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Cancer refers to the proliferation and multiplication of aberrant cells inside the
human body, characterized by their capacity to proliferate and infiltrate various
anatomical regions. Numerous biochemical pathways and signaling molecules
have an impact on the cancer auto biogenesis process. The regulation of crucial
cellular processes necessary for cell survival and proliferation, which are triggered
by phytochemicals, is significantly influenced by signaling pathways. These
pathways or components are regulated by phytochemicals. Medicinal plants
are a significant reservoir of diverse anticancer medications employed in
chemotherapy. The anticancer effects of phytochemicals are mediated by
several methods, including induction of apoptosis, cessation of the cell cycle,
inhibition of kinases, and prevention of carcinogenic substances. This paper
analyzes the phytochemistry of seven prominent plant constituents, namely,
alkaloids, tannins, flavonoids, phenols, steroids, terpenoids, and saponins,
focusing on the involvement of the MAPK/ERK pathway, TNF signaling, death
receptors, p53, p38, and actin dynamics. Hence, this review has examined a range
of phytochemicals, encompassing their structural characteristics and potential
anticancer mechanisms. It has underscored the significance of plant-derived
bioactive compounds in the prevention of cancer, utilizing diverse molecular
pathways. In addition, this endeavor also seeks to incentivize scientists to carry
out clinical trials on anticancer medications derived from plants.
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1 Introduction

Cancer is a pathological condition defined by the excessive and uncontrolled growth of
abnormal cells within the human body. These abnormal cells exhibit the ability to
proliferate and invade any region of the organism (Brown et al., 2023). Cancer is
considered the second leading cause of mortality globally, following stroke and heart
disease (Sun and Bhaskar, 2022). Cancer is classified based on the cellular genesis of the
tumor. Carcinoma, a cancer that arises from the epithelial cells of the breast, prostate, lung,
pancreas, and colon, is responsible for 90% of all cancer-related deaths in humans
(Łukasiewicz et al., 2021). Lymphoma, on the other hand, is a cancer that affects
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immune organs like the spleen, white blood cells, and lymph nodes
(Weledji and Orock, 2015). Leukemia is a cancer that affects the
blood cells that make up the bone marrow (Bispo et al., 2020).
Sarcoma is a cancer that affects the fibrous connective tissue of
bones, cartilage, fatty tissue, muscles, and neurons (Vodanovich and
M Choong, 2018). Lastly, germ cell tumors originate from
pluripotent stem cells found in the testes and ovaries (Hong
et al., 2021). Cell metabolism is intricately interconnected within
a multifaceted biological network that encompasses various
metabolites and ubiquitous mechanisms for sensing these
compounds. Signal transduction and epigenetics of these
pathways can be regulated by either endogenous or exogenous
metabolites. Nevertheless, the occurrence of irregular metabolic
reprogramming in cancer might result in atypical suppression
and stimulation of metabolite sensing, hence playing a
substantial role in the advancement of cancer (Schiliro and
Firestein, 2021). Timely identification and efficient therapy
enhance the likelihood of survival in cancer patients. Hence,
it is imperative to develop a comprehensive strategy aimed at
enhancing cancer prevention and treatment. Epidemiological
and experimental studies have provided evidence supporting the
notion that a substantial consumption of fruits, vegetables, or
medicinal plants can effectively mitigate the prevalence of
chronic degenerative diseases (Cruz et al., 2024). Moreover,
the significance of maintaining a well-balanced diet in the
context of cancer prevention has garnered considerable
scholarly interest.

Medicinal plants have served as a valuable reservoir of diverse
anticancer medications that are being employed in chemotherapy.
Bioactive compounds, known as phytochemicals, play a crucial role
in anticancer treatment (Yuan et al., 2022). These sources are secure,
harmless, economical, and easily accessible, spanning from rural to
urban areas and underdeveloped to developed nations (Irianti et al.,
2020). Hence, there is growing interest in exploring the possible
anticancer properties of herbal substances. Chemoprevention refers
to the application of both natural and synthetic chemicals for impeding
or decelerating the progression of cancer through the inhibition or
disruption of specific molecular signaling pathways (G et al., 2021). The
investigation of the impact of phytochemicals on cellular signaling is
presently a subject of contemporary scholarly research. These
substances have distinct modes of action against tumors. Bioactive
compounds (phytochemicals) play a crucial role in the field of
anticancer treatment (Situmorang et al., 2022a). The gynogenesis
movement is impacted by multiple biochemical pathways and
signaling molecules. Signaling pathways and molecular networks
play a crucial role in the regulation of vital cellular processes that
are required for the survival and proliferation of cells. The etiology of
cancer necessitates a correlation with distinct biological pathways
(Fawaz et al., 2023). Researchers persist in employing this
methodology to further the progress of molecular therapy. Various
molecular biology methodologies have been developed to detect and
treat cancer, including the targeting of cancer stem cell pathways for
treatment, utilization of retroviral therapy, suppression of oncogenes,
and the alteration of tumor suppressor genes (Simanullang RH. et al.,
2022). The regulation of cell proliferation, differentiation, survival,
apoptosis, invasion, migration, angiogenesis, and metastatic spread
of cancer cells is connected with various signaling pathways,
including mTOR, PI3K, protein kinase B (Akt), MAPK/ERK, Wnt,

Notch, and Hedgehog (Kciuk et al., 2022). The anticancer activities are
induced by phytochemicals through the regulation of certain pathways
or components.

Multiple independently conducted investigations have indicated that
phytochemicals induce anticancer effects through various pathways
(Choudhari et al., 2019). Nevertheless, there is a lack of detailed
reporting regarding the phytochemical composition of seven plant
components, namely, alkaloids, tannins, flavonoids, phenols,
steroids, terpenoids, and saponins, in relation to their potential as
anticancer agents (Simanullang et al., 2022b). There are no reports
regarding the regulation of cell proliferation and inhibition of
angiogenesis and metastasis through the MAPK/ERK pathway, TNF
signaling, death receptors, p53, p38, and actin dynamics. Thus, this
review has examined different phytochemicals, including their structures
and probable anticancermechanisms. As a result, it offers comprehensive
knowledge on the potential of natural anticancer resources.

2 Role of phytochemicals and
antioxidants in inhibiting the resistance
of cancer to therapy

Utilizing phytochemicals for cancer chemoprevention is the
preferred method for managing cancer. Investigating novel plant-
derived chemicals with anticancer characteristics is a crucial
objective in pharmacological research as it enables the discovery
of new therapeutic targets (Efferth et al., 2017). This review
highlights specific chemicals that exhibit potential as effective
chemo-preventive agents for cancer. It is worth noting that the
consumption of foods containing these bioactive compounds has
demonstrated both protective and therapeutic benefits against
different forms of cancer (Bakrim et al., 2022). The efficacy of
chemotherapy and radiotherapy is enhanced by chemo-preventive
medicines through regulation of various signal transduction
pathways. Given the significant involvement of oxidative stress in
the development of numerous malignancies, the potential of
substances with antioxidant properties as a preventive measure
against cancer is worth considering (Qi et al., 2022). Plants are
rich in antioxidant phytochemicals, which encompass a diverse
range of molecules (Simanullang et al., 2022c). These substances
have distinct modes of action against tumors. Bioactive compounds
(phytochemicals) play a crucial role in the field of anticancer
treatment. Medicinal plants or their derivatives currently
constitute over 70% of anticancer chemicals, making them the
primary focus in the development of anticancer medications
(Talib et al., 2020). The anticancer properties of plants are
attributed to seven primary bioactive compounds: alkaloids,
tannins, flavonoids, phenols, steroids, terpenoids, and saponins.
Alkaloids are significant chemical substances that constitute a
plentiful resource for the exploration of new drugs. Several
alkaloids derived from medicinal plants and herbs have
demonstrated antiproliferative and anticancer properties against a
diverse range of malignancies, both in laboratory settings (in vitro)
and in living organisms (in vivo) (Lu et al., 2012). Vinblastine,
vinorelbine, vincristine, and vindesine have been effectively
formulated as pharmaceutical agents for the treatment of cancer.
Tannins demonstrate a wide range of therapeutic advantages,
including their ability to combat cancer, act as an antioxidant,
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reduce inflammation, and protect the nervous system (Dhyani et al.,
2022). Flavonoids are widely recognized for their efficacy as
antioxidants and their ability to inhibit angiogenesis. Numerous
studies have documented the inhibitory effects of flavonoids on the
metabolic activation of carcinogens, hence impeding the
proliferation of aberrant cells that have the potential to
differentiate into malignant cells (Wang et al., 2022). Phenols in
foods have multiple functions, including acting as antioxidants to
eliminate cancer-causing free radicals, activating cytoprotective
enzymes involved in detoxifying foreign substances, and

regulating signal transduction systems (Aghajanpour et al., 2017).
The involvement of antioxidants in the activation of the Keap1/
Nrf2/ARE pathway leads to heightened levels of phase
2 detoxification enzymes and antioxidant enzymes (Mendonca
and Soliman, 2020). The anticancer effects of terpenes may be
attributed to their capacity to regulate several signaling pathways
associated with cellular proliferation, death, and angiogenesis. The
anticancer effects of terpenes may also be attributed to their ability to
induce oxidative stress and DNA damage in cancer cells
(Wróblewska-Łuczka et al., 2023). Steroids encompass a class of

FIGURE 1
MAPK/ERK pathway in cancer. The activation of MAPK initiates with the stimulation of receptor tyrosine kinase (RTK) in the MAPK/ERK signaling
pathway. This leads to the activation of RAF kinase protein kinase activity through Ras activation. Subsequently, MEK (MEK1 and MEK2) is phosphorylated
and activated by RAF kinase. Finally, ERK is activated and phosphorylated by MEK (https://www.sinobiological.com/pathways).
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TABLE 1 Mechanism of action of various phytochemical compounds in the MAPK/ERK pathway in cancer.

