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Background: Sepsis-associated acute kidney injury (SA-AKI) poses an
independent risk for mortality due to the absence of highly sensitive
biomarkers and a specific treatment plan.

Objective: Investigate the association between low molecular weight heparin
(LMWH) calcium therapy and prognosis in critically ill SA-AKI patients, and assess
the causal relationship through Mendelian randomization (MR) analysis.

Methods: A single-center, retrospective, cross-sectional study included 90 SA-
AKI patients and 30 septic patients without acute kidney injury (AKI) from the
intensive care unit (ICU) of the First Hospital of Lanzhou University. SA-AKI
patients were categorized into control or LMWH groups based on LMWH
calcium usage. Primary outcome was renal function recovery, with secondary
outcomes including 28-day mortality, ICU stay length, number of renal
replacement therapy (RRT) recipients, and 90-day survival. MR and related
sensitivity analyses explored causal effects.

Results: The combination of heparin-binding protein (HBP), heparanase (HPA),
and neutrophil gelatinase-associated lipocalin (NGAL) demonstrated high
diagnostic value for SA-AKI. MR analysis suggested a potential causal link
between gene-predicted HBP and AKI (OR: 1.369, 95%CI: 1.040–1.801, p =
0.024). In the retrospective study, LMWH-treated patients exhibited improved
renal function, reduced levels of HPA, HBP, Syndecan-1, and inflammation, along
with enhanced immune function compared to controls. However, LMWH did not
impact 28-day mortality, 90-day survival, or ICU stay length.

Conclusion: LMWH could enhance renal function in SA-AKI patients. MR analysis
supports this causal link, underscoring the need for further validation in
randomized controlled trials.
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1 Background

Sepsis associated acute kidney injury (SA-AKI) is a prevalent
and severe complication among critically ill patients,
contributing to elevated morbidity and mortality rates
(Peerapornratana et al., 2019). Notably, the mortality rate in
SA-AKI patients significantly exceeds that of sepsis patients
without acute kidney injury (AKI) (Bagshaw et al., 2007). This
heightened mortality is attributed to the unclear pathogenesis of
SA-AKI, the absence of highly sensitive and specific biomarkers
for early diagnosis, and the lack of effective, specific treatment
modalities (Peerapornratana et al., 2019). Presently, neutrophil
gelatinase-associated lipocalin (NGAL) stands as the most
extensively studied biomarker for SA-AKI (Shang and Wang,
2017). Despite NGAL’s potential in SA-AKI diagnosis and
prediction, prior studies have indicated that the combination
of multiple biomarkers yields superior effects and predictive
value compared to a single biomarker (Grover et al., 2014).
Further investigation is needed to explore whether biomarkers
with heightened sensitivity and specificity or combined detection
can enable earlier SA-AKI diagnosis.

Fibroblast growth factors (FGF), also recognized as heparin-
binding growth factors (HBF), comprise a protein family
consisting of approximately two dozen heparin-binding
proteins (HBP) (Ornitz and Itoh, 2001), including aFGF and
bFGF. Within the FGF family, proteins signal through at least one
of four tyrosine kinase receptors and interact with heparan
sulfate proteoglycans (HSPGs). In adults, FGFs serve as
homeostatic factors involved in tissue repair and responses to
injury (Beenken and Mohammadi, 2009). Previous studies have
demonstrated that HBP predicts septic infection-induced organ
dysfunction and disease severity. Tapper, H., et al. (Tapper et al.,
2002) emphasized the predictive value of HBP for SA-AKI. HBP
emerges as a pathogenic biomarker and a potential target for
heparin treatment of human SA-AKI (Lee et al., 2012). Heparin
inhibits HBP-induced inflammation and reduces interleukin
(IL) −6 production (Lee et al., 2012). Studies have indicated
that low molecular weight heparin (LMWH) blocks HBP-
induced inflammation in renal tubular cells, suggesting a
potential avenue for SA-AKI treatment (Fisher et al., 2017).

Studies have indicated that heparanase (HPA) mediates septic
AKI (Chen et al., 2017). HPA disrupts the structural integrity of
extracellular matrix (ECM) and basement membrane, releasing and
activating active substances attached to side chains (Lerolle et al.,
2010; Teixeira and Götte, 2020), which leads to the release of
heparin-binding molecules promoting pro-inflammatory factors
such as IL-2, IL-8, bFGF, and transforming growth factor (TGF)-
β within the ECM. These inflammatory factors regulate the
interaction between the surface of white blood cells (WBC) and
endothelial cells, thereby affecting the recruitment, migration and
extravasation of WBC (Carter et al., 2003; Axelsson et al., 2012;
Higashi et al., 2020). Heparin can alleviate SA-AKI by inhibiting
HPA activity (Hirsh and Levine, 1992; Chen et al., 2015).LMWHhas
been shown to inhibit HPA-mediated HS degradation (Achour et al.,
2016). Therefore, it is speculated that LMWH may inhibit HPA
activity, reduce the degradation of ECM, decrease the release of
HBP, and improve the renal function and clinical prognosis of
SA-AKI.

