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Background:Glioblastoma (GBM) is a common and highly aggressive brain tumor
with a poor prognosis for patients. It is urgently needed to identify potential small
molecule drugs that specifically target key genes associated with GBM
development and prognosis.

Methods: Differentially expressed genes (DEGs) between GBM and normal
tissues were obtained by data mining the Gene Expression Omnibus (GEO)
and The Cancer Genome Atlas (TCGA) databases. Gene function annotation
was performed to investigate the potential functions of the DEGs. A protein-
protein interaction (PPI) network was constructed to explore hub genes
associated with GBM. Bioinformatics analysis was used to screen the potential
therapeutic and prognostic genes. Finally, potential small molecule drugs were
predicted using the DGIdb database and verified using chemical informatics
methods including absorption, distribution, metabolism, excretion, toxicity
(ADMET), and molecular docking studies.

Results: A total of 429 DEGs were identified, of which 19 hub genes were
obtained through PPI analysis. The hub genes were confirmed as potential
therapeutic targets by functional enrichment and mRNA expression. Survival
analysis and protein expression confirmed centromere protein A (CENPA) as a
prognostic target in GBM. Four small molecule drugs were predicted for the
treatment of GBM.
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Conclusion: Our study suggests some promising potential therapeutic targets and
small molecule drugs for the treatment of GBM, providing new ideas for further
research and targeted drug development.

KEYWORDS

glioblastoma, multi-omics data, bioinformatics, therapeutic agents, ADMET,
molecular docking

Introduction

Glioblastoma (GBM) is the most common aggressive glioma
with high incidence and recurrence rates (Liao et al., 2019). Its
prognosis is poor, and the survival time after diagnosis is less than
15 months (Chavda et al., 2020). Currently, the clinical treatment of
GBM is based on surgical resection with adjuvant radiotherapy and
chemotherapy (Byrne et al., 2021). The alkylating agent
temozolomide is the most widely used chemotherapy approved
for the treatment of GBM, either alone or combined with
radiotherapy. However, it can cause unwanted toxicity and drug
resistance (Karachi et al., 2018). In addition, almost all GBM that
respond to first-line therapy will relapse. The available treatment
options for recurrent GBM are very limited (Tosoni et al., 2016). The
DNA alkylating drugs lomustine and carmustine have been
approved by the US Food and Drug Administration (FDA) for
the treatment of recurrent GBM, but outcomes are also
unsatisfactory (Wu et al., 2021). Therefore, the identification and
analysis of potential targeted therapeutic agents for the treatment of
GBM is critical.

Integrated genomics, proteomics, and bioinformatics have
provided powerful new strategies for cancer drug discovery
(Sharma et al., 2023). Some studies have identified small
molecule drugs for GBM using multiple omics data and
bioinformatics methods (Lu et al., 2020; Qi et al., 2020; Xia
et al., 2022). Small molecule drugs are the preferred choice for
the treatment of neurological diseases because their simple
structure allows them to penetrate the central nervous system
and exert their effects. Meanwhile, the cost of small molecule
drugs is lower, making them more acceptable to patients. The
unique advantages of small molecule drugs have made them a
focus of GBM drug research (Liu H. et al., 2022).

With the advent of the Gene Expression Omnibus (GEO) and
The Cancer Genome Atlas (TCGA) resources, collaborative analysis
of array and sequence-based cancer data is at the forefront of drug
discovery (Li et al., 2020). Previous studies have demonstrated many
small molecule targets play a key role in the development of GBM
and have the potential to serve as adaptable targets for the
development of novel anti-GBM drugs (Mitra and Ayyannan,
2021). However, these studies have not combined the GEO and
TCGA databases to perform a meta-analysis of gene expression for
GBM. The molecular mechanism of GBM pathogenesis and
therapies against molecular targets have not been fully elucidated.
This research gap provides an opportunity to investigate new
biomarkers and small molecule drugs for GBM.