Target Compounds Types of
study

Mechanism of action Cell line(s)/animal model(s) References

ERK1/
2 MAPK

Astaxanthin In vivo Astaxanthin reduces NF-κB and Wnt signaling
by reducing IKKβ and GSK-3β activity. Analysis
of gene expression and docking interactions
showed that astaxanthin may block these
pathways by inactivating Erk/Akt

Male Syrian hamsters Kavitha et al.
(2013)

ERK1/
2 MAPK

α-Mangostin In vitro α-Mangostin inhibits the activation of
extracellular signal-regulated kinases 1 and 2
(ERK1/2), which are involved in the
downregulation of enzyme activity, protein, and
messenger RNA levels of MMP-2 and MMP-9

MCF-7 human breast adenocarcinoma
cells

Hafeez et al.
(2014)

ERK1/
2 MAPK

Arctigenin In vitro Arctigenin decreased MMP-9 activity and COX-
2 and MMP-3 protein expression and also
reduced the mRNA expression of metastatic
factors such as MMP-9, MMP-3, and COX-2 via
the mitogen-activated protein MAPK/
AP1 signaling pathway, which was examined to
determine its anti-metastatic mechanism

4T-1 mouse breast cancer cells Lee et al. (2020b)

ERK1/
2 MAPK

Baicalein In vitro and
in vivo

Baicalein decreases the levels of phosphorylated
MEK1 and ERK1/2, but MEK1 overexpression
partially limits its anti-metastatic action,
decreasing the expression of MMP-2, MMP-9,
and u-PA and increasing the expression of
TIMP-1 and TIMP-2

The human HCC cell line MHCC97H, an
orthotopic transplanted nude mouse
model of HCC metastasis

Chen et al. (2013b)

ERK1/
2 MAPK

Curcumin In vitro Curcumin induces mitochondrial membrane
depolarization via MAPK, which regulates
anticancer effects by activating ERK1/2, SAPK/
JNK, P90RSK, and c-Jun

JAR and JEG3 cells (human placental
choriocarcinoma cells)

Lim et al. (2016)

ERK1/
2 MAPK

Cinnamaldehyde In vitro Activated macrophages treated with
cinnamaldehyde showed lower mRNA
expression and secretion of IL-1β, IL-6, and
TNF-α, leading to anti-inflammatory effects by
decreasing ERK, JNK, and p38 MPAK
phosphorylation

The RAW 264.7 murine macrophage cell
line

Kim et al. (2018)

ERK1/
2 MAPK

Damnacanthal In vitro Treatment with caspase inhibitors and soluble
death receptors that activate p38 MAPK can
decrease apoptosis induced by damnacanthal,
which is mediated via TRAIL and TNF- α

SKHep 1 cells Lin et al. (2011)

ERK1/
2 MAPK

Diosgenin In vitro and
in vivo

Diosgenin suppressed the Raf/MEK/ERK
pathway, a downstream target of Akt, in ER+ but
not ER− BCa cells. Diosgenin inhibits cell
proliferation and induces apoptosis in ER+ and
ER− BCa cells by downregulating cyclin D1, cdk-
2, and cdk-4 expression, causing G1 cell-cycle
arrest

MCF-7 (ER+), MDA 231 (ER−), and
MCF-10A; female nude mice as xenograft
study models

Srinivasan et al.
(2009)

ERK1/
2 MAPK

(−)-Epigallocatechin-
3-gallate

In vitro Berberine may increase cisplastin sensitivity by
reducing drug transporter expression
(MDR1 and MRP1), increasing apoptosis, and
suppressing PI3K/AKT/mTOR and ERK/MAPK
signaling

BGC-823 and SGC-7901 cells Wu et al. (2019)

ERK1/
2 MAPK

Licochalcone A In vitro The expression of TRAIL was stimulated by
licochalcone A through the activation of both the
ERK1/2 and p38 MAPK signaling pathways

Normal human oral keratinocytes
(hNOKs)

Park et al. (2015)

ERK1/
2 MAPK

Paclitaxel (Taxol) In Vivo ERK1/2 is activated in spinal cord and dorsal root
ganglion (DRG) neurons, glia, and active brain
areas, and paclitaxel has been shown to increase
DRG ERK1/2 activation

Adult C57/BL6J mice Kim et al. (2023)

ERK1/
2 MAPK

Quercetin In vitro Quercetin has little effect on the ERK/MAPK
pathway; even ERK1/2 levels increased after
docetaxel treatment. PKB, ERK1/2, and
STAT3 are proliferation and signaling mediators
and survival signals

MDA-MB-231 breast cancer cell line Safi et al. (2021)

(Continued on following page)
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naturally occurring organic compounds that have steroidal anticancer
properties. This class of chemicals exhibits a wide range of structural
molecular diversity and possesses the capacity to interact with diverse
biological targets and pathways. Saponins exhibit several anticancer
properties, such as inhibiting cell growth, impeding metastasis,
inhibiting angiogenesis, and reversing multidrug resistance (MDR)
(Elekofehinti et al., 2021). These effects are caused by the initiation

of apoptosis, stimulation of cell differentiation, modulation of the
immune system, binding of bile acids, and improvement of cell
proliferation caused by carcinogens.

Oxidative stress plays a crucial role in the harmful effects of
environmental toxicity in cancer development, and reactive
oxygen species (ROS) are produced in response to both
internal and external triggers (Chang et al., 2015). Reactive

TABLE 1 (Continued) Mechanism of action of various phytochemical compounds in the MAPK/ERK pathway in cancer.

Target Compounds Types of
study

Mechanism of action Cell line(s)/animal model(s) References

ERK1/
2 MAPK

Resveratrol In vivo Resveratrol affects SOD, catalase, and GPx in
hyperalgesia and rat paw skin and spinal cord.
Resveratrol affected ERK signaling but not
TNFR1

Charles Foster strain rats Singh and Vinayak
(2017)

ERK1/
2 MAPK

Silibinin In vitro and
in vivo

Inhibition of the ERK protein by silibinin
significantly decreased the mitochondrial
membrane potential, releasing cytochrome C.
Cholangiocarcinoma cells died once downstream
apoptotic mechanisms were activated

BALB/c nude mice and HuCCT-1 and
CCLP-1, two human cholangiocarcinoma
cell lines

Bai et al. (2022)

FIGURE 2
TNF-signaling pathways in cancer. Tumor necrosis factor (TNF) exerts its actions through the tumor necrosis factor receptor (TNFR), hence
engaging in the extrinsic pathway to promote apoptosis. The interaction between the TNFR and procaspases is facilitated by adapter proteins, such as
FADD and TRADD. These adapter proteins possess the capability to cleave inactive procaspases, hence activating the caspase cascade. This series of
events ultimately results in the irreversible initiation of cell death (https://www.sinobiological.com/pathways).
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TABLE 2 Mechanism of action of various phytochemical compounds in TNF signaling in cancer.

Target Compound Types of
study

Mechanism of action Cell line(s)/animal model (s) References

TNF
signaling

Anacardic acid In vitro Anacardic acid resulted in decreased
HaCaT cell viability and increased cell
apoptosis and also limited TNF-α-mediated
inflammatory responses and downregulated
the NF-κB signaling axis

HaCaT cells Liu et al. (2024)

TNF
signaling

Apigenin In vitro Apigenin prevents SCC25 and A431 cell
growth and induces cell cycle arrest in the
G2/M phase. It also induces cell apoptosis
via TNF-R-, TRAIL-R-, and Bcl-2-mediated
caspase in SCC25 cells

SCC25 cell Chan et al. (2012)

TNF
signaling

Butein In vitro The impact of butein on TNF-α-induced
adhesion molecule production in human
lung epithelial cells and its molecular
mechanism. Butein decreased TNF-α-
induced ICAM-1 and VCAM-1 expression,
monocyte adhesion, and ROS generation
via inhibiting NF-κB, MAPK, and Akt
signaling pathways

Human lung epithelial A549 cells and
human monocyte leukemia U937 cells

Jang et al. (2012)

TNF
signaling

Carnosol In vitro TNF-α-induced protein production of
ICAM-1, VCAM-1, and E-selectin was
reduced by carnosol

Human umbilical vein endothelial cells
(HUVECs)

Yao et al. (2014)

TNF
signaling

Catechin In vitro Catechin exhibits potential as a therapeutic
agent by mitigating the inflammatory
response induced by TNF-κ via signaling
pathways implicated in inflammation and
cytokine activity

T3-L1 preadipocytes Cheng et al. (2019)

TNF
signaling

Gallic acid In vitro Gallic acid induces aHSC necroptosis via
TNF signaling, and oxidative stress can
lead to TNF-α generation, leading to
necroptosis signaling and necrosome
formation (RIP1, RIP3, and caspase-8
inactivation)

Primary hepatic cells (HCs) and hepatic
stellate cells (HSCs)

Chang et al. (2015)

TNF
signaling

Genistein In vitro The apoptotic effects of genistein on tumor
necrosis factor-α (TNF-α)-induced
proliferation in human aortic smooth
muscle cells (HASMCs)

Human aortic smooth muscle cells
(HASMCs)

Kim et al. (2010)

TNF
signaling

Hesperitin In vivo Hesperetin suppresses NF-kB activation,
which drives inflammation and produces
pro-inflammatory cytokines like TNF-α, IL-
1, and IL-6, leading to anti-tissue injury
activity

Male Swiss mice Zaafar et al. (2022)

TNF
signaling

Luteolin In vitro Luteolin inhibits TNFα-induced
apoptosis by inhibiting NF-κB activation,
suppressing activation of antiapoptotic
genes like A20 and c-IAP1, and
enhancing and prolonging JNK
activation

Colorectal cancer COLO205 and
HCT116 cells and cervical cancer HeLa
cells

Shi et al. (2004)

TNF
signaling

Piceatannol In vitro Piceatannol prevented TNF-induced IκBα
phosphorylation, p65 phosphorylation,
p65 nuclear translocation, and IκBα
kinase activity, but did not affect IκBα
degradation

Leukemic cell line KBM-5 Ashikawa et al. (2002)

TNF
signaling

Quercetin In vitro Quercetin partially inhibited extracellular
regulated kinase, c-jun amino-terminal
kinase, and reactive oxygen species,
reducing COX-2 levels

The human hepatoma cell line (HepG2) Granado-Serrano et al.
(2012)

(Continued on following page)
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oxygen species (ROS) such as superoxide radicals (O2−.),
hydrogen peroxide (H2O2), singlet oxygen (1O2), and hydroxyl
radicals (HO.) are harmful to cells and have been linked to the
development of different human diseases, including cancer (Afzal
et al., 2023). Several carcinogens exert their effects by generating
reactive oxygen species (ROS) during their metabolic process
(Afzal et al., 2023). Oxidative DNA damage is a significant
factor in the development and advancement of carcinogenesis
as it can cause mutations (Martemucci et al., 2022). Hence, the
crucial role of antioxidants in counteracting elevated levels of

reactive oxygen species (ROS) is significant in the context of
numerous disorders, including different forms of cancer (Afzal
et al., 2023). Epidemiological studies form the primary basis for
establishing the correlation between dietary antioxidants and
non-communicable diseases, such as cancer. These studies
indicate that plant foods and phytochemicals have the capacity
to prevent cancer. Certain phytochemicals have the ability to
function as both antioxidants and prooxidants (Situmorang and
Ilyas, 2018). They can generate reactive oxygen species (ROS) and
induce oxidative stress at high levels, particularly when iron and

TABLE 2 (Continued) Mechanism of action of various phytochemical compounds in TNF signaling in cancer.