2 Materials and methods

2.1 Study design and participants

This retrospective study was conducted in the Department
of Critical Care Medicine at the First Hospital of Lanzhou
University. Data were collected from patients admitted for
sepsis between September 2021 and August 2023 for analysis.
The patient population consisted of individuals of Asian
descent. Ethics approval for this study was obtained from the
Ethics Committee of the First Hospital of Lanzhou University,
and informed consent was obtained from the patient or
their family.

All participants included in this study met the diagnostic
criteria for sepsis-3 (Singer et al., 2016), which entail a positive or
suspected infection and a Sequential Organ Failure Assessment
(SOFA) score of 2 or higher. The exclusion criteria were as
follows (Peerapornratana et al., 2019): age <18 years (Bagshaw
et al., 2007), pregnancy or lactation (Shang and Wang, 2017),
previous renal underlying diseases (nephrotic syndrome, lupus
nephritis, interstitial nephritis, end-stage renal disease, etc.) and
a history of kidney transplantation (Grover et al., 2014),
malignant tumors or blood system diseases (Ornitz and Itoh,
2001), obstructive urinary tract disease (Beenken and
Mohammadi, 2009), expected survival less than 24 h (Tapper
et al., 2002), receiving high-dose anticoagulant therapy for
conditions such as deep vein thrombosis, atrial fibrillation, or
pulmonary embolism (Lee et al., 2012), life-threatening severe
organ failure, and (Fisher et al., 2017) discontinuation of
treatment requested by a family member.

2.1.1 Group and treatment
Patients were categorized into septic patients without AKI and

SA-AKI groups based on the presence of AKI. Septic patients
without AKI were defined as those who did not experience AKI
in the first 7 days of sepsis, whereas patients with SA-AKI had
already developed AKI at the time of enrolment. SA-AKI was
defined by a sudden and sustained decline in renal function with
an absolute increase in serum creatinine of ≥0.3 mg/dL
(or ≥26.5 µmol/L); or an increase in serum creatinine to more
than 1.5 times the baseline value within the previous 7 days; or
urine volume <0.5 mL/kg·h for 6 h. SA-AKI, further divided into
control and LMWH groups based on LMWH usage (Figure 1A),
involved the subcutaneous injection of 5,000 IU of LMWH calcium
once a day in the LMWH group. Both groups received additional
treatments in accordance with the sepsis-3 criteria and the
2021 KDIGO Clinical Practice Guidelines (Singer et al., 2016;
Rovin et al., 2021).

2.2 Sample and laboratory analysis

Blood samples were collected within the initial 24 h following
study enrollment and subsequently at the 1st, 3rd, and 7th days
after LMWH treatment initiation. Plasma processing occurred
within 30 min of blood collection, and the samples were stored
at −80°C, with precautions taken to prevent repeated freeze-thaw
cycles. Measurement of plasma NGAL, HBP, HPA, and

Frontiers in Pharmacology frontiersin.org02

Li et al. 10.3389/fphar.2024.1389354

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1389354


syndecan-1 was performed using enzyme-linked immunosorbent
assay (ELISA).

2.3 Clinical data collection

All clinical data were extracted from medical records,
encompassing demographics (age, sex, height, weight, blood
pressure, SOFA score, Acute Physiology and Chronic Health
Evaluation II (APACHE II) score), renal function, urine
volume, routine blood parameters, coagulation function,
length of ICU stay, use of renal replacement therapy (RRT),
28-day fatality rate, 90-day survival rate, and other relevant
information.

2.4 Mendelian randomization method

2.4.1 Design of Mendelian randomization method
in this study

The flow diagram of our Mendelian randomization (MR)
method is depicted in Figure 1B. Our MR analysis adhered
rigorously to the principles outlined in the 2023 STROBE-MR
Guidelines by Stephen et al. (Burgess et al., 2019) and the
Epidemiological Observation Study report (von Elm et al., 2007).
Additionally, our MR study was designed to fulfill three key
assumptions (Peerapornratana et al., 2019): Screened
instrumental variables (IVs) exhibit a robust association with the
exposure (Bagshaw et al., 2007); IVs are unrelated to confounding
factors (Shang and Wang, 2017); IVs can solely influence the

FIGURE 1
Flow Chart. (A) Flow chart illustrating the selection process for patients meeting the inclusion/exclusion criteria. (B) Study design of MR. MR,
Mendelian randomizatio; SNPs, single nucleotide polymorphisms; HGF, heparin-binding growth factors.
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TABLE 1 Characteristics of the Patients with sepsis at Baseline. (Mean ± SD).