This study used data mining to integrate information from the
GEO and TCGA databases and identify differentially expressed
genes (DEGs) in GBM. Based on these DEGs, we used a
comprehensive bioinformatics approach to search for reliable

biomarkers for GBM and explore potential small molecule drugs
with targeted therapeutic effects. In addition, our study employed
the cheminformatics approach including absorption, distribution,
metabolism, excretion, toxicity (ADMET) analysis and molecular
docking studies to reveal safe and effective drug-likeness molecules
against GBM. Few researchers have used this computational
approach to predict and identify effective small molecules against
GBM. In summary, this study comprehensively used bioinformatics
and chemoinformatics approaches to investigate new biomarkers
and novel potential small molecule candidates to improve the
therapeutic effects of GBM and provide a theoretical basis for
further research.

Material and methods

Data collection

GBM expression profiles were retrieved from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). To reduce the complexity of
the analysis and ensure accurate results, eligible gene expression data
were filtered based on their sample size (at least eight), appropriate
conditioning (profiling both human GBM and normal tissue gene
expression), no other intervention measures (no chemical or
physical treatment), and proper formatting. Following these
criteria, three GBM gene expression profiles (GSE137902,
GSE90886, and GSE34152) met the eligibility requirements and
were downloaded from the GEO repository. Furthermore, 170 GBM
and five normal brain samples were selected from the TCGA data
portal (https://www.cancer.gov/tcga) and used as a
complementary dataset.

Datasets analysis

After principal component analysis (PCA) was performed on
the GEO datasets for dimensionality reduction and quality control,
the “limma” package of R language software (version 4.3.2)
(Ritchie et al., 2015) was applied to screen for the DEGs
between patients with GBM and healthy controls with the
criterion of |log fold change (FC)| > 2 and adjusted
p-value <0.05. To obtain consensus on the DEGs, all data from
the TCGA projects were normalized and processed using the
“TCGAbiolinks” package of R software (Colaprico et al., 2016).
The parameters set for the DEGs analysis were |log2 FC| >1 with
adjusted p-value <0.05. The R language package “ggplot2” was
applied to generate volcano plots to visualize the identified DEGs.
We then combined the DEGs acquired from the GEO and TCGA
databases to obtain common genes.
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Functional enrichment analysis

To further investigate the potential molecular mechanisms of
the DEGs, Gene Ontology (GO) enrichment (Gene Ontology
Consortium, 2021) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) annotations (Kanehisa et al., 2021) of the
DEGs were performed using the “clusterProfiler” package of R
software (Yu et al., 2012). Pathways with a significance level of p
values < 0.05 were considered relevant and selected. We determined
the top 10 biological processes (BP), cellular components (CC),
molecular functions (MF), and signaling pathways involved
in the DEGs.

Protein-protein interaction (PPI) network
construction and module analysis

Protein-protein interactions were analyzed by the STRING
online database (version 12.0) (Szklarczyk et al., 2019). Based on
the STRING online tool, a PPI network of the DEGs with a
confidence score of at least 0.7 was constructed. Cytoscape
software was then employed to visualize the PPI network using
the TSV file downloaded from the STRING database. The Molecular
Complex Detection (MCODE) plugin in Cytoscape software was
applied to explore the significant modules in the PPI network with
k-core = 2, degree cutoff = 2, max depth = 100, and node score
cutoff = 0.2 (Bader and Hogue, 2003). Hub genes in the most densely
connected cluster were screened and collected for functional
enrichment analysis and final drug discovery.

Gene expression and survival analysis of the
hub genes

The Gene Expression Profiling Interactive Analysis (GEPIA) is a
developed website containing a substantial amount of RNA
sequencing expression data from the TCGA projects (Tang et al.,
2017). The expression levels of the hub genes identified from the PPI
network in GBM versus normal tissues were processed using GEPIA
to further confirm their reliability. The UALCAN platform is a
comprehensive web portal for analyzing cancer omics data to
identify biomarkers or perform in silico validation of potential
genes of interest (Chandrashekar et al., 2017). We performed the
differential patient survival analysis in GBM on this platform to
explore the prognostic significance of the hub genes and to identify
key genes with significant differences in expression for further study.