Target Compound Types of
study

Mechanism of action Cell line(s)/animal model (s) References

TNF
signaling

Resveratrol In vitro Resveratrol, like BMS-345541, inhibited
TNF-β-induced NF-κB-mediated gene
biomarkers for proliferation, apoptosis, and
invasion

The human colon cancer cell line
(HCT116)

Buhrmann et al. (2019)

TNF
signaling

Xanthohumol In vitro Xanthohumol boosts TRAIL’s apoptosis and
cytotoxicity in prostate LNCaP cancer cells and
may induce apoptosis by activating caspases-3,
-8, -9, Bid, Bax, Bcl-xL, and mitochondrial
potential in LNCaP cells

Human prostate cancer LNCaP cell line Kłósek et al. (2016)

FIGURE 3
Death receptor pathways in cancer. Activation of these receptors by specific ligands triggers the recruitment of multiple molecules to the death
domain, which then initiates a signaling cascade. There are two distinct forms of death receptor signaling complexes. The first group comprises death-
inducing signaling complexes (DISCs) that activate caspase-8, a crucial component in apoptotic signaling transduction. DISCs are formed at the CD95,
TRAILR1, or TRAILR2 receptors. These processes involve the recruitment of various molecules that facilitate apoptotic and survival signal
transduction (https://www.sinobiological.com/pathways).
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TABLE 3 Mechanism of action of phytochemical compounds in the death receptor pathways in cancer.

Target Compound Types of
study

Mechanism of action Cell line(s)/animal
model(s)

References

Death receptor
pathways

Anthraquinone In vitro Anthraquinone can downregulate
various cell survival proteins and
induce cell surface expression of both
TRAIL receptors, death receptors
(DR) 4 and 5, as well as inhibit
X-linked apoptotic proteins by siRNA

Human HCC cell line HepG2 Subramaniam et al.
(2013)

Death receptor
pathways

Allicin In vitro Allicin reduced cell viability,
proliferation, and migration in
A549 cells and induced apoptosis and
autophagy via ROS buildup and S/G2-
M phase arrest in normoxia and
hypoxia

Human NSCLC cell lines A549
(adenocarcinoma) and NCI-H460
(large-cell carcinoma)

Pandey et al. (2020)

Death receptor
pathways

Aspalathin In vitro and in
vivo

Aspalathin impacts lipid metabolism,
insulin resistance, inflammation, and
apoptosis by modulating key
regulators (Adipoq, Apob, CD36,
Cpt1, Pparγ, Srebf1/2, Scd1, Vldlr,
Igf1, Akt1, Pde3, and Map2k1)

Male C57BLKS/J homozygous
Leprdb/db mice and embryonic
ventricular rat heart-derived
H9c2 cardiomyoblasts

Johnson et al. (2017)

Death receptor
pathways

Arctigenin In vitro Arctigenin inhibits the mTOR
pathway in ERα-positive human
breast cancer cells MCF-7, resulting in
autophagy-induced cell death and
downregulation of ERα expression

MCF-7 and MDA-MB-231 human
breast cancer

Maxwell et al. (2018)

Death receptor
pathways

Baicalein In vitro Baicalein inhibits cell growth and
death. Baicalein decreased cyclin
B1 and phospho-CDC2 (Thr161) and
enhanced G2-M. CDC2 kinase or
CDC25 phosphatase inhibitors
increased baicalein-induced
cytotoxicity

TSGH8301 and BFTC905 cells Chao et al. (2007)

Death receptor
pathways

Bis-eugenol B In vitro Bis-eugenol B signals cell death by
downregulating Bcl-2 and
upregulating Bax, which regulates
MMP and releases cytochrome c from
the mitochondria to the cytoplasm

Prostate cancer cells (PC3) and
normal prostate cells (RWPE-)

Abbaspour Babaei et al.
(2017)

Death receptor
pathways

Britanin In vitro and in
vivo

The migration ability of tumor cells
was significantly weakened after
treatment with britanin through
inhibiting p65 protein expression and
decreasing the Bcl-2/Bax ratio

EL 7402 and HepG2 cells; a BEL
7402-luc subcutaneous tumor model

Li et al. (2020)

Death receptor
pathways

Curcumin In vitro The extrinsic death receptor pathway
is activated by curcumin, leading to
cell apoptosis in chondrosarcoma.
This process is mediated by the actions
of curcumin, which result in an
increase in p53 expression

The human chondrosarcoma cell line
JJ012

Lee et al. (2012)

Death receptor
pathways

Celastrol In vitro Celastrol increases Fas, death domain-
associated Fas, TNRSF 1A, and 10B,
and death domain-associated
TNFRSF1A and reduces the
mitochondrial membrane potential
dose-dependently

Human NPC cell lines HONE-1 and
NPC-039

Lin et al. (2017)

Death receptor
pathways

Casticin In vitro Casticin can induce apoptosis through
the activation of caspase-3, -8 and -9;
moreover, casticin inhibits the growth
of HCC cells regardless of the
p53 status

PLC/PRF/5 (p53 mutant) and Hep
G2 (p53 wild-type) human HCC cells

Yang et al. (2011)

Death receptor
pathways

Dehydrocostus lactone In vitro Causes G2/M cell-cycle arrest and
morphological alterations; increases
caspase-3/7, cleaved caspase-3, and
PARP function; and decreases
ABCB1/MDR1 and ABCG2/
BCRP1 expression

SW-985, SW-872, and TE-671 Kretschmer et al. (2012)

(Continued on following page)
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TABLE 3 (Continued) Mechanism of action of phytochemical compounds in the death receptor pathways in cancer.

Target Compound Types of
study

Mechanism of action Cell line(s)/animal
model(s)

References

Death receptor
pathways

Eupafolin In vitro Eupafolin dose-dependently caused
apoptosis, as shown by DNA
fragmentation and annexin V-positive
cells. Eupafolin also activated
caspases-3, -6, -7, -8, and -9 and
cleaved their substrates, such as poly
(ADP-ribose) polymerase and lamin
A/C

Cervical adenocarcinoma HeLa cells Chung et al. (2010)

Death receptor
pathways

Epigallocatechin gallate
(EGCG)

In vitro EGCG promotes poly (adenosine
diphosphate-ribose) polymerase
(PARP) cleavage and induces caspase-
8 activation by increasing the
expression of death receptor 5 (DR5)
at the protein and mRNA levels

SW480 and HCT116 cells Kwon et al. (2020)

Death receptor
pathways

Evodiamine In vitro Evodiamine increased cyclin B1 and
decreased B-cell lymphoma/lewkmia-
2 (Bcl-2) and increased Bacx to cause
G2/M arrest and cell death

Human ovarian cancer cells HO-
8910PM

Wei et al. (2016)

Death receptor
pathways

Fisetin In vitro Fisetin stops autophagic cell death
from occurring by blocking mTORC1
expression

Human CaP cell lines PC3, DU145.
and LNCaP

Jia et al. (2019)

Death receptor
pathways

Kaempferol In vitro Kaempferol-induced apoptosis and
p53 upregulation did not involve
Chk2. Extrinsic apoptosis was induced
by kaempferol via death receptors/
FADD/caspase-8

Human ovarian cancer A2780/
CP70 cells

Gao et al. (2018)

Death receptor
pathways

Luteolin In vitro Luteolin significantly increased DR5,
Bcl-2-interacting domain cleavage,
and caspase-8, -10, -9, and
-3 activation. Reducing
DR5 expression with siRNA also
reduced luteolin-induced caspase
activation and apoptosis

Human malignant tumor cells You et al. (2019)

Death receptor
pathways

Rhodomyrtone In vitro Rhodomyrtone suppressed FAK and
serine/threonine AKT, Ras, RhoA,
Rac1, and Cdc42 phosphorylation and
lowered MMP-2 and MMP-9 protein
and enzyme activity in SW1353 cells

Human chondrosarcoma
SW1353 cells

Tayeh and
Watanapokasin (2020)

Death receptor
pathways

Shikonin In vitro and in
vivo

Cells treated with 3-MA and shikonin
showed enhanced expression of
cleaved PARP, caspase-3, and RIP1,
suggesting that autophagy protects
cells

A549 human lung cancer cells; 5–6-
week-old BALB/c athymic nude mice

Kim et al. (2017)

Death receptor
pathways

Thiosulfinates In vitro Thiosulfinates increase Bid cleavage,
showing that caspase-8-mediated
apoptosis activates caspase-9.
Thiosulfinates decreased Bcl-2
expression and increased Bax
expression

HT-29 human colon cancer cells Guillamón et al. (2023)

Death receptor
pathways

Xanthone In vitro Xanthone extract or nanoemulsion
can halt the cell cycle at the S phase in
HepG2 cells, causing a larger
proportion of late apoptotic cells and
increased caspase-3, caspase-8, and
caspase-9 activity

HepG2 cells Li et al. (2023)
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copper are present. Polyphenols, including quercetin, epicatechin,
epigallocatechin-3-gallate (EGCG), and gallic acid, have been
found to generate reactive oxygen species (ROS) in cell models
due to their prooxidant properties (Yang et al., 2020).
Phytochemicals are widely recognized for their antioxidant
properties, but they can also display prooxidant activity under
specific circumstances, such as when administered in excessive
amounts or in the presence of metal ions (Yang et al., 2020). The
concentration of phytochemicals plays a crucial role in
determining whether they exhibit prooxidant or antioxidant
activity (Situmorang et al., 2021a). Studies using cell models
have highlighted the prooxidant activity of polyphenols, which
are known for their antioxidant properties. Specifically,
compounds such as quercetin, epicatechin, and
epigallocatechin-3-gallate (EGCG) have been found to

demonstrate this prooxidant activity. At elevated
concentrations, such as 50 μM, quercetin enhances the
generation of superoxide radicals (O2−) in isolated
mitochondria and cell culture medium (Yang et al., 2020; Safi
et al., 2021). Previous research has demonstrated that quercetin
can decrease cell viability and thiol content, as well as impair
overall antioxidant capacity and the activities of SOD, CAT, and
glutathione transferase at higher concentrations (Safi et al., 2021).
High amounts of flavonoids can generate reactive oxygen species
(ROS) through processes such as autoxidation and redox cycles, as
seen in quercetin (Safi et al., 2021).