Parameter AKI (n = 90) Without AKI (n = 30) p-value

Age (years) 63.93 ± 15.28 62.53 ± 12.55 0.493

Sex-no. (%) 0.317

Male 61 (67.78) 19 (63.33)

Female 29 (32.22) 11 (36.67)

BMI (kg/m2) 23.81 ± 4.07 23.18 ± 3.22 0.590

MAP (mmHg) 103.81 ± 65.02 101.77 ± 20.30 0.354

Serum creatinine (umol/L) 247.34 ± 89.22 81.77 ± 13.41 <0.001

Plasma HPA (ng/mL) 11.69 ± 2.23 10.57 ± 1.47 0.031

Plasma NGAL (pg/mL) 274.54 ± 59.68 213.63 ± 32.57 0.001

Plasma HBP (ng/mL) 93.94 ± 23.75 72.91 ± 17.99 <0.001

SOFA scorea 9.41 ± 1.84 9.20 ± 1.79 0.478

Abbreviations: AKI, acute kidney injury; BMI, body mass index; MAP, mean arterial pressure; HPA, heparanase; NGAL, neutrophil gelatinase-associated lipids; HBP, heparin-binding protein.
aThe Sequential Organ Failure Assessment (SOFA) score ranges from 0 to 24, with higher scores indicating greater severity of organ dysfunction. p < 0.05 was statistically significant.

FIGURE 2
The study investigates the associations of HPA with NGAL, HBP, Creatinine, and Syndecan-1 in sepsis, analyzes ROC curves for HPA, NGAL, and HBP
in SA-AKI. (A)Correlation curve depicting the relationship between HPA andNGAL, HBP, syndecan-1 and creatinine in sepsis patients (NGAL, R2 = 0.0690,
p < 0.001; syndecan-1, R2 = 0.7561, p < 0.001; HBP, R2 = 0.0505, p=0.0331; NGAL, R2 = 0.0496, p=0.0348). (B) ROC curves comparing NGAL, HBP, HPA
and their combination for the diagnosis of SA-AKI and sepsis without AKI (sepsis without AKI group, n= 30, SA-AKI group, n=90; HBP, AUC=0.7513;
NGAL, AUC = 0.6944; HPA, AUC = 0.6931; NGAL + HBP + HPA, AUC = 0.7948). (C) ROC values, p-values, sensitivity, specificity results, and their
confidence intervals for (B). HPA, heparanase; NGAL, neutrophil gelatinase-associated lipocalin; HBP, heparin-binding protein; AKI, acute kidney injury;
SA-AKI, sepsis-associated acute kidney injury; ROC, receiver operating characteristic; AUC, area under curve; LMWH low molecular weight heparin; CI,
confidence intervals.
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outcome through the exposure and do not have a direct correlation
with the outcome.

2.4.2 Exposure and outcome data sources
Our data were sourced from publicly available genome-wide

association studies (GWAS) data repositories. HBF was designated
as the exposure and obtained from the IEU Open GWAS project
(https://gwas.mrcieu.ac.uk) under catalog number ebi-a-
GCST90012067. In the study conducted by Lasse et al. (Folkersen
et al., 2020), the total sample size comprised 21,758 individuals, with
1,366,246 single nucleotide polymorphisms (SNPs). Renal tubular
injury served as the outcome, and the data were retrieved from
FINNGEN database, encompassing a total sample size of
340209 individuals, identified by the catalog number finngen_
R8_N14_DISIMPAIRRENTUB. FINNGEN is a substantial
GWAS database and analyzes genomic and health data from
approximately 500,000 biobank participants from Finland (Locke
et al., 2019).

2.4.3 Selection of instrumental variable
Initially, we selected SNPs with a significance threshold of p <

5 × 106 from the GWAS as IVs for the exposure. These SNPs were
also ensured to be independent, i.e., in linkage disequilibrium
(LD) with an R2 < 0.001 and LD > 10000 kb. Subsequently, we
merged the extracted exposure and outcome data, while the
merged dataset was harmonise to ensure that the effects of
SNPs on exposure and outcome corresponded to the same
alleles (Supplementary Table S1). Additionally, we calculated

the R2 and F-value of the screened SNPs. An F-statistics
exceeding 10 indicates a strong association (Burgess et al.,
2013). This calculation is performed using the formula: F = R2

(N-K-1)/(1-R2) (Palmer et al., 2012), where R2 represents the
variance in exposure explained by the selected SNPs and N
represents the number of genetic samples for the phenotype.

2.4.4 MR and sensitivity analysis
In this study, the primary analysis method employed was the

standard inverse variance weighting (IVW) method. Additionally,
the MR-Egger method, weighted median method, and maximum
likelihood method were used as supplementary analyses to assess the
causal relationship between exposure and outcome. TheMR analysis
was conducted using R software (version 4.3.1), incorporating Two
SampleMR (version 0.5.7) and MRPRESSO (version 1.0). A
significance level of p < 0.05 was considered statistically significant.

To enhance the robustness of the results, a sensitivity
analysis was conducted. Heterogeneity was assessed using the
Cochran Q test, and horizontal pleiotropy was examined using
the MR-Egger intercept test. Leave-one analysis was utilized to
investigate the influence of individual SNPs on MR estimates.
Additionally, scatter plots and funnel plots were employed to
illustrate the results, aiding in the identification of outliers and
pleiotropy. The MR-PRESSO method was then employed to
identify and address outlier SNPs (Verbanck et al., 2018). To
determine causal directionality, we applied the Steiger test for
validation, mitigating bias induced by reverse causality (Hemani
et al., 2017).