Additionally, we selected isocitrate dehydrogenase 1 (IDH1), a
widely accepted clinical biomarker that provides prognostic or
predictive information for GBM (Sareen et al., 2022), as a control
gene to compare the potential of hub genes as potential therapeutic
and prognostic targets.

Validation of protein expressions of the
prognostic genes

CancerSEA is the first dedicated database to analyze the different
functional states of cancer cells at the single-cell level (Yuan et al.,
2019). Cellular functional states include angiogenesis, apoptosis, cell
cycle, differentiation, DNA damage, DNA repair, epithelial-
mesenchymal transition (EMT), hypoxia, inflammation, invasion,
metastasis, proliferation, quiescence, and stemness. We used the
CancerSEA database to explore the functional status of prognostic
genes in GBM. The protein expression of prognostic genes in GBM
compared to normal tissues was investigated using
immunohistochemistry (IHC) from the Human Protein Atlas
(HPA) database, an online tool that allows users to analyze
protein levels in clinical samples (Uhlén et al., 2015).

Drug-gene interactions

We used DGIdb (Wagner et al., 2016), a valuable database that
provides free services for searching drug-gene interaction
information, to search for existing small molecule drugs based on
the hub genes as potential targets. These drugs may provide new
solutions for the treatment of patients with GBM. Cytoscape
software was used to visualize potentially active drugs against
hub genes.

Evaluation of absorption, distribution,
metabolism, excretion, and toxicity (ADMET)
properties

To predict the safety and potency of small molecule drugs and to
screen for drug candidates, we used ADMETlab (Xiong et al., 2021)
to obtain the pharmacokinetic characteristics and toxicity profiles of
the drugs. ADMETlab accepts compounds in the simplified
molecular input line entry specification (SMILES) format.
Potentially active drugs were screened using several parameters
according to the criteria recommended by the ADMETlab server.

TABLE 1 Characteristics of datasets in this study.

Dataset Platform Sample Total sample Publication

Normal Glioblastoma

GSE137902 GPL13667 6 9 15 Nature Communications

GSE90886 GPL15207 9 9 18 Biomed Research International

GSE34152 GPL570 4 4 8 Plos One

TCGA-GBM - 5 170 175 -
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Firstly, the ability of the compounds to cross the blood-brain barrier
(BBB) was assessed. BBB values of 0.1 or higher were required for
drugs to have a potential effect on the central nervous system. The
drugs should have solubility values greater than −4 to ensure that
they can be dissolved and effectively absorbed into the body. The
distribution coefficient D had to be in the range of 1 to 5, and the

distribution coefficient P had to be in the range of 0 to 3. The human
intestinal absorption (HIA) values had to be equal to or greater than
0.3 to ensure the oral absorption potential of the drugs. Moreover,
the human hepatotoxicity values should be less than 1 and the lethal
dose (LD50) values should be 0, indicating a lower risk of drug
toxicity. Finally, Lipinski’s rule of five, which is considered to

FIGURE 1
Identification of DEGs in the GEO database and the TCGA project. (A) Result of PCA for GSE137902. (B) Result of PCA for GSE90886. (C) Result of
PCA for GSE34152. (D) Volcano plot of the DEGs in GSE34152. (E) Volcano plot of the DEGs in TCGA. (F) Venn diagram of DEGs between the GEO
database and the TCGA project. DEGs, differentially expressed genes; GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; PCA, principal
component analysis.
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determine the drug-likeness properties of small molecules, needed to
be within an acceptable range.