Dietary phytochemicals can activate many cell signaling
pathways, and the specific route triggered by a molecule can vary
depending on the type of cell (Hun Lee et al., 2013). Elevated levels of
pro-apoptotic p53 and reduced levels of key pro-survival factors, such

FIGURE 4
p53 pathways in cancer. The p53 mechanism occurs due to various stress stimuli, such as DNA damage, nucleolar stress, metabolic stress, and oncogenic
stress. p53 protein levels show stability. Proteasome-dependent degradation of p53 is facilitated by E3 ligases, which enhance ubiquitination, and cytoplasmic
connections between p53 and Bcl-2 family proteins have also been observed to promote apoptosis (https://www.sinobiological.com/pathways).
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TABLE 4 Mechanism of action of phytochemical compounds in the p53 pathway in cancer.

Target Compound Types of
study

Mechanism of action Cell line(s)/animal
model (s)

References

P53 Ascochlorin In vitro The inhibition of mitochondrial
respiration is a consequence of the
activation of p53 by ascochlorin, a
phenomenon that is corroborated by the
fact that respiratory inhibitors elicit
p53 activation in a way akin to that of
ascochlorin

U2OS (human osteosarcoma) Jeong et al. (2009)

P53 Apigenin In vitro Apigenin decreased the tyrosine
phosphorylation of HER2 and increased
the levels of p53, phospho-p53, and p21 in
both MCF-7 vec and MCF-7 HER2 cells.
Furthermore, apigenin was found to cause
apoptosis through the p53-dependent
pathway

Her2 (breast cancer) Rahmani et al.
(2022)

P53 Butein In vitro The process of apoptosis induced by butein
is facilitated by the p53 protein, causes the
arrest of KBM5 cells in the S phase, and
changes the levels of specific cyclins and
downstream targets of p53, namely,
MDM2 and p21

The KBM5 and K562 cell lines Woo et al. (2016)

P53 Chalcones In vitro Chalcone increased p53 expression in
MCF-7 cells, suggesting that this chemical
had the capability to stimulate and
maintain the stability of p53 protein
expression

The MCF-7 line represents estrogen
receptor-positive breast cancer cells,
while the MDA-MB-231 line represents
triple-negative breast cancer (TNBC)
cells

Dos Santos et al.
(2019)

P53 Curcumin In vitro Curcumin stimulates the P53 signaling
pathway and inhibits the PI3K signaling
pathway to promote gastric cell death and
autophagy by upregulating P53 and P21

Two cell lines, SGC-7901 and BGC-823
(gastric cells)

Fu et al. (2018)

P53 Epigallocatechin-3-gallate
(EGCG)

In vitro and In
vivo

EGCG decreases β-catenin mRNA and
transcriptional activity in cells via the
p53 pathway and increases ubiquitin-
mediated 26S proteasomal degradation

Human HNC cell lines (oral cavity
squamous cell carcinoma and a
syngeneic mouse model

Kciuk et al. (2023)

P53 Formononetin In vitro Formononetin dose- and time-
dependently reduced A549 cell growth and
caused apoptosis. miR-27a-3p suppressed
HIPK2 3′UTR expression. In
formononetin-treated A549 cells, miR-
27a-3p expression decreased, that of
HIPK2 increased, and p53 decreased

Human non-small-cell lung cancer
(NSCLC)

Hu and He (2021)

P53 Garcinol In vitro Garcinol blocked CBP/p300-mediated
acetylation of the p53’s C-terminal
activation domain but boosted
p53K120 acetylation and cytoplasmic
p53 accumulation. Moreover, DNA
damage signaling markers such as
γH2A.X, H3K56Ac, p53, and TIP60 were
upregulated

MCF7 cells Collins et al. (2013)

P53 Honokiol In vitro Honokiol treatment of human
H4 neuroglioma cells caused cell death and
downregulated cyclin B1, CDC2, and
cdc25C expression but increased p-CDC2
and p-cdc25c expression. Honokiol also
elevated p53, p21, and Bax/Bcl-
2 expression. The molecular mechanism
involves activating p53 signaling and
arresting the cell cycle

H4 human neuroglioma cells Guo et al. (2015)

P53 Resveratrol In vitro Resveratrol activates the tumor suppressor
p53 and exhibits p53-independent
apoptosis by reducing the expression of
phosphorylated Akt-mediated NF-κB
suppression, as also evidenced by the
downregulation of antiapoptotic factors
Bcl-2 and Bcl-xl

A549 and HCC-15 cells Jang et al. (2022)

(Continued on following page)
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TABLE 4 (Continued) Mechanism of action of phytochemical compounds in the p53 pathway in cancer.

Target Compound Types of
study

Mechanism of action Cell line(s)/animal
model (s)

References

P53 Silibinin In vitro and in
vivo

Silibinin effectively repaired UVB-induced
DNA damage in p53+/+ mice but was less
effective in p53−/− animals. Activating
p53 helps silibinin protect against UVB-
induced photodamage, inflammation, and
photocarcinogenesis by inhibiting skin
tissue indicators of UVB-induced
inflammation

Non-melanoma skin cancers (NMSC),
p53−/− male breeders of the C57BL/
6 strain and female breeders of the
SKH-1 hairless strain

Rigby et al. (2017)

P53 Quercetin In vitro Quercetin induces p53-dependent G2/M
phase cell-cycle arrest and mitochondrial
apoptosis to reduce HeLa cell viability

Human cervical cancer (HeLa) Son and Kim (2023)

FIGURE 5
p38 pathways in cancer. p38 MAPK governs the regulation of downstream targets, including different kinases, transcription factors, and cytosolic
proteins. The kinases included in this study are MAPKAPK2, MAPKAPK3, PRAK, MSK1, and MNK ½. P38 phosphorylates various important transcription
factors, including the tumor suppressor protein p53, CHOP (C/EBP homologous protein), STAT1 (signal transducer and activator of transcription-1), CREB
(cAMP response element-binding protein), and Max/Myc complex. The p38 MAPK pathway is essential for controlling the synthesis of pro-
inflammatory cytokines at both the transcriptional and translational stages (https://www.sinobiological.com/pathways).
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TABLE 5 Mechanism of action of phytochemical compounds in the p38 pathway in cancer.

Target Compound Types of
study

Mechanism of action Cell line(s)/animal
model (s)

References

P38 Astaxanthin In vitro Astaxanthin-induced downregulation of
p38 MAPK XPC enhances erlotinib-
induced cytotoxicity in A549 and
H1975 cells

Non-small-cell lung cancer (NSCLC)
cell

Chen et al. (2018)

P38 α-Mangostin In vitro and in
vivo

α-Mangostin inhibited tumor growth in
cervical cancer mouse xenograft models
by increasing p-ASK1, p-p38, cleaved-
PARP, and cleaved-caspase-3 and
inhibiting cell viability. This led to loss of
mitochondrial membrane potential
(MMP), release of cytochrome C,
increase in Bax, decrease in Bcl-2, and
activation of the caspase

Human cervical cancer cell line SiHa
(ATCC HTB35); female nude mice
(BALB/c nu/nu) as xenograft animal
models

Lee et al. (2017)

P38 Baicalein In vitro Apoptosis, induced by caspase activation,
downregulation of bcl-2, and
overexpression of bax or p53 via the ERK/
p38 MAPK pathway inhibits growth

Human breast cancer MCF-7 and
MDA-MB-231

Zhou et al. (2009)

P38 Cardamonin In vitro The impact of cardamonin on the
proliferation and death of normal cells
was not readily apparent. In addition, it
inhibited the proliferation of OS cells in a
xenograft mice model and elevated the
phosphorylation threshold of
P38 and JNK.

Human OS cell lines 143B and MG63,
as well as human normal brain glial cell
HEB, human normal bone marrow
stromal cell HS5, and human normal
fetal hepatocyte LO2

Zhang et al. (2021a)

P38 Casticin In vitro Casticin decreases cell viability and
arrests the G2/M cell cycle via activating
caspases 8, 9, and 3 and activating
endogenous p38MAPK in untreated cells
based on phospho-MAPK expression
levels

HL-60 cells Kikuchi et al. (2013)

P38 Curcumin In vitro Inhibitors that downregulate ERK and
p38 MAPK phosphorylation did not have
any impact on curcumin-induced
apoptosis. However, the use of shRNA to
knock down p38 MAPK dramatically
decreased curcumin-induced apoptosis

U0126 and SB203580 (lung cancer) Wu et al. (2022b)

P38 Epigallocatechin-3-gallate
(EGCG)

In vitro EGCG inhibited proliferation and
migration of OVCAR-3 cells by reducing
p38 phosphorylation potentially
mediated through the activation of
p38 MAPK and downregulation of
MMP2 protein expression

The OVCAR-3 human ovarian
adenocarcinoma cell line

Wang et al. (2014b)

P38 Formononetin In vitro Formononetin contributes to a decrease
in Bcl-2 protein levels and an increase in
Bax expression in PC-3 cells, thereby
resulting in an increase in the Bax/Bcl-
2 ratio and regulating the p38/Akt
pathway, thereby triggering apoptosis in
tumor cells

Prostatic adenocarcinoma (PC-3) and
human prostate epithelial cells
(RWPE1)

