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Introduction:Drug-induced liver injury (DILI) has been investigated at the patient
level. Analysis of gene perturbation at the cellular level can help better
characterize biological mechanisms of hepatotoxicity. Despite accumulating
drug-induced transcriptome data such as LINCS, analyzing such transcriptome
data upon drug treatment is a challenging task because the perturbation of
expression is dose and time dependent. In addition, the mechanisms of drug
toxicity are known only as literature information, not in a computable form.

Methods: To address these challenges, we propose a Multi-Dimensional
Transcriptomic Ruler (MDTR) that quantifies the degree of DILI at the
transcriptome level. To translate transcriptome data to toxicity-related
mechanisms, MDTR incorporates KEGG pathways as representatives of
mechanisms, mapping transcriptome data to biological pathways and
subsequently aggregating them for each of the five hepatotoxicity
mechanisms. Given that a single mechanism involves multiple pathways,
MDTR measures pathway-level perturbation by constructing a radial basis
kernel-based toxicity space and measuring the Mahalanobis distance in the
transcriptomic kernel space. Representing each mechanism as a dimension,
MDTR is visualized in a radar chart, enabling an effective visual presentation of
hepatotoxicity at transcriptomic level.

Results and Discussion: In experiments with the LINCS dataset, we show that
MDTR outperforms existing methods for measuring the distance of
transcriptome data when describing for dose-dependent drug perturbations.
In addition, MDTR shows interpretability at the level of DILI mechanisms in terms
of the distance, i.e., in a metric space. Furthermore, we provided a user-friendly
and freely accessible website (http://biohealth.snu.ac.kr/software/MDTR),
enabling users to easily measure DILI in drug-induced transcriptome data.

KEYWORDS

drug-induced liver injury, one-class boundary, kernel distance, transcriptomic signature,
degree of toxicity, liver toxicity

OPEN ACCESS

EDITED BY

Ursula Gundert-Remy,
Charité University Medicine Berlin, Germany

REVIEWED BY

Sudin Bhattacharya,
Michigan State University, United States
Fei Chen,
Chinese Academy of Sciences and China
National Center for Bioinformation, China

*CORRESPONDENCE

Sun Kim,
sunkim.bioinfo@snu.ac.kr

†PRESENT ADDRESS

Inyoung Sung,
BK21 FOUR Intelligence Computing, Seoul
National University, Seoul, South Korea
Sangseon Lee,
Department of Artificial Intelligence, Inha
University, Incheon, South Korea

‡These authors have contributed equally to
this work

RECEIVED 09 March 2024
ACCEPTED 27 December 2024
PUBLISHED 24 January 2025

CITATION

Sung I, Lee S, Bang D, Yi J, Lee S and Kim S
(2025) MDTR: a knowledge-guided
interpretable representation for quantifying liver
toxicity at transcriptomic level.
Front. Pharmacol. 15:1398370.
doi: 10.3389/fphar.2024.1398370

COPYRIGHT

© 2025 Sung, Lee, Bang, Yi, Lee and Kim. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 24 January 2025
DOI 10.3389/fphar.2024.1398370

https://www.frontiersin.org/articles/10.3389/fphar.2024.1398370/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1398370/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1398370/full
https://www.frontiersin.org/articles/10.3389/fphar.2024.1398370/full
http://biohealth.snu.ac.kr/software/MDTR
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2024.1398370&domain=pdf&date_stamp=2025-01-24
mailto:sunkim.bioinfo@snu.ac.kr
mailto:sunkim.bioinfo@snu.ac.kr
https://doi.org/10.3389/fphar.2024.1398370
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2024.1398370


1 Introduction

Drug-induced hepatotoxicity (also known as drug-induced liver
injury; DILI) is a serious issue for both drug development and
patient safety (Kaplowitz, 2004; Wilke et al., 2007). Traditional
studies of toxicity have used animal models. This approach is
time-consuming and costly, and may not accurately predict
human toxicity (Van Norman, 2019; Bracken, 2009). Meanwhile,
in vitro bioassays offer a more direct insight into human biology,
with lower costs and ethical concerns (Chapman et al., 2013; Van
Norman, 2019). Because these bioassays enable high-throughput
screening, there is a growing interest to use the bioassays for toxicity
signature screening to analyze toxicity at the individual patient cases.

