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Introduction: Caffeine and the selective A2A receptor antagonist SCH58261 both
have ergogenic properties, effectively reducing fatigue and enhancing exercise
capacity. This study investigates in male Swiss mice the interaction between
adenosine A2A receptors and dopamine D2 receptors controlling central fatigue,
with a focus on the striatum where these receptors are most abundant.

Methods: We employed DPCPX and SCH58261 to antagonize A1 and A2A

receptors, caffeine as a non-competitive antagonist for both receptors, and
haloperidol as a D2 receptor antagonist; all compounds were tested upon
systemic application and caffeine and SCH58261 were also directly applied in
the striatum. Behavioral assessments using the open field, grip strength, and
treadmill tests allowed estimating the effect of treatments on fatigue.

Results and discussion: The results suggested a complex interplay between the
dopamine and adenosine systems. While systemic DPCPX had little effect on motor
performance or fatigue, the application of either caffeine or SCH58261 was
ergogenic, and these effects were attenuated by haloperidol. The intra-striatal
administration of caffeine or SCH58261 was also ergogenic, but these effects
were unaffected by haloperidol. These findings confirm a role of striatal A2A

receptors in the control of central fatigue but suggest that the D2 receptor-
mediated control of the ergogenic effects of caffeine and of A2A receptor
antagonists might occur outside the striatum. This prompts the need of additional
efforts to unveil the role of different brain regions in the control of fatigue.
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1 Introduction

Central fatigue, characterized by a reduced ability to maintain cognitive and physical
performance, stems from intricate neurobiological (Gandevia, 2001; Davis et al., 2003;
Meeusen et al., 2006; Aguiar et al., 2020) and metabolic interactions (Glaister, 2005; Wan
et al., 2017). Studies linking aerobic performance, oxidative metabolism, and fatigue have
shown that blocking brain adenosine receptors increases resistance to physical fatigue
(Davis et al., 2003; Aguiar et al., 2020), highlighting the significant role of adenosine in
fatigue signaling (Aguiar et al., 2021). Moreover, by integrating pharmacological research
with knockout mouse models, we have previously demonstrated that adenosine A2A
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receptors (A2AR) are crucial for the performance-enhancing effects
of caffeine (Aguiar et al., 2020). However, non-toxic doses of caffeine
selectively antagonize both adenosine A2A and A1 receptors to
format information flow within brain neuronal circuits (Lopes
et al., 2019) and it remains to be clarified if A1R also play a role
in controlling fatigue.

Additionally, we identified a specific role of A2AR in the striatum
for controlling central fatigue (de Bem Alves et al., 2023). Notably,
A2AR interacts closely with dopamine D2 receptors (D2R) in this
region, forming A2AR-D2R heteromers (Ferré et al., 2008; Ferré and
Ciruela, 2019), a concept pioneered by Kell Fuxe in the early 90’s
(Ferré et al., 1991). These interactions are significant in various
conditions, including Parkinson’s disease, schizophrenia, substance
abuse, and Attention Deficit Hyperactivity Disorder (ADHD), as
reviewed in the literature (Fuxe et al., 2003; Ballesteros-Yáñez
et al., 2018; Chen et al., 2023). Consequently, the antagonism of
D2R by haloperidol affects the efficacy of A2AR antagonists in
modulating effort-related behaviors (Salamone et al., 2009; Pardo
et al., 2012; Rotolo et al., 2023). While A2AR-D2R interactions have
been observed in other areas of the brain (Pandolfo et al., 2013;
Dremencov et al., 2017; Real et al., 2018), their functional significance
remains less understood.

This study aimed to evaluate the potential ergogenic effects of
selective antagonists for A1R and A2AR, along with the non-selective
adenosine receptor antagonist caffeine. Our objective was to determine
whether and how these effects are altered by a D2R antagonist,
particularly in the striatum, an area previously shown to influence
central fatigue (Davis et al., 2003; Aguiar et al., 2020; de BemAlves et al.,
2023). Additionally, we venture into new territory by examining the
impact of adenosine receptors on exercise physiology, specifically
focusing on strength performance, which is predominantly
dependent on anaerobic metabolism. This approach allows us to
expand our understanding of fatigue mechanisms across various
physical activities and metabolic requirements.