Almatroodi et al.
(2023)

P38 Garcinol In vitro The p38-MAPK inhibitor and garcinol
synergistically increase the expression of
cyclin E, p21Waf1/Cip1, and
p27Kip1 and induce G1 cell cycle arrest
and apoptosis in lung cancer cells

H1299 lung cancer Pai et al. (2021)

P38 Honokiol In vitro Honokiol induces excessive ROS and
thus does not affect Lip-HNK-induced
apoptosis, but is also associated with
inhibition of the ERK/p38-MAPK
signaling pathway

D283, DAOY, BV2, and HT22 Li et al. (2022)
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as epidermal growth factor receptor (EGFR), nuclear factor-kappa B (NF-
κB), activator protein 1, signal transducers and activators of transcription
(STAT), survivin, metalloproteinases 2 and 9, vascular endothelial growth
factor (VEGF), and B-cell leukemia/lymphoma 2 (Bcl-2), are observed
under optimal conditions when phytochemicals are administered (Gupta
et al., 2012). The effectiveness of phytochemicals in cancer treatment
stems from their capacity to influence many signaling pathways
concurrently, hence facilitating apoptosis, impeding cellular
proliferation and invasion, sensitizing malignant cells, and enhancing
immune system functionality (George et al., 2021). The synergistic effect
of cytotoxic anticancer drugs and phytochemical inhibitors can
synergistically reduce tumor growth (Cheon and Ko, 2022). The
phytochemical composition of the seven primary plant constituents,
namely, flavonoids, alkaloids, terpenoids, steroids, saponins, phenol,
and tannins, as anticancer agents is shown in Supplementary Table S1.

3 Role of phytochemicals in the MAPK/
ERK pathway

TheMAPK/ERK pathway is a cellular protein chain responsible for
transmitting signals from cell surface receptors to DNA within the cell
nucleus. The development of certain human disorders, including as
Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic
lateral sclerosis (ALS), and several types of cancer, has been
associated with deviations from strict regulation of the MAPK
signaling pathway (Albert-Gascó et al., 2020). This particular route
encompasses a multitude of proteins, including mitogen-activated

protein kinase (MAPK, formerly known as ERK). These proteins
engage in communication by introducing phosphate groups to
adjacent proteins, thus functioning as active or inactive switches.
MAPKs represent a group of serine/threonine protein kinases that
exhibit a high degree of conservation. These kinases play a crucial role in
numerous essential cellular processes, including but not limited to
proliferation, differentiation, motility, stress response, apoptosis, and
survival (Chen et al., 2021). There have been characterizations of at least
three MAPK families, namely, extracellular signal-regulated kinase
(ERK), Jun kinase (JNK/SAPK), and p38 MAPK. The
aforementioned effects are achieved through the modulation of cell-
cycle machinery and other proteins associated with cell proliferation
(Min and Lee, 2023). Figure 1 investigates the function of this system in
conjunction with other signaling pathways to regulate the proliferation
of cancer cells. MAPK activation is initiated in a multistep process
through the stimulation of receptor tyrosine kinase (RTK) in the
MAPK/ERK signaling pathway. The protein kinase activity of RAF
kinase is facilitated by the activation of Ras. The phosphorylation and
activation ofMEK (MEK1 andMEK2) is facilitated by RAF kinase. ERK
is activated and phosphorylated by MEK (Santarpia et al., 2012). The
role of the MAPK/ERK pathway in the translation of extracellular
signals to cellular responses has been demonstrated to be significant.
The protein kinase cascade encompasses the presence of MAP kinase
(Cargnello and Roux, 2011). The cascade comprises a minimum of
three enzymes that are sequentially activated: MAPK kinase kinase
(MAPKKK), MAPK kinase (MAPKK), and MAP kinase (MAPK). The
MAPK/ERK pathway is involved in multiple processes associated with
cancer, such as proliferation, invasion, metastasis, angiogenesis, and

TABLE 5 (Continued) Mechanism of action of phytochemical compounds in the p38 pathway in cancer.

Target Compound Types of
study

Mechanism of action Cell line(s)/animal
model (s)

References

P38 Resveratrol In vitro Resveratrol upregulated SIRT1 and
inhibited Akt/mTOR while activating
p38-MAPK in NSCLC cells dose-
dependently, possibly causing autophagy.
Activating the Akt/mTOR pathway with
IGF-1 or blocking the p-38-MAPK
pathway greatly reduces cell proliferation
and increases apoptosis

Non-small-cell lung cancer (NSCLC) Wang et al. (2018)

P38 Silibinin In vitro Two ROS scavengers reduced p38/
p-p38 expression and NF-κB
transposition from the cytoplasm to the
nucleus, while p38 and NF-κB inhibitors
and H2O2 scavengers jointly reduced
ROS production and silibinin-induced
autophagy

The human fibrosarcoma HT1080 cells Duan et al. (2011)

P38 Quercetine In vitro Quercetin’s apoptotic effects involve the
ROS/AMPKα1/ASK1/p38 signaling
pathway, with AMPKα1 playing a crucial
role in ASK1-induced apoptosis.
Blocking AMPKα1 activity with
compound C, synthetic inhibitors, or
siRNA prevented quercetin-activated
ASK1 from stimulating p38 activity

MCF-7 cells (breast cancer) Biswas et al. (2022)

P38 Vitisin A In vitro Vitisin A reduced LPS-induced ERK1/
2 and p38 phosphorylation and NF-κB
activation. Vitisin A may decrease NO
generation by inhibiting ERK1/2, p38,
and NF-κB signaling pathways

RAW 264.7 cells Chang et al. (2017)

Frontiers in Pharmacology frontiersin.org14

Situmorang et al. 10.3389/fphar.2024.1387866

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1387866


apoptosis inhibition. TheMAPK/ERK pathway has a significant impact
on encouraging cancer cell proliferation and preventing apoptosis due
to its diverse actions (Kciuk et al., 2022). For instance, the compound β-
carboline has been observed to impede cell growth and trigger apoptosis
in SGC-7901 cells. This disruption of the PTEN and ERK balance leads
to the inhibition of the MAPK/ERK signaling pathway, ultimately
resulting in apoptosis in SGC-7901 cells (Qin et al., 2022). Berberine
has the ability to block the EGFR/Raf/MEK/ERK pathway, hence
suppressing the aging process in human glioblastoma cells.
Sinomenine suppresses the growth of many cancer cells (Liu et al.,
2015). The phosphorylation of ERK1/2 and p38 is enhanced by the
presence of sinomenine hydrochloride (SH). The phosphorylation of
ERK1/2 was considerably increased by the benzo alkaloid chelerythrine
chloride, while the phosphorylation of Akt was lowered in a dose-
dependent manner (Peng et al., 2023). Table 1 presents the mechanism
of action of various phytochemical compounds in the MAPK/ERK
pathway in cancer.

4 Role of phytochemicals in the TNF-
signaling pathway

The activation of signaling pathways for cell survival, death, and
differentiation is facilitated by the tumor necrosis factor (TNF)
superfamily of cytokines. TNF signaling has witnessed a growing

trend in the therapeutic management of individuals afflicted with
inflammatory bowel disease (IBD), including ulcerative colitis (UC)
and Crohn’s disease (CD), as well as rheumatologic and
dermatological conditions such as rheumatoid arthritis (RA),
juvenile idiopathic arthritis, and cancer (Evangelatos et al., 2022).
The activation of signal transduction pathways that promote
apoptosis can occur in cancer illnesses by the recruitment of death
domains (DDs) containing adapters, such as the Fas-associated death
domain (FADD) and TNFR-associated DD (TRADD), via TNF
signaling (Mak and Yeh, 2002). The activation of transcription
factors, such as NF-kappa B and JNK, can be facilitated by the
recruitment of TRAF family proteins. This activation promotes cell
survival and differentiation, as well as immunological and
inflammatory responses. Tumor necrosis factor ligands and
receptors were included based on their sequence and structure.
The TNF-related ligand is classified as a type II transmembrane
protein, characterized by an internal N terminus and an external C
terminus, known as the “TNF homology domain” (THD). An
essential characteristic of the receptor is the presence of a cysteine-
rich domain (CRD), which is composed of three disulfide connections
encircling the core motif CXXCXXC, resulting in the formation of an
elongated molecule (Suo et al., 2022). Figure 2 illustrates the
mechanism by which tumor necrosis factor (TNF) exerts its effects
via the tumor necrosis factor receptor (TNFR), hence participating in
the extrinsic pathway for induction of apoptosis. The association

FIGURE 6
Actin dynamics signaling pathways in cancer. The large protein tyrosine kinase family includes receptor tyrosine kinases (RTKs). Tyrosine kinase
receptors, such as EGFR, PDGFR, MCSFR, IGF1R, INSR, NGFR, FGFR, VEGFR, and HGFR, modulate intracellular signals that control the cell’s response to
external stimulus and are part of the Ras superfamily of tiny GTP-binding proteins that are involved in many biological processes (https://www.
sinobiological.com/pathways).
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between the TNFR and procaspases is mediated by adapter proteins
such as FADD and TRADD. These adapter proteins have the ability to
cleave dormant procaspases, thus initiating the caspase cascade. This
cascade ultimately leads to irreversible induction of death in cells
(Elmore, 2007). Studies on the apoptotic pathway have identified a
malfunction in the breakdown of lysosomal DNA, which triggers
macrophages to generate cytokines like IFN2 and TNF, without
relying on Toll-like receptors (TLRs) (Brouckaert et al., 2004). The
interaction between tumor necrosis factor and tumor cells initiates
cytolysis, which is the process of cell death. The inflammatory response
can be enhanced by tumor necrosis factor (Li and Beg, 2000). The
mechanism of action of various phytochemical compounds in the TNF-
signaling pathway in cancer is shown in Table 2.

