage of
28 immune cell infiltrations in each sample of the SD dataset in
order to examine the differences in immune cell composition

between SD and control samples and understand the potential
immune mechanisms. The violin plot of immune cell infiltration
showed significant differences in T.follicular helper cells, type 17 T
helper cells, and effector memory CD8 T cells between the SD and
control samples (Figure 7A). Next, the relationship between
ATPAF1 expression levels and immune cell abundance was analyzed,
which showed that ATPAF1 expression was significantly correlated with
18 types of immune cells, such as type 17 T helper cells and effector
memory CD8 T cells (Figure 7B). Similarly, the degree of immune cell
infiltration in MCI and control samples was further explored. As shown
in Figure 7C, the proportions of activated CD4 T cells, activated
CD8 T cells, immature dendritic cells, effector memory CD4 T cells,
and effector memory CD8 T cells were significantly lower in the MCI
group than in the control, whereas the proportions of activated dendritic
cells, MDSC, monocytes, natural killer T cells, and T.follicular helper
cells were significantly higher in the MCI group than in the control
group. The correlation analysis showed results that ATPAF1 expression
was significantly correlated with 11 types of immune cells (Figure 7D).
Notably, ATPAF1 was positively correlated with cells such as activated

FIGURE 5
GSEA analysis of ATPAF1 (A)GO enrichment analysis of ATPAF1 based on GSEA in GSE 39445. The top six enriched GO terms were shown. (B) KEGG
enrichment analysis of ATPAF1 based on GSEA in GSE 39445. The top six enriched KEGG pathways were shown. (C) GO enrichment analysis of
ATPAF1 based on GSEA in GSE 140829. The top six enriched GO terms were shown. (D) KEGG enrichment analysis of ATPAF1 based on GSEA in GSE
140829. The top six enriched KEGG pathways were shown.
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CD4T cells, activatedCD8T cells, and effectormemoryCD4T cells that
were significantly lower in number in MCI samples, and negatively
correlated with cells such as activated dendritic cells that were
significantly higher in number in the MCI group.

4 Discussion

Based on a systematic analysis of the transcriptomic signatures
of the SD and MCI datasets, this study investigated the shared

biological mechanisms that may be involved in sleep loss and
cognitive impairment. Our findings helped identify biomarkers of
the association between SD and MCI and can be used to explore
effective therapeutic interventions in the early stages of disease
progression. In this study, 32 overlapping mitochondria-related
DEGs between the SD and MCI groups were identified using
differential expression profile analysis and cross-comparative
analysis. Expression of 10 of the 32 overlapping MitoDEGs was
upregulated in both SD and MCI, whereas expression of 13 genes
was downregulated in both SD and MCI, as shown in Table 1.

FIGURE 6
GSVA analysis of ATPAF1 (A) GO enrichment analysis of ATPAF1 based on GSVA in GSE 39445. x-axis: t value of GSVA score, y-axis: GO terms; red
indicates upregulated terms, and green indicates downregulated terms. (B) KEGG enrichment analysis of ATPAF1 based on GSVA in GSE 39445. x-axis: t
value of GSVA score, y-axis: KEGG pathways; red indicates upregulated pathways, and green indicates downregulated pathways. (C) GO enrichment
analysis of ATPAF1 based on GSVA in GSE 140829. x-axis: t value of GSVA score, y-axis: GO terms; red indicates upregulated terms, and green
indicates downregulated terms. (D) KEGG enrichment analysis of ATPAF1 based on GSVA in GSE 140829. x-axis: t value of GSVA score, y-axis: KEGG
pathways; red indicates upregulated pathways, and green represents downregulated pathways.
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Subsequently, GO functional annotation and KEGG pathway
enrichment analyses were performed to further understand the
biological functions and signaling pathways associated with these
DEGs. GO analysis showed that mitochondrial transport was the
most significant biological process, and NADH dehydrogenase
activity and thiolester hydrolase activity were the most significant
molecular functions.