FIGURE 3
MR analysis correlation analysis plot. (A) Forest plots for the MR leave-one-out analysis of the significant IVW estimates. (B) Scatterplots of SNPs’
effects on HGF versus their effects on renal tubular injury. (C) Funnel plots of the association between HGF and renal tubular injury. (D) The forest map
includes a MR analysis of HGF on renal tubular injury and regression results of sensitivity analysis, Steiger test, and F-statistic. MR, Mendelian
randomization; SNP, single nucleotide polymorphisms; HGF, heparin-binding growth factors; IVW, inverse variance weighting.
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2.4.5 ELISA
Serum samples were appropriately diluted, and standard

working solutions were prepared according to the manufacturer’s
instructions (Elabscience, Shanghai, China). Separate wells were
designated for standards, blanks, and samples; 100 μL of
standard, standard and sample diluent, and the serum sample to
be tested were added to their respective wells. The plates were then
incubated at 37°C for 90 min. Subsequent steps, including the
addition of biotinylated antibody working solution, enzyme-
binding working solution, substrate solution, and termination
solution, were carried out according to the manufacturer’s
instructions. Following the reaction, the optical density (OD) of
each well was measured at a wavelength of 450 nm using a
microplate reader.

2.4.6 Flow cytometry
Flow cytometry analysis was conducted using fluorescein

isothiocyanate-labelled mouse anti-human CD3 antibody (2 μL),
allophycocyanin-labelled mouse anti-human CD4 antibody (1 μL),
and PerCP/Cy5.5 mouse anti-CD8b monoclonal antibody (1 μL).
Flow cytometry tubes were prepared by adding these antibodies. A
100-μL aliquot of whole blood obtained from the patient’s peripheral
vein was collected and mixed with shaking, followed by incubation
at room temperature for 15 min. To the sample, 500 μL of
haemolysin, 200 μL of phosphate-buffered saline, and 100 μL of
well-mixed microspheres were added. The samples were then

subjected to flow cytometry. CD4+ and CD8+ T cell counts were
obtained using Kaluza Analysis software.

2.4.7 Statistical analysis
Statistical analysis was conducted using GraphPad Prism

9 Software (GraphPad Software; San Diego, CA, United States)
and SPSS V25 (IBM; Armonk, NY, United States). Data are
presented as mean ± standard deviation (SD) if they are
normally distributed and as interquartile range (IQR) if they are
not. For normally distributed data, t-test was used, while for count
data not conforming to normal distribution, non-parametric test
was used. Specifically, Mann-Whitney test was employed for
comparison between the two groups. Correlation analysis was
performed using a simple linear regression. Sensitivity and
specificity were analyzed by receiver operating characteristic
(ROC) curve. Survival curves were compared using log-rank
(Mantel-Cox) test. p < 0.05 was statistically significant.

3 Results

3.1 Baseline characteristics of the study
population

A total of 162 septic patients participated in this study,
comprising 30 patients without AKI and 132 patients with AKI.

TABLE 2 Characteristics of the patients at baseline. (Mean ± SD).

Parameter Control group (n = 45) LMWH group (n = 45) p-value

Age (year) 61.51 ± 16.41 66.36 ± 13.83 0.155

Sex-no. (%) >0.9999

Male 30 (66.67) 31 (68.89)

Female 15 (33.33) 14 (31.11)

BMI (kg/m2) 24.66 ± 4.57 22.97 ± 3.34 0.048

APACHE II scorea 29.58 ± 4.78 29.76 ± 4.48 0.856

SOFA scoreb 9.22 ± 1.93 9.60 ± 1.74 0.332

MAP (mmHg) 114.42 ± 89.06 93.21 ± 19.78 0.170

Serum creatinine (umol/L) 246.16 ± 14.05 248.53 ± 12.66 0.900

Plasma HPA (ng/mL) 11.53 ± 2.44 11.85 ± 2.00 0.291

Plasma HBP (ng/mL) 92.81 ± 24.87 95.08 ± 22.80 0.362

Oliguria-no. (%) 10 (22.22) 12 (26.67) ns

Anuria-no. (%) 5 (11.11) 4 (8.89) ns

Staging of AKI—no. (%) 0.2500

Stage 1 17 (37.78) 11 (24.44)

Stage 2 19 (42.22) 21 (46.67)

Stage 3 9 (20.00) 13 (28.89)

Abbreviations: LMWH, lowmolecular weight heparin; AKI, acute kidney injury; BMI, body mass index; MAP, mean arterial pressure; HPA, heparanase; HBP, heparin-binding protein; COPD,

chronic obstructive pulmonary disease.
aThe Acute Physiology and Chronic Health Evaluation (APACHE) II, score ranges from 0 to 71, with higher scores indicating greater risk of hospital death.
bThe Sequential Organ Failure Assessment (SOFA) score ranges from 0 to 24, with higher scores indicating greater severity of organ dysfunction. p < 0.05 was statistically significant.
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However, 42 patients were excluded from the analysis due to
meeting the exclusion criteria of SA-AKI. Consequently, 90 SA-
AKI patients were allocated to either the control group or the
LMWH group according to whether LMWH was used or not
(Figure 1A). Baseline data for both groups were presented in Table 1.