The increasing availability of large-scale chemical libraries and
gene expression data has significantly advanced our ability to
investigate drug-induced toxicities. Several public resources have
been developed to facilitate high-throughput screening and toxicity
profiling. Among these, Tox21, a collaborative US federal research
program, focuses on developing in vitro assays to screen for
potentially toxic chemicals. Tox21 has pioneered the use of
medium-to high-throughput panel assays to test thousands of
chemicals for potential toxicity (Andersen and Krewski, 2009;
Krewski et al., 2010). ToxCast, another program led by the US
Environmental Protection Agency, extends the capabilities of
Tox21 by offering medium- and high-throughput screening data
for a wide range of chemicals (Dix et al., 2007). However, high
throughput panel assays cannot measure toxic effect of drug at the
transcriptomic level, thus molecular level mechanism of action (MoA)
of drug response cannot be analyzed. To overcome the limitation of
the panel assays, other resources such as the Genomics of Drug
Sensitivity in Cancer (GDSC, Garnett et al. (2012)) and the Cancer
Cell Line Encyclopedia (CCLE, Barretina et al. (2012)) provide
valuable gene expression data and drug response metrics, such as
IC50 and AUC values, across various cancer cell lines. However, both
GDSC and CCLE lack the gene expression data that reflect post-drug
treatment states. To address these gaps, the Library of Integrated
Network-Based Cellular Signatures (LINCS) serves as a
comprehensive resource that provides in vitro gene expression data
after drug treatment (Subramanian et al., 2017). LINCS allows for the
analysis of drug-induced perturbations over time and across different
doses in various cell lines.

1.1 Challenges

Understanding how a drug interacts and affects biological
systems to induce hepatotoxicity with the drug-induced
transcriptome data is a goal of this study. The perturbed
biological mechanisms by dysregulated genes can be interpreted
as a degree of hepatotoxicity at transcriptomic level. However,
despite the abundance of drug response and gene expression
data, measuring the degree of drug-induced hepatotoxicity faces
three major challenges.

1. Data availability varies greatly depending on drug treatment
conditions. For example, the LINCS dataset includes gene
expression values for 12,328 genes across an average of
16 samples (with a standard deviation of 30) for varying

dose and time point combinations (Supplementary Figure
S1). It causes a high-dimensional low-sample issue and
hinders accurate interpretation of the MoA of drugs.

2. Identifying toxic patterns or signatures among drug-treated
expression data is challenging. In the current state of
knowledge, hepatotoxic signatures at transcriptomic level
are insufficient (Andrade et al., 2019), and these signatures
are dose- and time-dependent, as exemplified by hormesis
(Mattson, 2008). Furthermore, biological mechanisms related
to hepatotoxicity are available only in the literature. If possible,
we need computational method to translate drug-induced
transcriptome data to known biological mechanisms related
to hepatotoxicity.

3. Defining the boundaries of toxicity is complex. Cell survival is
governed by maintaining homeostasis, which is influenced by
various conditions such as temperature and oxygen levels
(Chovatiya and Medzhitov, 2014). Any disruption beyond
the homeostasis boundary can lead to cell death with
cytotoxic effects. Consequently, the state of toxicity cannot
be confined within a specific boundary between toxic and non-
toxic labels.