2 Methods

2.1 Animals

We used one hundred and twelve (112) male Swiss mice (49.4 ±
1.5 g, 8–10 weeks old), housed in collective cages (38 × 32 × 17 cm)
maintained on a 12-h light-dark cycle at a controlled room
temperature of 22°C ± 1°C, and food and water ad libitum. The
sample size for ANOVA comparison was set at α = 0.05 and β = 0.8.
The experimental protocol (CEUA 1503210519) was granted
approval by the Animal Care and Use Committee (IACUC) of
the Universidade Federal de Santa Catarina (UFSC). The assignment
of mice to experimental groups was random, with each animal
treated as an individual experimental unit for every test.

2.2 Drugs

The first experiments were the systemic treatments. The drug
administration schedule was as follows: caffeine at 6.0 mg/kg and
SCH58261 at 1.0 mg/kg were administered 15 min before the
behavioral tests while haloperidol (Haldol®) at 250 μg/kg and

DPCPX at 1.0 mg/kg were administered 30 min prior. The
dosages and administration times for caffeine (Solano et al., 2017;
Aguiar et al., 2020; de BemAlves et al., 2023), SCH58261 (El Yacoubi
et al., 2000a; Aguiar et al., 2020), and DPCPX (Griebel et al., 1991; El
Yacoubi et al., 2000b; Prediger et al., 2004; Li et al., 2018; Szopa et al.,
2018; 2021) were determined based on prior pilot studies and
existing evidence. Doses of 0.25–1.0 mg/kg, i.p. of haloperidol
were tested in the catalepsy test (Shiozaki et al., 1999; Mihara
et al., 2007), showing that 250 μg/kg did not cause either
catalepsy or motor impairment (see Results). Caffeine and
haloperidol were diluted in saline (0.9% NaCl) whereas
SCH58261 and DPCPX were diluted in 5.0% DMSO. Control
groups received either saline or DMSO vehicles. The systemic
treatment was intraperitoneal (i.p.) at a volume of 10 mL/kg. All
drugs were purchased from Sigma-Aldrich.

For stereotactic surgeries, mice were anesthetized with
ketamine/xylazine for cannula implantation in both the right (AP
0.5 mm; ML 2.0 mm; DV −3.0 mm) and left (AP 0.5 mm;
ML −2.0 mm; DV −3.0 mm) striata, using Paxinos and Franklin’s
stereotaxic coordinates (Paxinos and Franklin, 2012). One-week
post-surgery, we injected 4 μL at 2 μL/min of either saline, DMSO,
caffeine (15 μg) or SCH58261 (2 μg) into the conscious animals
immediately before the behavioral tests. Haloperidol (250 μg/kg, i.p)
was given 30 min before the behavioral tests. The mortality rate was
5% (10 animals). The placement of the cannulae was verified post-
euthanasia by dissecting the mouse brain.

2.3 Motor and fatigue behavioral tests

Experiments were conducted from 9 a.m. to 5 p.m. during the
mice’s light circadian phase in a sound-controlled room,
maintaining controlled temperature, humidity, and low-intensity
light (approximately 10 lx). The behavioral apparatus was cleaned
with 10% ethanol after each trial to ensure cleanliness and prevent
contamination. Additionally, the order of the tests was randomized
to eliminate bias.

[Open field] Each mouse was allowed to explore a circular arena
with a diameter of 600 mm for 5 min using the Insight®
EP154 apparatus (Ribeirão Preto, SP, Brazil). A manual count
of the number of crossings was then carried out.
[Grip strength test] We used the Bonther® 5 kgf grip strength
meter (Bonther, Ribeirão Preto, SP, Brazil) to evaluate fatigue,
placing each mouse on the bar and gently pulling its tail,
opposing the firm grip of its front paws over four 10-s trials
(de Bem Alves and Aguiar, 2024). The final score is the average
strength measured in three trials (Personius et al., 2010;
Takeshita et al., 2017).
[Treadmill incremental running test] Mice were habituated to a
mouse treadmill (Bonther, Ribeirão Preto, SP, Brazil) over 3 days.
The regimen started with a 10-min session at 5 m/min, followed
by a 5-min session each at 5 m/min and 10 m/min, and
concluded with 10 min at 10 m/min. After a 48-h rest period,
they underwent an incremental test where the belt speed
increased by 5 m/min every 3 min, conducted at a 1.7° slope
and with a 0.2 mA shock intensity, to estimate (vertical) running
power (AS Aguiar et al., 2018; Aguiar et al., 2020). The external
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length of the cannulas limited treadmill testing to only those
animals treated systemically.