5 Role of phytochemicals in the death
receptor pathways

Death receptors are receptors located on the surface of cells that
send signals triggering apoptosis. The involvement of death receptors
in the process of apoptosis of inflammatory cells, both in vivo and
in vitro, is of significant importance in various disorders, including
inflammation, hypertension, and cancer (Green, 2022). In certain

cases ,T lymphocytes and macrophages exhibit the presence of several
TNFR/ligands within plaques (Situmorang et al., 2022b). The TNFR
pathway has been linked to the death of T cells and macrophages
(Situmorang P. C. et al., 2024). These receptors, like TNFR, are
stimulated by specific ligands and play a critical role in instructive
apoptosis (Siegmund et al., 2016). Death receptors are classified under
the superfamily of tumor necrosis factor receptor (TNFR) genes
(Hehlgans and Pfeffer, 2005). So far, eight members of the death
receptor family have been identified: TNFR1 (also referred to as DR1,
CD120a, p55, and p60), CD95 (also referred to as DR2, APO-1, and
Fas), DR3 (also referred to as APO-3, LARD, TRAMP, and WSL1),
TRAILR1 (also referred to as DR4 and APO-2), TRAILR2 (also
referred to as DR5, KILLER, and TRICK2), DR6, ectodysplasin A
receptor (EDAR), and nerve growth factor receptor (NGFR). The
death receptors can be identified by the presence of a cytoplasmic
region known as the death domain (DD), which has around
80 residues (Hoffmann et al., 2009). In the context of cancer
(Figure 3), the activation of these receptors by certain ligands leads
to the recruitment of several molecules to the death domain,
subsequently initiating a signaling cascade. There are two distinct
forms of death receptor signaling complexes. The first group
comprises death-inducing signaling complexes (DISCs) that lead to
the activation of caspase-8, a pivotal component in the signaling

TABLE 6 Mechanism of action of phytochemical compounds in actin dynamics signaling in cancer.

Target Compound Types of
study

Mechanism of action Cell line(s)/animal
model (s)

References

Actin dynamics
pathways

Curcumin In vitro Curcumin inhibits lung cancer cell migration and
invasion by inhibiting the Rac1/PAK1 signaling
pathway and MMP-2 and MMP-9 expression,
providing new molecular insights

Human lung cancer cells Chen et al. (2014a)

Actin dynamics
pathways

Epi-gallocathechin-3-
gallate

In vitro EGCG reduced Rho A activation in dominant-
negative Rho A N19 cells and constitutively active
Rho A Q63E cells and inhibited the invasive ability
of the cells

Oral squamous-cell
carcinoma

Kciuk et al. (2023)

Actin dynamics
pathways

Fisetin In vitro Fisetin suppresses the survival and formation of
colonies and reduces the expression of P-gp in the
NCI/ADR-RES multidrug-resistant cancer cell
line, as well as inhibits cell proliferation, invasion,
and migration

Prostate cancer cells Mukhtar et al.
(2015)

Actin dynamics
pathways

Migrastatin In vitro Metastasis in a mice breast tumor model and a
human small-cell lung carcinoma model

A human small-cell lung
carcinoma (SCLC)

Lecomte et al.
(2011)

Actin dynamics
pathways

Resveratrol In vitro Resveratrol promotes Rac activity in breast cancer
cells by expressing dominant-negative Cdc42 or
Rac and preserving filopodia responsiveness, so
Rac and Cdc42 may regulate actin cytoskeleton
signaling differently at low and high
concentrations

Breast cancer cells Azios et al. (2007)

Actin dynamics
pathways

silibinin In vitro Silibinin impairs mitochondrial dynamics and
biogenesis, thereby reducing migration and
invasion of MDA-MB-231 breast cancer cells

MDA-MB-231 and MCF-7
cells

Si et al. (2020)

Actin dynamics
pathways

Quercetin In vitro Quercetin targets and pathways are seven proteins
(HMOX1, ACE, MYC, MMP9, PLAU, MMP3,
and MMP1) that can influence the JNK pathway,
glycolysis, and epithelial–mesenchymal transition
(EMT) that can regulate MMP9 expression

LoVo human colon cancer
cells

Zhou et al. (2023)

Actin dynamics
pathways

Wiskostatin In vitro Integrin-dependent migration of NK cells
toward CXCL12/SDF-1and CX3CL1/fractalkine

β1+/+, β1–GFP, β1−/−, and
β3−/− cells

King et al. (2011)
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TABLE 7 Mechanism of action of phytochemical compounds in autophagy pathways in cancer.

Target Compound Types of
study

Mechanism of action Cell line(s)/animal model (s) References

Autophagy Ampelopsin In vitro Ampelopsin can inhibit cell viability and
metastasis in RCC in a dose-dependent
manner by negatively regulating the PI3K/
AKT signaling pathway

Normal kidney cells HK-2 and human
RCC cells 786-O

Zhao et al. (2021)

Autophagy Acacetin In vitro Acacetin exerts inhibitory effects on the
invasion, migration, and
epithelial–mesenchymal transition (EMT) of
gastric cancer cells via the PI3K/Akt/Snail
pathway

MKN45 and MGC803 cells Zhang et al. (2022)

Autophagy Berberine In vitro Berberine had a substantial inhibitory effect
on the PI3K/AKT/mTOR signaling pathway
in BGC-823/DDP and SGC-7901/DDP cells
that were subjected to cisplastin treatment

BGC-823 and SGC-7901 cells Kou et al. (2020)

Autophagy Baicalein In vitro The cell cycle modulation and ER activation
of gastric cancer cells by baicalein inhibited
cell growth, induced G0/G1 arrest, and
apoptosis. Baicalein inhibited the PI3K/AKT
pathway by activating BTG3, causing ER and
apoptosis

GC cells (HGC-27 and AGS) Shen et al. (2023)

Autophagy Cyanidin In vitro The proliferation of cervical cancer cells is
inhibited, and the PI3K/AKT/mTOR
pathway is downregulated by cyanidin and
cisplatin

HeLa cells Li et al. (2021)

Autophagy Curcumin In vitro The expression of critical genes and proteins
in the PI3K–AKT–mTOR signaling pathway
was downregulated by curcumin in inhibiting
the growth and progression of hepatocellular
carcinoma (HNC) and in modulating the
PI3K–AKT–mTOR pathway

Hypopharynx carcinoma (FaDu), tongue
carcinoma (SCC-9), and keratinocyte
(HaCaT) cell lines

Borges et al. (2020)

Autophagy EGCG In vitro and in vivo The efficacy of EGCG in suppressing the
proliferation and migration of T24 and
5637 cells was demonstrated, providing
evidence that EGCG exerted its inhibitory
effects on cell proliferation and tumor
formation through the regulation of the
PI3K/AKT pathway

Female BALB/c mice and T24 or 5637 cells Luo et al. (2018)

Autophagy Isorhamnetin In vitro The proliferation of cells from all three cell
lines was inhibited by isorhamnetin, which
also induced cell cycle arrest at the G2/M
phase. This suppression of cell proliferation
was achieved through the inhibition of the
PI3K Akt mTOR pathway

The human CRC cell lines, HT-29,
HCT116, and SW480

Li et al. (2014)

Autophagy Luteolin In vitro The pretreatment of luteolin decreased the
activation of the PI3K-Akt pathway, which is
responsible for the reduction of E-cadherin
produced by TGF-β1

The lung adenocarcinoma A549 Chen et al. (2013a)

Autophagy Lupiwighteone In vitro Lupiwighteone caused caspase-dependent
apoptosis (upregulation of caspase-3, -7, -8,
-9, PARP, and Bax) and caspase-independent
apoptosis which inhibited the PI3K/Akt/
mTOR signaling pathway (downregulation of
PI3K, p-Akt, and p-mTOR)

MCF-7, an estrogen receptor (ER)-positive
human breast cancer cell, and MDA-MB-
231, a triple-negative human breast cancer
cell

Shiau et al. (2022)

Autophagy Kaempferol In vitro Kaempferol resulted in a reduction in cell
viability and the initiation of cellular
apoptosis and aging by downregulating the
PI3K/AKT and hTERT pathways

HeLa cell Kashafi et al. (2017)

(Continued on following page)
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TABLE 7 (Continued) Mechanism of action of phytochemical compounds in autophagy pathways in cancer.

Target Compound Types of
study

Mechanism of action Cell line(s)/animal model (s) References

Autophagy Myricetin In vitro Myricetin inhibits the proliferation of four
colon cancer cell lines by inhibiting the PI3K/
Akt/mTOR signaling pathway, which induces
cell death and autophagy. Additionally, 3 MA
suppresses autophagy, which induces
apoptosis in colon cancer cells treated with
myricetin

Four human colorectal cancer cell lines,
HT-29, HCT116, SW480, and SW620

Zhu et al. (2020)

Autophagy Matrine In vitro Matrine suppressed the proliferation of MCF-
7/ADR cells, triggered apoptosis, and
counteracted the development of multidrug
resistance in breast cancer cells. This was
achieved via modulating the downstream
apoptotic components of the PI3K/AKT
signaling pathway, resulting in a reduction in
the phosphorylation of AKT levels in the cells

MCF-7/ADR cell Zhou et al. (2018)

Autophagy Parthenolide In vitro and in vivo Parthenolide has the potential to impede the
growth of lung cancer cells by blocking the
PI3K/Akt/FoxO3γ signaling pathway
mediated by IGF-1R

Human NSCLC cell lines A549 and
H1299 cells; mouse subcutaneous
xenografts (male BALB/c nude mice)

Sun et al. (2020)

Autophagy Pelargonidin In vitro and in vivo Pelargonidin inhibits the PI3K/AKT/mTOR
pathway and decreases MMP2, MMP9,
N-cadherin, and VEGF protein expression
and also inhibits the PI3K/AKT/mTOR
pathway, preventing glioma vascularization
and metastasis

Adult male Sprague–Dawley rats, the rat
glioma cell line C6 (FH0406), and HUVEC
(FH1122)

Tian et al. (2022)

Autophagy Silymarin In vitro Si-SeNPs increased Bax/Bcl-2, cytochrome c,
and caspase protein cleavage in AGS cells, which
is linked to mitochondria-mediated apoptosis,
and inhibited PI3K/AKT/mTOR pathways were
substantially linked with autophagy and
apoptotic signaling in AGS cells

AGS gastric cancer cells Mi et al. (2022)

Autophagy Silibinin In vitro Silibinin demonstrates anticancer properties
via downregulating the actin cytoskeleton and
PI3K/Akt pathways, hence inhibiting the
growth and progression of bladder cancer