1.2 Our approach

To address these challenges, we propose MDTR, a knowledge-
guidedMulti-Dimensional Transcriptomic Ruler for quantifying the
degree of drug-induced hepatotoxicity at the transcriptomic level.
We first compiled five biological mechanisms of hepatotoxicity from
the recent literature (Andrade et al., 2019; Weaver et al., 2020; Han
et al., 2020). To translate transcriptome data to the five
hepatotoxicity mechanisms, MDTR incorporates KEGG pathways
as representative of mechanisms, mapping transcriptome data to
these pathways and subsequently aggregating them for each of the
five hepatotoxicity mechanisms. This involves three steps: (1)
Identifying the most-perturbed transcriptomic samples as outliers
using Dual-SVDD. The rationale behind this assumption is that
toxic signatures are distinct from all remaining transcriptomic
samples. (2) Constructing a transcriptomic embedding space
using the Radial Basis Function (RBF) kernel and defining a ruler
in the kernel space. (3) Extending the ruler into a five-dimensional
radar chart for interpreting hepatotoxicity based on the knowledge-
guided biological mechanisms.

As a result, MDTR represents the degree of DILI as the distances
that measure the perturbation of the biological mechanisms under
the drug treated environment. MDTR distance outperforms existing
methods, which measure distances between transcriptomic samples,
in reflecting the dose-dependent effects of drug on liver injury. In
addition to its quantitative capabilities, MDTR provides interpretive
power for understanding the MoA. We also provide a website for
calculating and visualizing the five-dimension radar chart using
drug-treated transcriptomic data input by scientists.

2 Methods and materials

In this section, we introduce the details of MDTR, which aims to
measure the degree of hepatotoxicity from drug-induced
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transcriptome data. MDTR consists of two steps: (1) Exploration of
hepatotoxic signatures through data- and knowledge-driven view.
(2) Calculation of the degree of hepatotoxicity by a knowledge-
guided multi-dimensional ruler. Figure 1 illustrates the
overview of MDTR.

2.1 Exploration of hepatotoxic signatures at
transcriptomic level

As mentioned in challenge #2, the signatures that can be utilized to
measure drug-induced hepatotoxicity at the cellular level have not yet
been clearly defined. To bridge the current gap in available data and
knowledge, we explore hepatotoxic signatures through two approaches:
(i) data-driven view: identification of potential toxic samples by Dual-
SVDD. (ii) knowledge-driven view: literature mining of biological
mechanisms related to drug-induced hepatotoxicity.

2.1.1 Data-driven view: identification of potential
toxic samples by Dual-SVDD

Upon drug treatment, biological mechanisms are perturbed,
leading to changes in gene expression levels. As mentioned in
challenge #2, although the toxic signatures may not be clear,
samples that are significantly influenced by the toxic drug, either

by the treated time or dose, may show significant dysregulation in
gene expression. Indeed, the perturbation signature of LINCS is
known to be associated with cell viability linked to regulation of
transcription factors such as apoptosis and proliferation (Szalai
et al., 2019). In particular, toxic compounds can induce cell
death signatures, suggesting the potential to predict MoA
through drug-specific perturbation profiles (Niepel et al., 2017).
Based on this understanding, we assumed that samples containing a
toxic signature would show distinct perturbations among the toxic-
treated transcriptome data, and we referred to these samples as
“potentially toxic (PT)” samples. However, in the process of
selecting PT samples, as mentioned in challenge #3, the processes
of dysregulation due to toxicity are diverse, making it difficult to
define them with a single, closed boundary. Therefore, we designed
an approach of defining boundaries from relatively homogeneous
effects and detecting PT samples as outliers compared to other drug-
induced transcriptome samples.

To identify the PT samples, we propose a novel method called
Dual-SVDD, which consists of two boundaries: the drug-effect
boundary and the toxic-effect boundary. This method is based on
the construction of a one-class boundary method, Support Vector
Data Description (SVDD, Tax and Duin (2004)). Formally, given a
set of samples (xi, yi) where xi is a gene expression profile measured
after treatment of drugs or dimethyl sulfoxide (DMSO), and yi is 1 if