Molecular docking

To assess the reliability of drug treatment of GBM, molecular
docking was performed between the small molecules predicted from
ADMETlab and the potential target protein of GBM, and the
magnitude of the binding energy was calculated. The crystal
structure of the target protein was retrieved from the Protein
Data Bank (PDB) database (Berman et al., 2000). We selected the
target protein structures from the highly resolved ligand-protein
X-ray complexes to determine the active binding site. Alternatively,
we used the DeepSite platform (Jiménez et al., 2017) to detect the site
of the whole protein to assess the possible area of the active binding
site. The three-dimensional structures of the ligands (small molecule
drugs) in SDF formats were obtained from the PubChem database
(Kim et al., 2021). The Schrödinger software (version 2021) was used
to perform the docking study and calculate the docking scores. The

molecular docking results were visualized using PyMOL software
(version 2.4.1) (Seeliger and de Groot, 2010).

Results

Identification of DEGs

Gene expression profiling and sequencing data of GBM were
downloaded from the GEO and TCGA databases. Detailed
information on the datasets is provided in Table 1. To
distinguish the significant difference between the normal and
tumor samples of the GEO datasets, PCA was performed to
reduce the dimensionality and evaluate the independence of each
group. The results showed that tumor samples in the
GSE137902 and GSE90886 datasets were close to the normal
samples (Figures 1A,B), whereas, the normal and tumor samples
in the GSE34152 dataset displayed a significant difference
(Figure 1C). Therefore, we retained the GSE34152 dataset for
subsequent analysis. The volcano plots in Figure 1D showed

FIGURE 2
Functional enrichment analysis of DEGs in GBM. (A) Biological processes. (B)Molecular function. (C)Cellular components. (D) KEGG pathways. DEG,
differentially expressed gene; GBM, glioblastoma; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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1,586 DEGs screened out from the GSE34152 dataset, including
560 upregulated genes and 1,026 downregulated genes. For the
TCGA-GBM data, we found a total of 10593 DEGs with
5,503 upregulated and 5,090 downregulated genes (Figure 1E).
The Venn diagram demonstrates the intersection of genes
between the GEO and TCGA data, and 429 common DEGs were
found (Figure 1F). These 429 genes were further subjected to
functional annotation and protein-protein interaction analysis to
determine the biological significance of this cross-study convergence
in GBM pathogenesis.

GO and KEGG enrichment analysis of DEGs

GO and KEGG functional enrichment analyses were performed to
further elucidate the potential mechanisms of DEGs. The most enriched

GO_BP annotations included: extracellular matrix (ECM) organization,
extracellular structure organization, and external encapsulating structure
organization (Figure 2A). GO_MF annotations were significantly
enriched in ECM structural constituent, ECM structural constituent
conferring tensile strength, and collagen binding (Figure 2B). The most
enriched GO_CC categories were collagen-containing ECM, basement
membrane, and synaptic membrane (Figure 2C). Figure 2D shows the
most prominent pathways in the KEGG pathway analysis. The
significantly enriched pathways were ECM-receptor interaction,
protein digestion and absorption, focal adhesion, and the motor protein.

PPI network analysis of DEGs

To investigate the association of the DEGs, the PPI network was
constructed with 417 nodes and 540 edges, where nodes represented

FIGURE 3
PPI network construction and significant gene module analysis. (A) The PPI network of the common DEGs. (B) The most significant gene module
extracted from the PPI network. (C) The biological processes of analysis of the module genes. (D) The KEGG pathway analysis of the module genes. DEG,
differentially expressed gene; PPI, protein-protein interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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genes, and edges represented connections between two genes
(Figure 3A). The most significant module was extracted from the
PPI network using MCODE arithmetic (Figure 3B). According to
this screening method, we obtained 19 hub genes of DEGs. The

19 genes included kinesin family member 23 (KIF23), abnormal
spindle microtubule assembly (ASPM), centromere protein A
(CENPA), aurora kinase B (AURKB), DEP domain containing 1
(DEPDC1), the marker of proliferation Ki-67 (MKI67), baculoviral

FIGURE 4
Expression levels of IDH1 and 19 hub genes between the normal and tumor groups in GBM. IDH1, isocitrate dehydrogenase 1; GBM, glioblastoma.
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IAP repeat containing 5 (BIRC5), centrosomal protein 55 kDa
(CEP55), centromere protein E (CENPE), cyclin A2 (CCNA2),
holliday junction recognition protein (HJURP), kinesin family
member 11 (KIF11), cyclin B1 (CCNB1), kinesin family member
18A (KIF18A), polo-like kinase 1(PLK1), polo-like kinase 4 (PLK4),
cell division cycle associated 2 (CDCA2), spindle, and kinetochore
associated complex subunit 1(SKA1), and kinesin family member 14
(KIF14). The most significant enrichment pathways of 19 hub genes
in GO_BP and KEGG terms were the chromosome segregation
pathway (Figure 3C) and the motor protein pathway (Figure 3D),
respectively.