T24 and UM-UC-3 human bladder cancer
cells

Imai-Sumida et al.
(2017)

Autophagy Triptolide In vitro Triptolide decreased osteoclast bone
resorption and RANKL-induced
osteoclastogenesis, and PI3K-AKT-
NFATc1 is a key downstream pathway of
RANKL-induced osteogenesis.
NFATc1 overexpression and AKT
phosphorylation can mitigate this impact

Bone marrow mononuclear cells (BMMCs) Cui et al. (2020)

Autophagy Tocopherol In vitro Tocopherol-associated protein suppressed
tumors by downregulating PI3K/Akt
signaling, not cell-cycle arrest or androgen
receptor signaling, but lowered Akt activity by
inhibiting PI3K subunit interaction,
p110-p85

LNCaP, PC-3, DU-145, and RWPE-1 cells Ni et al. (2005)

Autophagy Resveratrol In vitro Resveratrol decreased the protein expression
levels of cyclin D1, cyclin E2, and
BCL2 apoptosis regulator, while increasing
BCL2-associated X and tumor protein p53,
which regulate the cell cycle and apoptosis

The human colon cancer cell lines
DLD1 and HCT15

Li et al. (2019)

Autophagy Quercetin In vitro The bioflavonoid quercetin inhibits the PI3K-
Akt/PKB pathway in PTEN-null cancer cells
at pharmacologically safe concentrations,
suggesting it may treat carcinogenesis and
progression

HCC 1937, which exhibits a homozygous
deletion of the PTEN gene, and T47D,
which possesses an intact PTEN gene

Gulati et al. (2006)

Autophagy Withanolides In vitro Withanolides decrease the activity of kinases
like PI3K, PKB, mTOR, ERK1/2, and ARAF
while increasing DNA repair kinases and
modulating oncogenic pro-survival factors

The AML cell lines that were used are
HL60, Kasumi-1, and P31/FUJ.

Akhtar et al. (2020)
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transduction pathways that mediate apoptosis (Gnesutta andMinden,
2003). DISCs are generated on the CD95, TRAILR1, or TRAILR2
receptors. The second category consists of TNFR1, DR3, DR6, and
EDAR. The process entails the recruitment of several molecules that
assist the translation of signals related to apoptosis and cell survival
(Schneider-Brachert et al., 2013). The mechanism of action of various
phytochemical compounds in the death receptor pathway in cancer is
shown in Table 3.

6 Role of phytochemicals in the
p53 pathway

The p53 tumor suppressor is a prominent mechanism involved
in apoptosis signaling. Cell loss in various neurological illnesses,
such as Alzheimer’s disease, Parkinson’s disease, hypertension,
stroke, and cancer, may be attributed to p53-related apoptosis,
which is a frequently observed process (Wolfrum et al., 2022). In
response to genotoxic or cellular stress, the p53 protein functions as
a nuclear transcription factor, exerting regulatory control over the
expression of several genes associated with apoptosis, growth arrest,

or senescence (Mijit et al., 2020). E3 ubiquitin ligases, such as
MDM2, exert a negative regulatory effect on p53 protein levels in
cancer (Figure 4). The proteasome-dependent degradation of p53 is
facilitated by the E3 ligase, which enhances ubiquitination. In
response to various stress stimuli, such as DNA damage,
nucleolar stress, metabolic stress, and oncogenic stress, the levels
of p53 protein exhibit stability. The cytoplasmic connections
between P53 and Bcl-2 family proteins have been observed to
facilitate the process of apoptosis. It was demonstrated in the late
1980s and early 1990s that the introduction of the wild-type
p53 gene into different human tumor cells resulted in the
induction of apoptosis and suppression of cell growth (Dhokia
et al., 2022). A curative response was observed in a mouse model
system where the function of p53 was precisely reactivated in the
tumor. The activation of p53 triggers cell-cycle arrest, facilitating
DNA repair and/or apoptosis to inhibit the proliferation of cells with
significant DNA damage (Chen, 2016). This is achieved via
transactivating target genes that are involved in the initiation of
cell cycle arrest and/or apoptosis. The mechanism of action of
various phytochemical compounds in the p53 pathway in cancer
is shown in Table 4.

FIGURE 7
Autophagy pathways in cancer. Activating mTOR (Akt and MAPK signaling) in cancer suppresses autophagy, while negative regulation (AMK and
p53 signaling) enhances it. Both autophagy and apoptosis have beneficial and negative effects, and they communicate. Under nutritional constraint,
autophagy aids survival. Other pro-apoptotic signals including TNF, TRAIL, and FADD trigger autophagy (https://www.sinobiological.com/pathways).
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7 Role of phytochemicals in the
p38 pathway

The involvement of p38 MAP kinase (MAPK) in signaling
cascades governing cellular reactions to cytokines and stress has
been observed (Falcicchia et al., 2020). Four p38 MAP kinases
have been found in mammals, namely, p38-α (MAPK14), p38-β
(MAPK11), p38-γ (MAPK12/ERK6), and p38-ι (MAPK13/SAPK4).
Just like the SAPK/JNK pathway, the activation of p38 MAP kinases
occurs in response to several cellular stressors and various illnesses,
including osmotic shock, inflammatory cytokines, lipopolysaccharide
(LPS), UV light, growth factors, hypertension, and cancer (Asih et al.,
2020). Furthermore, the activation of p38 is indirectly induced by
oxidative stress and GPCR stimulation (Situmorang et al., 2023). The
regulation of downstream targets, such as various kinases,
transcription factors, and cytosolic proteins, is governed by
p38 MAPK in the context of cancer (Huang et al., 2024). The
kinases considered in this study are MAPKAPK2, MAPKAPK3,
PRAK, MSK1, and MNK ½ (Figure 5). P38 phosphorylates several
crucial transcription factors, such as the tumor suppressor protein
p53, CHOP (C/EBP homologous protein), STAT1 (signal transducer

and activator of transcription-1), CREB (cAMP response element-
binding protein), and Max/Myc complex (Koul et al., 2013). The
p38 MAPK pathway plays a crucial role in regulating the production
of pro-inflammatory cytokines at both the transcriptional and
translational levels. Consequently, several elements within this
system hold promise as possible therapeutic targets for
autoimmune and inflammatory disorders (Ganguly et al., 2023).
The p38 pathway plays a crucial role in controlling cell growth
and suppressing tumor growth by influencing many regulators of
the cell cycle. The tumor-suppressing role of the p38 pathway suggests
that several elements of the p38 pathway hold promise as possible
targets for innovative cancer treatments (Martínez-Limón et al.,
2020). The mechanism of action of various phytochemical
compounds in the p38 pathway in cancer is shown in Table 5.

8 Role of phytochemicals in the actin
dynamics signaling pathways

G protein-coupled receptors (GPCRs), integrins, and receptor
tyrosine kinases (RTKs) are involved in the regulation of actin

FIGURE 8
Phytochemicals as chemo-preventives and signalingmoleculemodulators. In the presence of phytochemicals that increase p53, decrease AKT, and
cause cellular apoptosis and cell cycle arrest, tumor suppressor proteins activate the apoptotic cascade. Crosstalk between the p53, MAPK, and JNK
pathways also contributes, where the AKT and mTOR pathways are downregulated in cancer cells, causing autophagy, but the presence of herbal
phytochemicals can control inflammation, angiogenesis, invasion, and metastasis (Ahmed et al., 2022).
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dynamics by extracellular signals. G protein-coupled receptors
(GPCRs) encompass a diverse group of protein receptors that
detect extracellular chemicals and initiate intracellular signal
transduction pathways, ultimately leading to physiological
responses (Cheng et al., 2023). The formation of aberrant thin
filaments and the disruption of muscular contraction might result
from dysfunctional actin–ATP binding, hence causing muscle
weakening and various manifestations of actin accumulation
myopathy (Dowling et al., 2021). No ACTA1 gene mutation has
been detected in certain individuals with actin accumulation
myopathy. In addition to muscular issues, actin dynamics
signaling pathways also contribute to the development of cancer.
Transmembrane receptors known as integrins serve as
intermediaries between cell–cell interactions and the extracellular
matrix (ECM) of a cell. In cancer, integrins initiate signaling
transduction pathways that affect the cell interior, including the
chemical composition and mechanical state of the extracellular
matrix (ECM) (Jo et al., 2020). This leads to transcriptional
activation, which in turn regulates several cellular processes such
as cell cycle regulation, cell shape, the cell’s ability to move, and the
addition of additional receptors to the cell membrane (Pang et al.,
2023). RTKs, or receptor tyrosine kinases, belong to the extensive
group of protein tyrosine kinases. Tyrosine kinase receptors
encompass a diverse array of proteins, including EGFR, PDGFR,
MCSFR, IGF1R, INSR, NGFR, FGFR, VEGFR, and HGFR
(Figure 6). Rho is responsible for modulating intracellular signals
that control the cell’s response to external stimulus. Rho is a
constituent of the Ras superfamily of tiny GTP-binding proteins
that has significant involvement in various biological processes,
including the organization of the actin cytoskeleton, dynamics of
microtubules, transcription of genes, transformation of cancer cells,
development of the cell cycle, adhesion, and epithelial wound repair
(Zubor et al., 2020). The activation of GEF (guanine nucleotide
exchange factor) is seen (Ilyas et al., 2022). The protein kinase
effectors ROCK and PAK are located downstream. The occurrence
of immunological diseases, developmental abnormalities, and
cancer often involves the disruption of cytoskeletal signaling,
leading to the cessation of production of extracellular stimuli and
cellular responses (Miller and Zachary, 2017). The mechanism of
action of various phytochemical compounds in actin dynamics
signaling pathways in cancer is shown in Table 6.