2.4 Statistical analysis

Data are presented as means ± SEM, generated using GraphPad
Prism version 10 (GraphPad Software, San Diego, California,
United States; www.graphpad.com). Adhering to the intention-to-
treat principle, statistical analysis was conducted using
STATISTICA version 13.5.0.17 (StatSoft, Inc.; www.statsoft.com).
The analyses included one-way ANOVA with Tukey’s post hoc test

and repeated measures ANOVA with Bonferroni’s post hoc test for
fatigue resistance (force × time). Effect sizes were evaluated using
Cohen’s η2, categorizing them as small (0.01), medium (0.09), or
large (0.25). Statistical power (β) was also assessed. An alpha level of
p < 0.05 was used to determine significance.

2.5 Data availability statement

This work is available as open data under the Creative
Commons Attribution (CC BY) license. For details, see (Speck
et al., 2024).

FIGURE 1
Effects of systemic treatment with caffeine and/or haloperidol on locomotion, running power and grip strength. Panel (A) shows the dose-response
curve for haloperidol in the catalepsy test, identifying 250 μg/kg as a non-cataleptic dose. Panel (B) shows that systemic administration of caffeine
increased the number of crossings in the open field, which is reduced by a non-cataleptic dose of haloperidol. Panel (C,D) show that systemic caffeine
enhances running power in the incremental treadmill test, an effect prevented by haloperidol. Panel (E–G) show that systemic caffeine improved
grip time (F) and impulse (H), without changes in peak strength (E), and improved the resistance to fatigue (G), all these effects being attenuated by
haloperidol. Results are shown as median ± interquartile range (A) or mean ± standard error of the mean (B–H). N = 8–10 animals/group for 2-
3 independent experiments. Statistical significance (p < 0.05) versus control (*) or versus caffeine (#), with effect sizes (η2) and power (β) confirming robust
results, was determined using ANOVA and post hoc tests, as detailed in the Methods’ section. AUC, area under the curve. ND, not detectable.
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3 Results

Figure 1A displays the dose-response curve of haloperidol in the
catalepsy test, which prompted selecting the non-cataleptic dose of
250 μg/kg. As expected, systemic caffeine acted both as a
psychostimulant and as an ergogenic agent: it increased open
field crossings, an effect mitigated by the non-cataleptic dose of
haloperidol (F3,35 = 4.3, η2 = 0.27, β = 0.83, p < 0.05, Figure 1B). In
the incremental treadmill test (Figure 1C), caffeine boosted running
power, an effect that was not affected by haloperidol (F3,27 = 3.2, η2 =
0.25, β = 0.67, p < 0.05, Figure 1D). In the grip strength test, caffeine
enhanced grip time (F3,35 = 17.5, η2 = 0.6, β = 0.99, p < 0.05, Figure
1F) and impulse (F3,34 = 36.4, η2 = 0.76, β = 1.0, p < 0.05, Figure 1H)
without increasing peak strength (Figure 1E), and haloperidol
mitigated these effects. Additionally, caffeine improved the
resistance to fatigue in the grip test, a benefit not present in
animals also receiving haloperidol (F30,350 = 4.7, η2 = 0.29, β =
1.0, p < 0.05, Figure 1G).