KEGG pathway analysis results revealed that the 32 DEGs
were mainly enriched in the pathways of neurodegenerative
diseases, such as Parkinson’s disease, prion disease, pathways
of neurodegeneration-multiple diseases, Huntington’s disease,
amyotrophic lateral sclerosis, and AD. Genes can be annotated

to seven major MitoPathways, which are “metabolism,”
“central dogma,” “oxidative phosphorylation (OXPHOS),”
“mitochondrial dynamics and surveillance,” “protein import,
sorting and homeostasis,” “small molecule transport,”
and “signaling,” according to the MitoCarta3.0 database.
Notably, most of the 32 MitoDEGs were annotated to the
MitoPathways of “OXPHOS” and “metabolism.” Among
the 32 MitoDEGs, five genes encode components of the
mitochondrial respiratory chain complexes, including two
from Complex I (NDUFS1 and NDUFS4), two from Complex
III (CYC1 and BCS1), and one from Complex V (ATPAF1), as
shown in Figure 8A.

FIGURE 7
Immune cell infiltration analysis (A) The violin plot depicting the difference in immune infiltration between SD and control groups in GSE 39445. Blue
indicates the control group, and red indicates the SD group. p < 0.05 indicates a significant difference. (B) Correlation analysis of ATPAF1 with the
28 immune infiltrating cells in GSE 39445. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. The redder the color, the higher the positive
correlation. The bluer the color, the higher the negative correlation. (C) The violin plot depicting the difference in immune infiltration between MCI
and control groups in GSE 140829. Blue indicates the control group, and red indicates the MCI group. p < 0.05 indicates a significant difference. (D)
Correlation analysis of ATPAF1 with the 28 immune infiltrating cells in GSE 140829. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. The
redder the color, the higher the positive correlation. The bluer the color, the higher the negative correlation.
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TABLE 1 Expression of the 32 overlapping MitoDEGs.

Gene Description Expression type
in SD

Expression type
in MCI

MitoPathways

CYC1 cytochrome c1 Up Up OXPHOS > Complex III > CIII subunits |
Metabolism > Metals and cofactors > Heme-
containing proteins | Metabolism > Electron
carriers > Cytochromes | OXPHOS >
OXPHOS subunits

LRPPRC leucine rich pentatricopeptide repeat
containing

Down Down Mitochondrial central dogma > mtRNA
metabolism > mtRNA stability and decay |
Mitochondrial central dogma > Translation

NDUFS1 NADH:ubiquinone oxidoreductase core
subunit S1

Down Down OXPHOS > Complex I > CI subunits |
Metabolism > Metals and cofactors > Fe-S-
containing proteins | OXPHOS > OXPHOS
subunits

LARS2 leucyl-tRNA synthetase 2, mitochondrial Down Up Mitochondrial central dogma > Translation >
mt-tRNA synthetases

AIFM1 apoptosis inducing factor mitochondria
associated 1

Down Up Protein import, sorting and homeostasis >
Protein import and sorting > MIA40 |
OXPHOS > Complex I > CI assembly factors |
OXPHOS > OXPHOS assembly factors |
Mitochondrial dynamics and surveillance >
Apoptosis

IMMT inner membrane mitochondrial protein Down Up Mitochondrial dynamics and surveillance >
Cristae formation > MICOS complex

ACADL acyl-CoA dehydrogenase long chain Down Down Metabolism > Lipid metabolism > Fatty acid
oxidation

NDUFS4 NADH:ubiquinone oxidoreductase subunit S4 Down Down OXPHOS > Complex I > CI subunits |
OXPHOS > OXPHOS subunits

GFM2 GTP dependent ribosome recycling factor
mitochondrial 2

Down Down Mitochondrial central dogma > Translation >
Translation factors

BCS1L BCS1 homolog, ubiquinol-cytochrome c
reductase complex chaperone

Up Up OXPHOS > Complex III > CIII assembly
factors | OXPHOS > OXPHOS assembly
factors