Validation of the hub genes

We generated the differential expression level analysis of the
19 hub genes and the control gene IDH1 using GEPIA. The results
are presented as box plots (Figure 4). Similar to IDH1, the
expression level of hub genes was significantly upregulated in
GBM compared to normal samples. The results confirmed that
the expression levels of these hub genes were closely related to GBM
onset. Thus, we selected all hub genes for drug-gene interaction
analysis. To explore the potential prognostic value of the hub genes
and IDH1, survival curves were generated on the UALCAN

FIGURE 5
Effect of IDH1 and hub gene expression levels on survival of GBM patients. IDH1, isocitrate dehydrogenase 1; GBM, glioblastoma.
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platform (Figure 5). Among the 19 hub genes, the expression level of
CENPA correlated significantly with the survival of GBM patients
(p-value <0.05). In contrast, the expression level of IDH1 was not
significantly correlated with survival in GBM patients
(p-value >0.05). As shown in Figure 4, we also observed the high
expression of CENPA in GBM samples compared to that in normal
samples. Moreover, to explore how CENPA might affect cancer
pathogenesis, we used the CancerSEA single-cell database to analyze
the correlation between CENPA and 14 distinct functions.
Functional relevance analysis showed that CENPA expression
was positively correlated with proliferation, DNA repair, and cell
cycle in GBM (Figure 6A). The IHC results from the HPA database
suggested that the protein level of CENPA was lower in normal
samples, whereas the level was high in GBM samples (Figure 6B).
Thus, CENPA may serve as a potential biomarker for GBM
diagnosis and prognosis.

Searching for small molecule
therapeutic drugs

Through querying the DGIdb database, we explore the
interaction between the hub genes and available therapeutic

drugs for cancer. The hub gene-drug interaction network was
visualized using Cytoscape (Figure 7). We found that seven out
of 19 genes could correspond to specific small molecule drugs. The
potential drug target genes were AURKB (58 drugs), BIRC5
(36 drugs), PLK4 (27 drugs), KIF11(10 drugs), CCNB1 (three
drugs), CCNA2 (four drugs), and PLK1 (176 drugs). After
removing duplicate names of the same drugs targeting different
genes, 284 drugs were selected as possible drugs for GBM treatment.

Cheminformatics prediction for drugs

We carried out the initial virtual screening of 284 small
molecules by assembling the pharmacokinetic properties and
toxicity profiles of drugs using the ADMETlab web server. As
observed in Table 2, the four compounds exhibited excellent
ADMET properties. The selected compounds were predicted to
be able to cross the BBB. The aqueous solubility values of the selected
compounds were within the recommended range. We found the
compounds had high absorption levels in the HIA. Our analysis also
provided human hepatotoxicity and LD50 values for the four
molecules, which were predicted to be safe and non-toxic for
administration. Additionally, the final compounds were predicted

FIGURE 6
Functional relevance and protein levels of CENPA in GBM. (A) Correlations between CENPA and functional states in GBM. (B) Protein expression of
CENPA in immunohistochemical images of GBM and normal tissue. GBM, glioblastoma.
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FIGURE 7
Gene-drug interaction networks constructed with hub genes and small molecule drugs. (A) AURKB. (B) BIRC5. (C) PLK4. (D) KIF11. (E) CCNB1. (F)
CCNA2. (G) PLK1.

TABLE 2 ADMET characteristics of the top ranked drugs.