9 Role of phytochemicals in the
autophagy pathways

Autophagy is a cellular recycling mechanism characterized by
the dynamic destruction of cytoplasmic contents, aberrant protein
aggregates, and excess or damaged organelles through the
autophagosome–lysosome process (Gómez-Virgilio et al., 2022).
Impaired autophagy function is linked to NAFLD, diabetes, AKD/
CKD, heart failure, IBD, and neurodegenerative disorders. These
models provide comprehensive data on initial effectiveness,
toxicity, pharmacokinetics, and safety, which aids in
determining whether a molecule should be further developed
for the purpose of conducting clinical studies (Situmorang
et al., 2021b; Situmorang et al., 2021c). Nevertheless, in the
context of cancer, both the inhibition and augmentation of

autophagy significantly contribute to the advancement of the
disease via several mechanisms. The activation of mTOR (Akt
and MAPK signaling) in cancer leads to the suppression of
autophagy, while the negative regulation of mTOR (AMK and
p53 signaling) increases autophagy (Verma et al., 2021). ULK
functions in a manner comparable to that of yeast Atg1, operating
in the downstream region of the mTOR complex. The formation of
a substantial complex between ULK, Atg13, and the scaffolding
protein FIP200 is observed. The induction of autophagy necessitates the
presence of the class III PI3K complex, which comprises hVps34, beclin
1 (the mammalian counterpart of yeast Atg6), p150 (the mammalian
counterpart of yeast Vps15), and Atg14-like protein (Atg14L or Barkor)
or ultraviolet irradiation resistance-associated gene (UVRAG) (Tran
et al., 2021). Rubicon exerts inhibitory effects on the activity of PI3K
class III lipid kinase and counteracts the effects of Atg14L, a protein that
enhances class III PI3K activity. Autophagosome formation is regulated
by the Atg12-Atg5 and LC3-II (Atg8-II) complexes, which are
controlled by the Atg gene. Atg12 undergoes conjugation with
Atg5 through an ubiquitin-like process, which necessitates the
involvement of Atg7 and Atg10 (enzymes with E1-and E2-like
properties, respectively). The Atg12–Atg5 conjugate subsequently has
a noncovalent interaction with Atg16, resulting in the formation of a
substantial complex (Hu and Reggiori, 2022). The protease Atg4 cleaves
the C terminus of the second complex, LC3/Atg8, resulting in the
formation of cytosolic LC3-I. The process of conjugating LC3-I to
phosphatidylethanolamine (PE) involves a ubiquitin-like reaction that
necessitates the involvement of Atg7 and Atg3, which are enzymes with
E1-and E2-like properties, respectively (Agrotis et al., 2019). LC3-II, a
lipidated variant of LC3, adheres to the membrane of autophagosomes
(Figure 7). Autophagy and apoptosis have both positive and negative
associations, with significant intercommunication observed between
these two biological processes. The process of autophagy is a survival
strategy that is activated when nutrients are scarce (Xi et al., 2022).
However, an excessive amount of autophagy can result in cell death,
which is a separate process from apoptosis in terms of its morphology.
Autophagy is also induced by other pro-apoptotic signals, including
TNF, TRAIL, and FADD. Furthermore, Bcl-2 exerts inhibitory effects
on beclin 1-dependent autophagy (Ilyas et al., 2021), thus serving as a
dual regulator of both pro-survival and anti-autophagic processes. The
mechanism of action of various phytochemical compounds in
autophagy pathways in cancer is shown in Table 7.

10 Phytochemicals in clinical trials as
anticancer agents

During the practical process of drug development, employing
meticulous preclinical screening models can generate promising lead
compounds for the development of anticancer drugs. These models
provide comprehensive data on initial effectiveness, toxicity,
pharmacokinetics, and safety, which aids in determining whether a
molecule should be further developed for the purpose of conducting
clinical studies (Situmorang et al., 2021b). In the present review, a
substantial body of evidence pertaining to the effectiveness of several
phytochemicals has been amassed. Clinical research has demonstrated
that P. ginseng effectively decreases the occurrence of cancer and
exhibits advantageous benefits in individuals with cancer (Chen S.
et al., 2014). Previous research has demonstrated that the consumption
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of fresh ginseng slices, juice, or tea has been associated with a reduced
likelihood of developing many types of cancer, such as those affecting
the pharynx, larynx, esophagus, stomach, colorectal, pancreatic, liver,
lung, and ovarian regions (Lim et al., 2016). The presence of resveratrol
in grape powder does not exhibit the ability to inhibit theWnt pathway
in colon cancer. However, it does demonstrate the capacity to inhibit the
expression of Wnt target genes in the normal colonic mucosa of
individuals diagnosed with colorectal cancer. This implies that
resveratrol has advantageous properties in the onset and spread of
colon cancer due to its modulation of Wnts and their downstream
effectors, which play a crucial role in regulating various processes
associated with tumor initiation, tumor growth, cell death, and
metastasis (Jin et al., 2016). Furthermore, empirical investigations
have demonstrated that flavonoids exhibit antiproliferative and
apoptotic properties against diverse tumor cell lines, such as human
lymphoma, breast cancer, osteosarcoma, and transformed hepatoma
cells. A study including 250 urine samples obtained from Chinese
women residing in Shanghai demonstrated a correlation between
elevated excretion of total isoflavonoids and total lignans and a
decreased likelihood of developing breast cancer (Situmorang PC.
et al., 2024). Research has demonstrated that the incorporation of
phytosterols into one’s diet can effectively mitigate the likelihood of
developing obesity, diabetes, and cancer risk factors. The efficacy of
phytosterols as anticancer agents has been demonstrated in several in
vivo investigations, employing diverse cancer cell lines and animal
models (Dai et al., 2002). Based on the above explanation, it is evident
that numerous phytochemical constituents have been subjected to
research and have progressed to the clinical trial phase. Herbal
phytochemicals promote autophagy, a process by which cells
undergo halting of aberrant growth and development. Autophagy is
induced by the downregulation of the AKT and mTOR pathways in
cancer cells (Ahmed et al., 2022). Hence, phytochemicals modulate
antitumor effects in tissues via controlling inflammation, angiogenesis,
invasion, and metastasis. The signaling pathways that phytochemicals
use to halt carcinogenesis are illustrated in Figure 8.

11 Nanoformulation and green
synthesis improve cancer-fighting
natural chemicals

Various drug delivery technologies, such as synthetic polymers,
microcapsules, and liposomes, possess the characteristic of enhancing
medication bioavailability and promoting drug accumulation at the
intended location. Herbal administration of anticancer medications is
crucial since it minimizes or eliminates any adverse effect on healthy
tissues. The utilization of nanoformulations is prevalent in the
development of sunscreens, antibacterial medications, cholesterol
biosensors, and dietary modulators for the purpose of managing
diabetes and hyperlipidemia (Khafaga et al., 2023). Furthermore, it is
imperative for the drug to possess functional groups that facilitate further
alterations aimed at regulating drug release or binding to the target unit.
The potential application of silver nanoparticle-based nanosystems as
carriers for several therapeutic chemicals, including those possessing anti-
inflammatory, antioxidant, antibacterial, and anticancer characteristics,
has been the subject of investigation (Burdusel et al., 2018).

The present methodology for synthesizing nanoparticles in an
environmentally sustainable manner is distinctive and time-

efficient. Extensive research has been carried out on silver
nanoparticles (AgNPs) due to their potential anticancer
properties, as evidenced by multiple studies on human cancer.
AgNPs exhibit significant potential as a highly efficient
mechanism for delivering antitumor drugs. AgNPs address these
limitations by mitigating adverse effects and enhancing the efficacy
of cancer treatment. AgNPs have great potential as pharmaceuticals,
as evidenced by the favorable outcomes of prior research and their
affordability (Takáč et al., 2023). Several previously documented
phytochemicals have demonstrated the potential of phytochemicals
as cancer medicines because of their ability to form ionic or covalent
connections with gold nanoparticles (AuNPs) and undergoing
physical absorption. A hybrid system was formed by covalently
linking polyacrylamide/dextran nano-hydrogel to silver
nanoparticles, resulting in an in vitro release of 98.5%.
Nevertheless, the utilization of AgNPs as therapeutic agents is
hindered by certain inherent challenges pertaining to toxicity
(Yusuf et al., 2023). In order to surmount these challenges and
facilitate their application in preclinical trials involving people or
other organisms, it is imperative that AgNPs exhibit
biocompatibility, non-toxicity, and the absence of adverse effects.
The selection of various mechanistic pathways, such as
mitochondrial disruption, DNA fragmentation, cell membrane
disruption, cellular signaling pathway disruption, enzyme activity
changes, and reactive oxygen species (ROS), by AgNPs holds
significant promise for therapeutic applications due to their
ability to control the size, shape, and function of the corona
surface. Utilizing phytochemicals found in plant extracts, AgNPs
were produced by green synthesis for potential cancer treatment.
Furthermore, this study also presents recent advancements and
accomplishments in the application of silver nanoparticles
(AgNPs) produced by green synthesis in the field of cancer
therapy (Ratan et al., 2020). It also suggests probable
mechanisms through which these nanoparticles may exhibit
anticancer and cytotoxic properties. The comprehension of the
molecular mechanisms behind the therapeutic effectiveness of
AgNPs holds promise for the development of targeted therapies
and treatments for cancer, hence presenting a promising avenue for
cancer treatment (Wahi et al., 2023).

12 Conclusion

Cancer is characterized by abnormal cell metabolism, which is
considered a biological indicator. The preferred approach for cancer
treatment is the use of plant compounds for chemoprevention. The
observed preventive and therapeutic advantages of these bioactive
chemicals against different types of cancer can be attributed to their
ability to modulate signal transduction pathways. The consideration
of compounds possessing antioxidant properties as a preventive
intervention against cancer is warranted due to the substantial role
of oxidative stress in the pathogenesis of diverse malignant illnesses.
Seven primary bioactive chemicals, namely, alkaloids, tannins,
flavonoids, phenols, steroids, terpenoids, and saponins, found in
plants have anticancer activities. These compounds play a significant
role in modulating cell growth. The process of angiogenesis and
metastasis inhibition in cancer is mediated by various mechanisms,
including the MAPK/ERK pathway, TNF signaling, death receptors,
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p53, p38, and actin dynamics. In the context of combating cancer
resistance, novel molecular processes necessitate the exploration of
novel multitargets. Phytochemical substances, whether transformed
into natural small molecules or nanostructured formulations,
exhibit considerable potential as multitarget agents due to their
reduced side effects and enhanced efficacy. This phenomenon not
only exerts an impact on the proliferation of malignant cells but also
offers practical insights for the investigation of therapeutic agents
that specifically target tumors, hence paving the way for novel
avenues in the realm of cancer prevention and therapy.
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