There were no significant differences noted in age, sex, body
mass index (BMI), or SOFA scores between the septic patients
without AKI and those with SA-AKI. However, notable
disparities existed in plasma concentrations of NGAL, HPA,
and HBP (p < 0.05). Particularly, the concentration of HPA in

FIGURE 4
Results of the control and LMWH groups after LMWH calcium treatment on the 1st, 3rd, and 7th days. (A) Concentration of serum Crea after
treatment in the control and LMWH groups. (B) Concentration of plasma HPA after treatment in the control and LMWH groups. (C) Concentration of
plasma HBP treatment in the control and LMWH groups. (D) Concentration of plasma syndecan-1 after treatment in the control and LMWH groups. (E)
Concentration of blood WBC after treatment in the control and LMWH groups. (F) Concentration of plasma IL-6 after treatment. (G) Concentration
of plasma TNF-α after treatment. (H) Levels of blood lymphocyte count after treatment in the control and LMWH groups. (I) Levels of blood CD4+/CD8+
after treatment in the control and LMWH groups.(J) Levels of blood PLT count after treatment in the control and LMWH groups. (K) Levels of APTT after
treatment in the control and LMWH groups. (L) Urine volume recovery time in patients with oliguria and anuria. Statistically significant differences are
indicated as p < 0.05. (*p < 0.05, **p < 0.05, ***p < 0.001.) IL-6, interleukin-6; TNF-α, tumour necrosis factor-α; APTT, plasma activated partial
thromboplastin time; PLT, platelet; HPA, heparanase; HBP, heparin-binding protein; WBC, white blood cells; Crea, creatinine; LMWH, low molecular
weight heparin.
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the SA-AKI group was significantly higher than that in the
patients without AKI group.

3.2 The combination of HPA, HBP and NGAL
hadmore predictive value in the diagnosis of
SA-AKI

3.2.1 Plasma HPA concentration was positively
correlated with NGAL, HBP, syndecan-1 and
creatinine

To evaluate the relationship between HPA concentrations in the
studied population and NGAL, HBP, syndecan-1, and creatinine, a
correlation analysis was conducted (Figure 2A). The findings
revealed a positive correlation between HPA and NGAL (R2 =
0.0690), HBP (R2 = 0.0505), syndecan-1 (R2 = 0.7561) and
creatinine (R2 = 0.0496).

3.2.2 Diagnostic value of HPA, HBP, NGAL and their
combination in SA-AKI

To assess the comparative predictive efficacy of HPA, HBP,
NGAL and their combination in the diagnosis of SA-AKI, ROC
curve analysis was conducted (Figure 2B). The results demonstrated
that the area under the curve (AUC) for SA-AKI was the largest for
the combination (0.7948), with a sensitivity of 90% and specificity of
58.89% (Figure 2C). HBP, HPA and NGAL had AUC values of
0.7513, 0.6944 and 0.6931, respectively. Notably, NGAL exhibited
the highest sensitivity (80%), followed by HPA (63.33%), both
surpassing HBP (46.67%) (Figure 2C). However, HBP
demonstrated superior specificity (93.33%), while NGAL and
HPA had specificities of 66.67% and 72.22%,
respectively (Figure 2C).

3.3 Mendelian randomization analysis

A causal link between HBF and renal tubule injury has been
confirmed. To elucidate the relationship between HBP and kidney
injury, we conducted MR Analysis. Adhering to the established
screening criteria for IVs, we identified 32 SNPs to analyzing the
causal link between HBF and renal tubular injury (Supplementary
Table S1). Importantly, the F statistic for all IVs exceeded 10,
indicating the absence of weak IV bias.

Consistently across the IVW method, MR-Egger method,
weighted median method and maximum likelihood method in
MR analysis, all demonstrated consistent outcomes (Figures
3A–C). Specifically, in the IVW analysis, a causal association was
established between HBF and tubular injury (OR value: 1.369, 95%
CI: 1.040–1.801, p = 0.024). This implies a positive correlation,
indicating that the risk of tubular injury rose by approximately
36.8% for every one standard deviation increase in HBF.

In subsequent sensitivity analyses, Cochrane’s Q test revealed no
significant heterogeneity (p > 0.05). Various methods, including
MR-Egger regression, MR-PRESSO, and the funnel plot method,
found no evidence of pleiotropy (p > 0.05). Additionally, leave-one-
out analysis further excluded any causal relationship between single
SNP-driven exposure and outcome. The Steiger direction test
confirmed that all Steiger directiaons were TRUE, with a

p-value <0.05, indicating the absence of reverse causality in the
results. Our forest plot, incorporating these findings, illustrated the
effect size between HBF and tubular damage (Figure 3D).