CLPB caseinolytic mitochondrial matrix peptidase
chaperone subunit B

Up Up Protein import, sorting and homeostasis >
Protein homeostasis > Proteases

ADCK5 aarF domain containing kinase 5 Up Up unknown

THEM4 thioesterase superfamily member 4 Down Up Metabolism > Lipid metabolism

MFN2 mitofusin 2 Down Up Mitochondrial dynamics and surveillance >
Fusion | Mitochondrial dynamics and
surveillance > Organelle contact sites

ACSM3 acyl-CoA synthetase medium chain family
member 3

Down Down Metabolism > Lipid metabolism > Fatty acid
oxidation

HMGCL 3-hydroxy-3-methylglutaryl-CoA lyase Up Up Metabolism > Carbohydrate metabolism >
Ketone metabolism | Metabolism > Amino
acid metabolism > Branched-chain amino acid
metabolism

FHIT fragile histidine triad diadenosine
triphosphatase

Up Down Metabolism > Nucleotide metabolism >
Nucleotide synthesis and processing

TFAM transcription factor A, mitochondrial Down Down Mitochondrial central dogma > mtDNA
maintainance > mtDNA replication |
Mitochondrial central dogma > mtDNA
maintainance > mtDNA nucleoid |
Mitochondrial central dogma > mtRNA
metabolism > Transcription

LYPLA1 lysophospholipase 1 Down Down Metabolism > Lipid metabolism | Signaling

(Continued on following page)
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Our results regarding the impaired mitochondrial electron
transport chain are consistent with those of previous studies on
both SD and MCI (Morris et al., 2021; Chen et al., 2022), thus
indicating that deficiencies in energy-generating mitochondrial
pathways play an important role in cognitive impairment
induced by SD. In addition, among the 32 MitoDEGs involved
in metabolism, 11 genes are implicated, including six in lipid
metabolism (ACADL, THEM4, ACSM3, LYPLA1, TSPO, and
SCP2), one in carbohydrate metabolism (HMGCL), one in amino
acid metabolism (GLS2), and one in nucleotide metabolism
(FHIT), (Figure 8B). Notably, it has been demonstrated that
lipid metabolism disorders are closely related to cognitive
function, as evidenced by the observation that knockout of a
key enzyme in mitochondrial fatty acid oxidation causes
cognitive impairment (Zhang et al., 2022; Morant-Ferrando
et al., 2023). Importantly, our findings shed light on the role
of metabolism, especially lipid metabolism, in the cognitive

impairment induced by SD. As mentioned previously,
deficiencies in energy-generating mitochondrial pathways and
disorders of mitochondrial metabolism link this organelle to the
common mechanisms involved in both cognitive impairment
and sleep loss.

Based on the 32 MitoDEGs, we employed two machine
learning algorithms, LASSO and RF, to screen key candidate
genes. ATPAF1 was identified as a key candidate gene through
machine learning approaches. As a mitochondria-localized
protein, ATPAF1 is essential for ATP synthase assembly and
mitochondrial oxidative phosphorylation (Zhou et al., 2021).
Although abnormal ATPAF1expression has been reported in
asthma and kidney cancer (Schauberger et al., 2011;
Bruggemann et al., 2017), its involvement in human diseases
remains unclear. In this study, to our knowledge, for the first
time, we found that ATPAF1 expression was significantly
downregulated in both SD and MCI. Furthermore, the

TABLE 1 (Continued) Expression of the 32 overlapping MitoDEGs.

Gene Description Expression type
in SD

Expression type
in MCI

MitoPathways

ABCD3 ATP binding cassette subfamily D member 3 Down Down Small molecule transport > ABC transporters

ATPAF1 ATP synthase mitochondrial F1 complex
assembly factor 1

Down Down OXPHOS > Complex V > CV assembly factors
| OXPHOS > OXPHOS assembly factors

GLS2 glutaminase 2 Down Down Metabolism > Amino acid metabolism >
Glutamate metabolism

DNAJC4 DnaJ heat shock protein family (Hsp40)
member C4

Up Up Protein import, sorting and homeostasis >
Protein homeostasis

GRSF1 G-rich RNA sequence binding factor 1 Down Down Mitochondrial central dogma > mtRNA
metabolism > mtRNA granules |
Mitochondrial central dogma > mtRNA
metabolism > Polycistronic mtRNA
processing | Mitochondrial central dogma >
mtRNA metabolism > mtRNA stability and
decay | Mitochondrial central dogma >
Translation > Mitochondrial ribosome
assembly