When applied directly in the striatum, caffeine also triggered a
psychostimulant and ergogenic response: it increased the number of
open field crossings (F2,12 = 31.1, η2 = 0.83, β = 0.99, p < 0.05,
Figure 2A), grip time (F2,26 = 6.4, η2 = 0.055, β = 0.99, p < 0.05,
Figure 2C), resistance to fatigue (F8,104 = 4.0, η2 = 0.23, β = 0.98, p <
0.05, Figure 2D) and impulse (F2,12 = 31.1, η2 = 0.83, β = 0.99, p <
0.05, Figure 2E) without increasing peak strength (Figure 2B).
Strikingly, although haloperidol mitigated the psychostimulant

effect of caffeine in the open field, it did not alter the ergogenic
properties of intra-striatal caffeine in the treadmill and grip tests.

Since caffeine non-competitively antagonizes adenosine A1 and A2A

receptors (Fredholm et al., 1999), we exposed animals to DPCPX and
SCH58261, which are selective antagonists for these respective receptors.
DPCPX administration did not alter any measured behaviors, whereas
SCH58261 increased locomotion in the open field; this effect was
nullified in the presence of haloperidol (F3,36 = 11.4, η2 = 0.48, β =
0.99, p< 0.05, Figure 3A). Figure 3B shows the increase in running power
with increased speed. SCH58261 also significantly improved running
power in the treadmill test, a gain blocked by haloperidol (F3,20 = 9.8, η2 =
0.59, β = 0.99, p < 0.05, Figure 3C). While treatments did not affect peak
grip strength (Figure 3D), SCH58261 enhanced both grip time (F3,36 =
8.3, η2 = 0.41, β = 0.98, p < 0.05, Figure 3E) and area under the curve
(AUC, impulse) (F3,36 = 6.3, η2 = 0.34, β= 0.94, p< 0.05, Figure 3G), with
haloperidol diminishing these effects. Additionally, haloperidol reduced
resistance to fatigue in SCH58261-treated animals (F12,144 = 1.9, η2 =
0.14, β = 0.9, p < 0.05, Figure 3F).

Lastly, we assessed the intra-striatal effects of SCH58261, foregoing
DPCPX due to its lack of systemic effects. Intra-striatal administration
of SCH58261 increased locomotion in the open field, an effect that was
mitigated by haloperidol (F2,12 = 37.7, η2 = 0.86, β = 1.00, p < 0.05,
Figure 4A). While intra-striatal SCH58261 did not affect peak grip
strength (Figure 4B), it prolonged grip time (F2,27 = 5.5, η2 = 0.29, β =
0.80, p < 0.05, Figure 4C) and enhanced impulse (F2,27 = 5.5, η2 = 0.28,
β = 0.80, p < 0.05, Figure 4E). All animals exhibited a decline in strength

FIGURE 2
Effects of intra-striatal injection with caffeine, without or with systemic administration of haloperidol, on locomotion and grip strength. Panel (A)
shows that caffeine increased the number of open field crossings, an effect mitigated by haloperidol. Panel (B) shows a lack of modification of the peak
grip strength upon treatments with intra-striatal caffeine without or with systemic haloperidol. Intra-striatal caffeine improved grip time (C), fatigue
resistance (D) and impulse (E) and all these effects were not significantly modified by systemic treatment with haloperidol. Data aremean ± standard
error of the mean. N = 8–10 animals/group for 2-3 independent experiments. Statistical significance (p < 0.05) versus control (*) or versus caffeine (#),
was confirmed by effect sizes (η2) and power (β) through ANOVA and post hoc analysis, as elaborated in the Methods’ section. AUC, area under the curve.
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over time, with no significant differences between treatments observed
(F6,81 = 2.7, η2 = 0.16, β = 0.84, p < 0.05, Figure 4D). Notably, alterations
induced by intra-striatal SCH58261 in grip strength were not modified
by haloperidol.

All effect sizes were large, except for the resistance to fatigue
comparisons following systemic treatment with DPCPX or
SCH58261 (Figure 3F), and intra-striatal treatment with caffeine
(Figure 2C), which exhibited medium effect sizes. Generally, the
statistical power for our analyses was high, exceeding 80%. The only
exception was the systemic treatment with caffeine and haloperidol
(Figure 1D), which had a statistical power of 67%; however, this did
not significantly impact our overall conclusions.