3.4 LMWH improved renal function in
patients with SA-AKI

To assess the impact of LMWH on renal function in SA-AKI
patients, we categorized SA-AKI patients into control and LMWH
treatment groups, based on the administration of LMWH.

3.4.1 Baseline data of control group and
LMWH group

The two groups exhibited a good match, with no statistically
significant differences between them except for BMI (Table 2).

3.4.2 LMWH improved renal function in patients
with SA-AKI

Compared to the control group, the LMWH group showed a
significant reduction in serum creatinine levels on the 3rd and
7th day (p < 0.05). No significant differences were observed
between the two groups on the 1st day (Figure 4A).
Additionally, LMWH treatment facilitated a quicker recovery
of urine volume in patients with anuria and oliguria (p < 0.05)
(Figure 4L). Renal function grades improved in both groups on
the 7th day after treatment, with notable intergroup
differences (Table 3).

3.4.3 LMWH resulted in a reduction in plasma
concentrations of HPA, HBP, and syndecan-1 on
the 3rd and 7th day within the LMWH
treatment group

Compared to the control group, the LMWH group exhibited a
notable decrease inHPA,HBP and syndecan-1 concentrations on the 3rd
and 7th days (p < 0.05 and p < 0.001, respectively). No significant
differences were observed between the two groups on the 1st day
(Figures 4B–D).

3.4.4 LMWH attenuated inflammation, improved
immune function on the 3rd and 7th day

Compared to the control group, the LMWH group displayed
reduced levels of WBC, IL-6 and tumor necrosis factor (TNF)-a on
the 3rd day (p < 0.05), with inflammation significantly decreased on
the 7th day (p < 0.01 vs. p < 0.001) (Figures 4E–G). Regarding
immunity, the LMWH group exhibited an increased lymphocyte
count and CD4+/CD8+ ratio on the 3rd and 7th days (p < 0.05, p <
0.01). No significant differences were observed between the two
groups on the 1st day (Figures 4H, I).

3.4.5 LMWH affected blood clotting in
SA-AKI patients

In terms of blood clotting, the LMWH group demonstrated
prolonged activated partial thromboplastin time (APTT) on the 3rd
and 7th days (p < 0.05, p < 0.001, respectively), alongside a significant
increase in platelet count on the 3rd and 7th days (p < 0.05 vs. p < 0.01).
Once more, there were no significant differences between the two
groups on the 1st day (Figures 4J, K).
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3.5 Clinical prognosis

The primary outcome assessed was renal function, with
secondary outcomes including 28-day mortality, 90-day survival
rate, the number of patients receiving RRT, and the median length of
ICU stay. The findings revealed no significant difference in 28-day
mortality or length of ICU stay between the control and LMWH
groups (Figure 2C). Moreover, there were no significant differences
in 90-day survival, the number of patients receiving RRT, or adverse
reactions between the two groups (Table 4).

4 Discussion

Our study primarily demonstrated a significant association between
elevated plasma HPA and HBP levels and the presence as well as
progression of AKI in sepsis, thereby indicating that HPA and HBP
exert a pivotal role in the pathophysiology of SA-AKI, which aligns with
previous research findings (Fisher et al., 2017; Poston andKoyner, 2019;
Liu et al., 2023). Clearance correlation analysis revealed a positive
association betweenHPA andNGAL,HBP, creatinine, and syndecan-1.
Consequently, we integrated NGAL, HBP, and HPA to conduct ROC

curve analysis and observed that this combination exhibited superior
predictive ability for early SA-AKI diagnosis. Additionally, we found
that LMWHeffectively inhibited HPA andHBP-induced inflammation
in renal cells, indicating the potential of targetingHPA andHBP for SA-
AKI treatment. Furthermore, through MR analysis, we established a
direct association betweenHBF and renal tubular injury, consistent with
findings from clinical observational studies. Finally, we hypothesized
that the potential mechanism underlying the beneficial effects of
LMWH in ameliorating SA-AKI may involve attenuation of HPA
activity, inhibition of ECM degradation, and subsequent reduction in
FGF release, thereby leading to improved renal function in SA-AKI.

Previous in vitro and in vivo studies have shown increased
activation of the HPA axis in glomerular and interstitial vascular
endothelial cells during sepsis. However, renal function improved
with the use of HPA inhibitors (Chen et al., 2015). Based on these
findings, we hypothesised that HPA inhibitors may improve renal
function in patients with SA-AKI, suggestingHPAmay be a therapeutic
target for SA-AKI. Consequently, we categorized SA-AKI patients into
control and LMWH groups to investigate the impact of LMWH on
renal function and clinical prognosis by modulating HPA activity. Our
study represented a pioneering investigation into elucidate the role of
HPA in patients with SA-AKI, unequivocally demonstrating that

TABLE 3 The stage of AKI.