TSPO translocator protein Up Up Metabolism > Lipid metabolism > Cholesterol,
bile acid, steroid synthesis

SCP2 sterol carrier protein 2 Down Up Metabolism > Lipid metabolism > Cholesterol,
bile acid, steroid synthesis

BNIP3 BCL2 interacting protein 3 Down Down Mitochondrial dynamics and surveillance >
Apoptosis

FASTK Fas activated serine/threonine kinase Up Up Mitochondrial central dogma > mtRNA
metabolism > mtRNA granules |
Mitochondrial central dogma > mtRNA
metabolism > Polycistronic mtRNA
processing | Mitochondrial central dogma >
mtRNA metabolism > mtRNA stability and
decay

TDRKH tudor and KH domain containing Down Up unknown

FKBP10 FKBP prolyl isomerase 10 Down Up Protein import, sorting and homeostasis >
Protein homeostasis > Chaperones

BAD BCL2 associated agonist of cell death Up Up Mitochondrial dynamics and surveillance >
Apoptosis

PABPC5 poly(A) binding protein cytoplasmic 5 Up Up unknown
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diagnostic ability of ATPAF1 demonstrated favorable value for
both diseases. To further explore the potential function of
ATPAF1 in SD and MCI, GSVA and GSEA were used to
identify functional categories and pathways enriched in
ATPAF1. Our results indicate that, by regulating the
acetylcholine metabolic process, septin cytoskeleton, and
degradation of branched-chain amino acids, ATPAF1 serves
as the hub gene shared between SD and MCI. We believe that
dual-disease research is a complex and challenging issue, and
our findings provide key clues to uncovering the connection
between SD and MCI. As the hub gene between SD and MCI,
ATPAF1 may link these two diseases through the same or

different pathways or functions. Although significant
discoveries have been made, the precise mechanisms and
interactions of ATPAF1 between SD and MCI have not been
fully elucidated in this study, which needs further in-depth
investigation.

Sleep is a critical physiological phenomenon involved in
immunomodulation at the central and peripheral levels
(Hurtado-Alvarado et al., 2016). Several studies have reported an
association between sleep loss and systemic low-grade inflammation
characterized by the release of several molecules (Aminoff, 2000;
Meier-Ewert et al., 2004; Simpson et al., 2017), such as cytokines,
chemokines, and acute-phase proteins, which are believed to play
important roles in the development of cognitive impairment and AD
(Shen et al., 2019; Liao and Yu, 2023). In this study, we performed an
immune infiltration analysis to explore the immune landscape of SD
and MCI and to further investigate the correlation between
ATPAF1 and immune cells. Our results showed that
ATPAF1 was positively correlated with cells such as activated
CD4 T cells, activated CD8 T cells and effector memory
CD4 T cells that were significantly low in number in the MCI
samples, and negatively correlated with cells such as activated
dendritic cell that were significantly high in number in the MCI
group. Similar changes were observed in the SD samples, indicating
that ATPAF1 has a statistically significant relationship with immune
cells, especially the key immune cell types associated with
SD and MCI.

To the best of our knowledge, this is the first study to reveal that
mitochondrial dysfunction is a shared biological mechanism underlying
sleep loss and cognitive impairment. A total of 32 mitochondria-related
DEGs was identified in SD and MCI datasets. Most of them were
annotated to the MitoPathways of “OXPHOS” and “metabolism,” thus
indicating that deficiencies in energy-generating mitochondrial
pathways and disorders of metabolism in mitochondria play an
important role in cognitive impairment induced by SD. In addition,
ATPAF1was identified as a possible biomarker and therapeutic target in
patients with SD andMCI. This work provides a new perspective on
the biological mechanisms of SD-induced cognitive impairment
and new ideas for dual-purpose prevention. However, our study
was limited to the transcriptome level, and the significance of our
findings required further validation through prospective clinical
and basic experiments.
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