Small
molecule
drugs

Solubility Distribution
coefficient D

Distribution
coefficient P

Human
intestinal
absorption

Blood-
brain
barrier

Human
hepatotoxicity

LD50_oral Lipinski

AT-9283 −3.987 2.567 1.607 0.986 0.754 0.722 0 Accepted

Seliciclib −2.687 2.915 2.84 0.534 0.546 0.993 0 Accepted

Litronesib −3.634 2.212 2.403 0.652 0.944 0.375 0 Accepted

CHEMBL1310138 −2.808 1.763 1.316 0.345 0.138 0.422 0 Accepted
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TABLE 3 Chemical structure information of the top ranked drugs.

Small molecule drugs SMILES 2D structure

AT-9283 O=C(Nc1c[nH]nc1-c1nc2ccc(CN3CCOCC3)cc2[nH]1)NC1CC1

Seliciclib CC[C@H](CO)Nc1nc(NCc2ccccc2)c2ncn(C(C)C)c2n1

Litronesib CCNCCS(=O)(=O)NC[C@@]1(c2ccccc2)SC(NC(=O)C(C)(C)C) = NN1C(=O)C(C)(C)C
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to have good bioavailability and to meet Lipinski’s rule of five drug-
likeliness parameters. The chemical structures of these four
compounds are listed in Table 3.

Molecular docking assays with the optimized ligand structures
and the protein structure of the hub genes were used to further
validate the binding affinities between the four drugs and the
potential biomarkers. The X-ray crystal structures of ASPM,
KIF14, and DEPAC1 were not available and therefore could not
be docked. The target protein binding sites of CENPA, HJURP,
CDCA2 and SKA1 were estimated on the DeepSite platform. As
shown in Table 4, the binding energies of the docking results were
very stable, with values ranging from −2.3 to −8.5 kcal/mol. Small
molecule drugs docked to the prognostic gene CANPA target were
selected for docking visualization (Figure 8). The dotted lines in the
figure represent hydrogen bonds. AT-9283 exhibits the strong
binding affinity with CENPA (−3.981 kcal/mol) due to the
formation of two hydrogen bonds with ASN 85. The interaction
analysis also shows the high binding affinity of seliciclib
(−3.834 kcal/mol) and litronesib (−3.592 kcal/mol) with CENPA
(Figures 8B,C). Figure 8D shows that CHEMBL
1310138 interacts most strongly with CENPA (−5.084 kcal/mol).
The molecular docking results indicated that the drug candidates
had a potential as targeted therapies for GBM.

Discussion

GBM is a particularly aggressive and malignant type of brain
tumor known for its high recurrence and low survival rates.
Pharmacological treatment of GBM remains a challenge due to
increasing resistance to marketed drugs (Cha et al., 2020). Therefore,
it is imperative to develop novel and potent therapeutic drugs for
GBM treatment. In the last decade, the explosion of omics data has
provided an opportunity for computational prediction of anti-
cancer drugs, improving the efficiency of drug discovery. High-
throughput transcriptome data have been widely used for biomarker
identification and drug prediction by integrating drug-
cheminformatics data (Raslan et al., 2023). This study aimed to
identify novel biomarkers and targeted small molecule drugs for
GBM treatment using bioinformatics and cheminformatics methods
based on multi-omics data.

We performed an integrated analysis of multiple arrays and
identified 429 intersections of DEGs between the GEO and
TCGA data. GO and KEGG analyses indicated that DEGs
were significantly associated with ECM organization, ECM
structural constituent, collagen-containing ECM, and ECM-
receptor interaction pathway. Increasing evidence indicates
that ECM is an essential component of the tumor
microenvironment during tumor development and
progression (Lee et al., 2021). The interaction between GBM
cells and the tumor microenvironment promotes tumor
infiltration into healthy brain tissue (Erices et al., 2023).
These results are consistent with the existing research
findings on GBM and reflect the close correlation between the
DEGs and GBM.