Normal-n (%) AKI 1-n (%) AKI 2-n (%) AKI 3-n (%) Z value p-Value

Control LMWH Control LMWH Control LMWH Control LMWH

D1 2 (4.44) 4 (8.89) 20 (44.44) 21 (46.67) 14 (31.11) 13 (28.89) 9 (20.00) 7 (15.56) −0.829 0.407

D3 3 (6.67) 8 (17.78) 19 (42.22) 17 (37.78) 11 (24.44) 13 (28.89) 10 (22.22) 6 (13.33) −0.534 0.224

D7 7 (15.56) 15 (33.33) 14 (31.11) 13 (28.89) 7 (15.56) 6 (13.33) 8 (17.78) 4 (8.89) −1.972 0.049

p < 0.05 was statistically significant.

TABLE 4 Outcomes.

Parameters Control LMWH p-Value

Primary Outcome

Serum creatinine (umol/L) 209.63 ± 117.85 154.43 ± 83.50 0.007

Secondary outcomes

Death at 28 days—no. (%) 31 (68.89) 25 (55.56) 0.2769

Survival at 90 days—no. (%) 13 (28.89) 16 (35.56) 0.6523

Patients who received renal-replacement therapy—no. (%) 8 (17.70) 9 (20.0) ns

Median length of ICU stay (IQR)—days ns

Survivors 30 (28-36) 30 (16.25–30)

Nonsurvivors 13.5 (6.5–17) 10 (6.5–17.5)

Adverse events that occurred during the trial—no. (%) ns

Gastrointestinal complication 15 (33.3) 12 (26.7)

Thrombotic or embolic complication 3 (6.67) 4 (20.0)

Severe cardiac-rhythm disorder 2 (6.0) 1 (5.0)

Severe bleeding event 0 (0) 0 (0)
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pharmacological inhibition of HPA exerts a beneficial effect on renal
function in SA-AKI.

The findings frommurine sepsis models have demonstrated that
HPA promotes the shedding of endothelial glycocalyx, leading to
vascular leakage and decreased blood volume, consequently
contributing to increased sepsis related mortality (Song et al.,
2017). Glycocalyces, mainly composed of HSPGs and
glycosaminoglycans, cover the surface of the endothelium and
play a crucial role in regulating vascular permeability,
coagulation, platelet and white blood cell adhesion, as well as
anti-inflammatory and antioxidant processes (Sieve et al., 2018;
Lupu et al., 2020). Syndecan-1 serves as a biomarker of glycocalyx
degradation (Rehm et al., 2007) and is released into the blood under
stressful conditions such as AKI, chronic kidney disease, and
cardiovascular disease (Puskarich et al., 2016). Consistent with
our study, inhibiting HPA reduced syndecan-1 levels.

In addition, we observed that HPA can exert an influence on
inflammation, immune response, and coagulation function in patients
with SA-AKI. During sepsis, HPA is activated by pathogen-associated
molecular patterns and inflammatory cytokines. In our study, LMWH
was employed, which exerted anti-inflammatory effects by inhibiting
HPA activity, thereby safeguarding renal function and ameliorating
renal inflammation, consistent with previous studies (Achour et al.,
2016; Mayfosh et al., 2019). Evidence also indicates that HPA mediates
interactions among various immune cell types, including T cells, B cells,
natural killer cells, macrophages, neutrophils, and dendritic cells
(Mayfosh et al., 2019). LMWH has the capability to prevent
activation of the complement system, and the inhibition of C5a
prevents the release of inflammatory and prothrombotic molecules
such as TNF-α and tissue factor (Rao et al., 1993). In our study, we
observed improved immune function in the LMWH group compared
with the control group, suggesting that LMWHmay also enhance renal
immune function in patients with SA-AKI. The anticoagulant effect of
LMWH is related to its binding to antithrombin III, which inhibits
coagulation and platelet aggregation, leading to alterations in APTT.
Consistent with these mechanisms, we observed that APTT was
significantly prolonged in the LMWH group. Previous studies have
reported that LMWHhas anti-inflammatory properties independent of
its anticoagulant effects (Luan et al., 2014). With the progress of
treatment, the platelet count gradually recovered. The platelet level
of patients with SA-AKI in the LMWH group was significantly
increased, and the coagulation function was improved. The effects of
LMWH on platelet recovery also could be due to reduced platelets
bound to the vessel wall.