4 Discussion

The present study confirmed that the systemic administration of
either caffeine and of the selective antagonist of A2AR,
SCH58261 were ergogenic and that these effects were largely
reproduced by the direct injection of caffeine or SCH58261 in
the striatum, aligning with previous findings (de Bem Alves
et al., 2023) and the general role of striatal A2AR in effort-related
behaviors, reviewed in Chen et al. (2023).

The first novelty provided by this study is the re-enforcement of
our previous contention that A2AR are the likely molecular targets
operated by caffeine to produce its ergogenic effects (Aguiar et al.,

FIGURE 3
Effects on locomotion, running power and grip strength of systemic treatment with DPCPX or with SCH58261 without or with haloperidol. DPCPX
was devoid of effects in all behavioral measures. Panel (A) shows that systemic SCH58261 increased locomotion in the open field, an effect abrogated by
haloperidol. Panel (B,C) show that systemic SCH58261 increased running power, an effect prevented by haloperidol. In the grip test, systemic
SCH58261 did not modify peak grip strength (D) but prolonged grip time (E), increased resistance to fatigue (F) and endurance (AUC, Figure 3G), all
these effects being prevented by haloperidol. N = 8–10 animals/group for 2-3 independent experiments. Statistical significance (p < 0.05) versus control
(*) or versus SCH58261 (#), was confirmed by effect sizes (η2) and power (β) through ANOVA and post hoc analysis, as elaborated in the Methods’ section.
AUC, area under the curve.
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2020). Physiological concentrations of caffeine, achieved in the brain
parenchyma after consuming non-toxic doses, influence neuronal
network information flow primarily through A1R and A2AR
antagonism (Lopes et al., 2019), without involving other
mechanisms such as phosphodiesterases or ryanodine receptors,
which are activated by toxic caffeine doses (Fredholm et al., 1999).
Our findings that caffeine’s ergogenic effects are replicated by the
selective A2AR antagonist SCH58261, but not by the A1R antagonist
DPCPX, provide direct evidence that caffeine’s ergogenic effects are
specifically mediated through A2AR rather than A1R. Additionally,
caffeine’s influence on other behavioral responses that rely on
striatal information processing, such as locomotion, arousal, or
response to psychostimulants, is also mediated by A2AR rather
than A1R (El Yacoubi et al., 2000a; Chen et al., 2000). Therefore,
the specific involvement of A2AR, rather than A1R, observed in the
acute effects of caffeine on exercise performance, further supports
the significant role of striatal A2AR in governing caffeine’s ergogenic
effects (Aguiar et al., 2020). This is especially pertinent given the
high density of A2AR in the striatum compared to other brain
regions, which predominantly exhibit A1R-mediated effects
following acute caffeine exposure (Elmenhorst et al., 2012;
Kerkhofs et al., 2018).

Another significant conclusion drawn from this study pertains to
the interaction between A2AR and D2R in managing exercise
endurance. This presumed interplay between A2AR and D2R is
supported by: i) their co-localization within medium spiny neurons

of the striatum (Svenningsson et al., 1997; Canals et al., 2003), a region
recognized for the ergogenic effects prompted by caffeine blockade (de
Bem Alves et al., 2023); ii) their established functional crosstalk (Hillion
et al., 2002; Ferré et al., 2016); iii) their dynamic heteromerization,
which results in new receptosomes with novel properties (Canals et al.,
2003; Fernández-Dueñas et al., 2015); iv) their interplay in controlling
motor activity, the impact of psychostimulants, and effort-related
behavioral performance (e.g., Pardo et al., 2013; reviewed in
Borroto-Escuela et al., 2018; Nunes et al., 2010; Rotolo et al., 2023).
Additionally, dopamine signaling has been experimentally linked to
exercise and fatigue (reviewed inMeeusen et al., 2021). Exercise induces
a hyperdopaminergic state (Greenwood, 2019) and dopamine depletion
correlates with mental fatigue (Moeller et al., 2012; Aguiar et al., 2016;
Scheffer et al., 2021). Furthermore, polymorphisms within various
components of the dopaminergic system have been associated with
fatigue (Malyuchenko et al., 2010), L-DOPAhas been shown to alleviate
physical fatigue (Lou et al., 2003; Scheffer et al., 2021; de Bem Alves and
Aguiar, 2024), and exposure to reserpine, which depletes monoamines,
serves as an experimental fatigue model (Scheffer et al., 2021; de Bem
Alves and Aguiar, 2024).