We further selected 19 hub genes based on topological
assessments from the PPI network of DEGs. Functional
enrichment analyses were conducted to investigate theT
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biological function of the hub genes. We found that the hub
genes are primarily involved in chromosome segregation and
motor protein pathways, which are closely associated with the

development of GBM (de Almeida Magalhães et al., 2020; Lim
et al., 2023). The hub genes were also confirmed to be
overexpressed in GBM tissues compared to normal tissues, as

TABLE 4 Binding affinities of small molecules to target proteins.

Gene name Protein ID PDB ID Docking score (kcal/mol)

AT-9283 Seliciclib Litronesib CHEMBL 1310138

KIF23 Q02241 3VHX −5.347 −3.584 −2.318 −4.634

CENPA P49450 3NQU −3.981 −3.834 −3.592 −5.084

AURKB Q96GD4 4AF3 −6.552 −6.284 −3.756 −6.477

MKI67 P46013 5J28 −2.705 −3.481 −2.487 −4.162

BIRC5 O15392 7LBK −3.972 −3.613 −4.230 −3.891

CEP55 Q53EZ4 3WUT −3.729 −4.373 −2.945 −4.283

CENPE Q02224 6M4I −4.808 −5.158 −3.096 −4.197

CCNA2 P20248 4FX3 −4.515 −5.011 −4.332 −4.776

HJURP Q8NCD3 3R45 −4.459 −3.485 −4.203 −4.898

KIF11 P52732 6G6Z −6.264 −7.231 −8.467 −5.669

CCNB1 P14635 4YC3 −5.487 −4.515 −2.921 −5.075

KIF18A Q8NI77 3LRE −4.492 −3.848 −3.604 −5.331

PLK1 P53350 5TA8 −7.301 −8.356 −3.294 −7.119

PLK4 O00444 4YUR −6.562 −6.263 −5.784 −5.609

CDCA2 Q69YH5 5IOH −4.242 −3.087 −2.933 −4.806

SKA1 Q96BD8 4CA0 −5.506 −4.687 −2.652 −4.708

FIGURE 8
Docking diagram of the top ranked small molecule drugs with CENPA. (A) AT-9283. (B) Seliciclib. (C) Litronesib. (D) CHEMBL1310138.
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was the accepted biomarker IDH1. Thus, these hub genes were
thought to be the primary drivers of the molecular process of
GBM and the underlying biomarkers for GBM therapies.
Compared to previous findings, the hub genes identified in
this study were not exactly consistent with their results
(Shergalis et al., 2018; Alshabi et al., 2019). Part of the reason
for the differences may be that our studies used different datasets
and analysis methods.

According to the survival data, over-expression of CENPA
was significantly associated with poorer survival in patients with
GBM, more so than the known prognostic marker IDH1.
Considering the above findings, our study identified CENPA
as a GBM biomarker that may be a crucial and essential target for
prognosis and therapy. CENPA, a histone H3 variant found in
the centromeric chromatin, is critical for chromosome
segregation and the maintenance of genome integrity through
cell division. Importantly, CENPA overexpression has been
identified in many cancers (Renaud-Pageot et al., 2022). It
has been shown that CENPA could interfere with the normal
progression of mitosis and regulate the tumor immune
microenvironment favoring glioma development. Its
expression level is significantly correlated with glioma grade
(Wang et al., 2022). Previous studies have reported that CENPA
is associated with the prognosis of GBM and may be a potential
therapeutic strategy for GBM (Chen et al., 2020). To date, no
studies have yet reported a role for CENPA in the initiation or
progression of GBM. However, we found that CENPA was
positively associated with various functions in GBM. CENPA
may regulate cancer by mediating proliferation, DNA repair, and
the cycle of GBM cells. In addition, the protein expression of
CENPA was significantly higher in GBM tissues than in normal
tissues as detected by IHC. Our studies provide additional
evidence for the prognostic and therapeutic value of
CENPA in GBM.