In terms of clinical outcomes, no significant differences were noted
between the two groups concerning 28-day mortality, 90-day survival,
and duration of ICU stay. Several plausible explanations underlie these
findings. Firstly, patients with SA-AKI typically present with a
constellation of comorbidities, and the length of their hospitalization
is subject to a multitude of influencing factors. Secondly, the current
usage of LMWH primarily as an anticoagulant may not wield sufficient
impact on mortality and survival rates in SA-AKI patients. Moreover,
the LMWH employed in our investigation lacked specificity as an HPA
inhibitor, as safe clinical-grade HPA inhibitors remain elusive.
Furthermore, owing to the constrained sample size in our study, the
potential impact of LMWH on the mortality and survival rates of
patients with SA-AKI by inhibiting HPA activity may not have been
comprehensively elucidated. Nonetheless, our study unearthed

noteworthy disparities in SA-AKI grade post-treatment between the
two cohorts, with HPA inhibitor utilization correlating with diminished
requirements for RRT and reduced hospitalization costs, thus
alleviating the financial burden on patients. Notably, to the best of
our knowledge, such findings have not been previously documented in
SA-AKI patients. Our study disclosed a 28 days mortality rate of
approximately 70% among patients with an average SOFA score of
9,markedly surpassing previously reported rates (Raith et al., 2017). The
patients included in this study were generally older and frequently
presented with severe infections. Owing to economic constraints, many
patients were discharged upon symptomatic improvement, albeit
without complete disease control, potentially contributing to
escalated mortality rates. Additionally, the study sample was robust
but exhibited inherent biases, alongside elevated mortality rates.

In conclusion, our study supports previous findings indicating a
higher incidence of SA-AKI compared to septic patients without AKI.
We have identified plasma HPA as a promising biomarker for early
diagnosis of SA-AKI. Furthermore, our findings suggest that inhibiting
HPA could potentially improve renal function in patients with SA-AKI.
The correlation we observed between HPA levels and biomarkers of
renal damage, including NGAL, HBP, creatinine, and syndecan-1,
further strengthens the link between HPA and renal structural injury.
In addition, our study highlights the potential of LMWH in reducing
HPA levels, thereby enhancing renal function, mitigating inflammation
and immune response, and modulating coagulation in SA-AKI patients.
Although no significant differences in clinical outcomes were observed,
the improvements in renal function grading, reduced need for RRT, and
lower hospitalization costs among SA-AKI patients suggest potential
advantages of HPA inhibition in SA-AKI management. However,
comprehensive investigations with larger cohorts and specific HPA
inhibitors are warranted to fully elucidate the therapeutic efficacy of
targeting HPA in SA-AKI treatment.

Our study possesses several notable strengths:

1. Clinical Relevance: Unlike previous investigations primarily
conducted on cellular and animal models, our study is
pioneering in directly observing the effects of inhibiting
HPA on renal function in SA-AKI patients, thus enhancing
its clinical relevance.

2. Elaboration of Causal Links: We have further substantiated the
causal relationship between HBP and renal tubular injury in
septic kidneys. Notably, our findings revealed that the
combined assessment of HPA, HBP, and NGAL offers
superior predictive value for early SA-AKI diagnosis, adding
depth to our understanding of its pathogenesis.

3. Insights into LMWHMechanism: Our study provides insights
into a potential mechanism underlying the improvement of
renal function in SA-AKI patients with LMWH
administration. Specifically, we propose that LMWH’s
efficacy may be attributed, at least in part, to its inhibition
of HPA activity, leading to reduced ECM degradation. This
cascade results in diminished bFGF release, ultimately
contributing to enhanced renal function.

Our study also exhibits certain limitations:

1. Lack of Urine Samples for HPA Detection: HPA emanates
from various sources, with platelets being notably significant
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(Eustes et al., 2021). Consequently, the kidney may not
singularly serve as the origin of HPA, rendering plasma-
based measurements insufficient for an accurate depiction of
renal HPA levels. Due to instances where patients presenting
with oliguria or anuria upon admission, the acquisition of
urine specimens was unattainable, necessitating our reliance on
plasma HPA assessments predominantly. Additionally, assays
for syndecan-1 and NGAL were conducted on plasma samples
rather than urine, potentially compromising the sensitivity and
specificity of HPA in the diagnosis of SA-AKI. Furthermore,
the assessment of HPA enzyme activity, typically involving
complex techniques, was not performed in our study.

2. Single-Center Design and Limited Sample Size: The study’s
single-center design and constrained sample size pose potential
biases, especially considering the presence of various
complications in enrolled patients. This limitation could
impact the significance of disparities noted in immune
function, coagulation function, and mortality rates between
the control and LMWH groups, thereby potentially restricting
the generalizability of our findings. In addition, the sensitivity
and specificity reported in ROC curve analysis differ from
previous studies, underscoring the need for enlarging sample
size and conducting multicenter studies to validate our results.

3. Representation of Population Ancestry: Our study encountered
challenges concerning the representation of population ancestry.
The MR analysis primarily involved individuals of European
descent, while the cohort study centered on an Asian
population. Although our findings aligning consistently with
previous real-world studies (Carter et al., 2003; Lee et al., 2012;
Higashi et al., 2020; Pajenda et al., 2020), we recommend further
validation in multi-center, multi-ancestry populations to enhance
the broader relevance of our conclusions.

5 Conclusion

LMWH can improve renal function in critically ill patients with SA-
AKI, and the potential mechanism may be that LMWH reduces the
release of HBP by inhibiting the activity of HPA, as suggested by
potential mechanisms. Moreover, MR Analysis underscores a
corresponding causal link. These results also highlight the necessity
for future randomized controlled trials to corroborate these observations.
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