Despite these findings, the specific dopamine receptors involved in
the control of fatigue and their brain locations remain unclear. The
traditional view of striatal dopaminergic signaling suggests a primary
role for D1R, but the simplistic dichotomy of behaviors influenced by
D1R and D2R in medium spiny neurons is being reevaluated (Soares-
Cunha et al., 2016). The improvement of performance with increased

FIGURE 4
Effects of the intra-striatal injection of SCH58261 without or with systemic haloperidol on locomotion and grip strength. Panel (A) shows that intra-
striatal SCH58261 increased locomotion in the open field test, an effect attenuated by haloperidol. Panel (B) confirmed that intra-striatal SCH58261 did
not alter peak grip strength but increased grip time (C) and endurance (AUC, Figure 4E), both effects unaffected by haloperidol. Panel (D) shows a
consistent strength decline, unaffected by any of the treatments. Data are mean ± standard error of the mean. N = 5 animals/group for
2 independent experiments. Significance (p < 0.05) versus control (*) or versus SCH58261 (#), supported by effect sizes (η2) and power (β), is based on
ANOVA and post hoc analysis, as explained in the Methods’ section. AUC, area under the curve.
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forced running is linked to dopamine and specifically to the activation
of striatal D1R and extrastriatal D2R (Toval et al., 2021). Additionally,
the dorsolateral prefrontal cortex has been proposed as important
during exhaustive exercise (Bigliassi and Filho, 2022). These insights
align with our unexpected findings: i) haloperidol reduces the ergogenic
effects of systemically administered caffeine or SCH58261; ii) notably,
haloperidol does not affect the ergogenic effects when caffeine or
SCH58261 is applied directly to the striatum.

These results lead us to conclude that A2AR-D2R interactions play a
significant role in regulating exercise endurance and fatigue,
predominantly outside the striatum. This suggests that adenosine’s
central role in exercise endurance and fatigue might involve primarily
changes in striatal circuits, but also modifications in other brain areas.
This concept aligns with the noted involvement of striatal and
extrastriatal circuits in other behaviors affected by A2AR-D2R
interplay, such as responses to psychostimulants (reviewed in
Borroto-Escuela et al., 2018; Chen et al., 2023). However, this
conclusion that the extra-striatal A2AR-D2R interplay is involved in
ergogenic effects should still be regarded as preliminary since it will
require confirmation based on direct pharmacological and genetic
manipulations of A2AR and D2R only in the striatum and the
identification of the brain regions where this interaction takes place
to control fatigue. Additionally, future studies should also investigate a
putative role of dopamine D1R, which is also abundantly present in the
striatum and other brain regions and has also been reported to tightly
interact with adenosine A1R (Ginés et al., 2000) and dopamine D2R
(Rashid et al., 2007; Frederick et al., 2015).

Interestingly, our current findings indicate that the ergogenic
effects of caffeine and SCH58261 are distinct from their
psychostimulant properties. This observation is supported by our
previous research showing that SCH58261 has both
psychostimulant and ergogenic effects in male mice, but only
ergogenic effects in females, without clear psychostimulant
impacts (Aguiar et al., 2020). This adds to the growing body of
evidence suggesting a unique role for various A2AR populations in
different cellular locations in modulating diverse behavioral
responses (Shen et al., 2008; Yu et al., 2008; Wei et al., 2014).

In summary, our study confirms the critical role of striatal A2AR
in the adenosine modulation of central fatigue and in the ergogenic
responses of A2AR antagonists. Furthermore, we found a
dissociation between the psychostimulant and ergogenic effects of
caffeine and SCH58261. In parallel, the ergogenic effects of caffeine
and of SCH568261 were controlled by D2R blockade with
haloperidol, but this A2AR-D2R interplay seems to mostly occurs
in extra-striatal circuits. These findings underscore the need for
further investigation into the intricate interplay between adenosine
and dopamine signaling in striatal and extra-striatal circuits to
control central fatigue and other motivational behaviors such as
the response to psychostimulants.
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