Repurposing old drugs as new inhibitors for cancer treatment
has become an important strategy for the development of anti-
tumor drugs (Yang et al., 2021). We used the DGIdb database to
identify potential small molecule drugs highly related to hub genes
for GBM treatment. Most of these small molecules are gene
inhibitors. The pharmacokinetic properties and toxicity profiles
of small molecules for oral administration were calculated in
SMILES formats using ADMETlab to evaluate and screen the
final drug candidates. The treatment of GBM is a predominant
challenge in chemotherapy due to the existence of the BBB, which
restricts the delivery of chemotherapeutic agents to the brain
(Choudhury et al., 2018). Our results showed that four small
molecules, including AT-9283, seliciclib, litronesib and CHEMBL
1310138, may have the ability to cross the BBB, while the water
solubility and lipophilicity values of the selected compounds were
within the recommended range. We also found these compounds
had good absorption distribution properties in HIA. Combined with
the toxicity profiles of the drug compounds and Lipinski’s rule of
five, these four compounds were predicted to be the most promising
drug candidates.

The final small molecules selected had potential anti-tumor
activity. AT-9283, a small molecule multi-targeted kinase
inhibitor, has potential as a cancer treatment due to its ability
to inhibit the growth and survival of tumor cells (Torrente et al.,

2020). Seliciclib, a broad cyclin-dependent kinase inhibitor,
plays a potential role in cancer therapy and has undergone
drug development and clinical testing as an anti-cancer agent
(He and Lin, 2021). Litronesib (LY2523355) is an allosteric
inhibitor of Eg5, a mitotic kinesin motor protein
overexpressed in many cancers. Litronesib shows potent anti-
tumor activity by inducing mitotic arrest and apoptosis in cancer
cells (Garcia-Saez and Skoufias, 2021). CHEMBL 1310138
(NSC19063), a purine derivative, is also an inhibitor with
apparent selectivity for Eg5 (Bosc et al., 2019).

Molecular docking verification were further explored the
possibility of small molecules to treat GBM. A binding energy
less than 0 indicates spontaneous binding of the ligand and
receptor. The lower the binding energy, the more stable the
binding conformation and the greater the likelihood of action
(Liu Y. et al., 2022). The four small molecules had strong
binding interactions with the target proteins, indicating that the
target protein has a good affinity for the drug and that small
molecule drugs are likely to act on these targets. To validate the
four compounds as drug candidates to improve the prognosis of
GBM, we analyzed the interaction between CENPA and small
molecules. The compounds showed good docking scores with
CENPA, leading to the formation of stable complexes. The
binding affinities between the ligands and the target protein
suggested that the drug candidates could affect the expression of
CENPA. However, the potential of these molecules as drug
candidates for GBM needs to be further investigated through
molecular dynamics simulations and experimental supports
including pre-clinical and prospective clinical studies.

Although this study contributed to the search and preliminary
verification of the potential biomarkers and small drug candidates in
GBM based on integrated transcriptomics, bioinformatics, and
cheminformatics approaches, there were some limitations to our
study. The main limitation of this study is the lack of experimental
validation in vivo and in vitro, which we plan to address in future
research. In addition, the limitations of this study are related to the
limited data sources of the databases used. Our analysis may need to
be repeated as the databases become more comprehensive.
Therefore, the results of this study should only be considered as
a primary prediction, which may be subject to slight changes with
further experimentation.

Conclusion

Through integrated bioinformatic analysis of GBM-related
gene expression profiles from the GEO database and the TCGA
project, we identified common DEGs. Functional annotations
and KEGG pathways clearly illustrated the biological and
pathogenic processes of GBM. Our study also revealed 19 hub
genes that play important roles in disease treatment and further
validated CENPA as a potential biomarker for GBM prognosis.
The results of the cheminformatics analyses predicted that four
potential small molecules may be safe and effective for the
treatment of GBM. To the best of our knowledge, this is the
first study to combine the GEO and TCGA databases to perform
a comprehensive analysis of gene expression for GBM and to use
cheminformatics for drug screening. Although these findings
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need to be verified through further molecular dynamics
simulations, and in vitro and in vivo biochemical and clinical
experiments, our studies still provide strong evidence to guide
future research into GBM therapies.
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