FIGURE 1
The overview of MDTR. To measure the degree of liver toxicity at the transcriptome level, hepatotoxic signatures were explored through both (A)
data- and (B) knowledge-driven views, and (C) a knowledge-guided multi-dimensional ruler MDTR was proposed. (A) Dual-SVDD workflow. For drug-
treated transcriptome data of LINCS, Dual-SVDD generates dual-boundaries to identify the most perturbed, i.e., potential toxic samples. (B) Literature
search workflow. Five major DILI mechanisms were proposed through literature searches, and the corresponding biological pathways were
collected from KEGG. (C)MDTR workflow. Each biological pathway within a mechanism calculates a pathway-level distance in the Radial Basis Function
(RBF) kernel space. These pathway-level distances are then aggregated to form the mechanism-level distance, which serves as an axis in the multi-
dimensional ruler.
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xi is a DMSO-treated sample, and −1 otherwise (for toxic or non-
toxic drug-treated samples), the drug-effect boundary is a
hypersphere that encloses a majority of the DMSO-treated
samples while minimizing distance between the center of the
sphere and the closest DMSO-treated samples on the boundary.
To address the non-linearity of gene interactions, we employed the
RBF kernel in the optimization of the hypersphere using SVDD:

min
r,b,α

r2 + 1
n
∑n
i�1

αi s.t. yi ∑n
j�1

αjk xj, xi( ) + b − r2⎛⎝ ⎞⎠≤ 1,

αi ≥ 0, ∀i (1)
where r is the radius of the sphere, n is the number of samples, αi is a
Lagrange multiplier, b is a bias term, k(xj, xi) � exp(−γ|xi − xj|2) is
the RBF kernel function with width control parameter γ. In this
study, γ is empirically set to 1/(dpσ) where d is the number of genes
in {xi} and σ is the variance of {xi}.

The samples with αi > 0 constitute the support vectors of the
drug-effect boundary. Using the support vectors, for a new sample x,
the decision function fDE(x) is defined as below.

fDE x( ) � ∑n
j�1

αjk xj, x( ) + b − r2 (2)

when fDE(x)≤ 0, x is classified as a sample without drug-effect;
otherwise, it is classified as a sample with drug-effect.

Then, we additionally designed a toxic-effect boundary. Instead
of DMSO-treated samples, we utilized a target dataset XNT

consisting of non-toxic drug-treated samples where
fDE(xNT

i )> 0. A test dataset XT was also constituted using toxic
drug-treated samples where fDE(xTi )> 0.

Using theXNT dataset and Equations 1, 2, we obtained the toxic-
effect boundary and the decision function fTE(x). The dual-
boundaries generated by Dual-SVDD are represented by fDE(x) �
0 and fTE(x) � 0, which are used to identify samples with potential
drug effects and potential toxic signatures, respectively. We refer to
samples in XPT � {xPT1 , . . . , xPTl } as ‘potentially toxic (PT)’ samples,
where xPTi ∈ XT andfTE(xPTi )> 0. These PT samples are considered
to have a higher likelihood of possessing toxic signatures.

2.1.2 Knowledge-driven view: biological
mechanisms related to drug-induced liver injury

Through a comprehensive literature review, we curated
commonly discussed biological mechanisms related to

hepatotoxicity in existing studies (Andrade et al., 2019; Weaver
et al., 2020; Han et al., 2020), and summarized them into five
biological mechanisms: Oxidative stress, Immunological response,
Altered lipid metabolism, Mitochondrial dysfunction, and Bile acids
accumulation (Table 1).

These biological mechanisms are conceptually associated with
hepatotoxicity but their applicability in a computational approach is
not known. To address this, we explored biological pathways
associated with the mechanisms and utilized the gene sets within
those pathways. To identify pathways relevant to these mechanisms,
we used the KEGG Pathway Search function, which conducts a
keyword search against the KEGG pathway database (Kanehisa,
2002). As the search function performs partial matches on text
descriptions or legends for multiple keywords, there is a possibility
of false positives in the search results. For example, when “oxidative
stress” is searched, the term ‘stress’ may detect other stress-related
pathways. Moreover, even if keywords are included in the
description, there may be portions that are far from the main
function of the pathway. Thus, we manually curated the search
results to ensure their relevance to the mechanism. Further details of
the selection process for each mechanism and the selected pathway
list are provided in Supplementary Methods section and
Supplementary Tables S1-S5.

2.2 Calculation of the degree of
hepatotoxicity by a knowledge-guided
multi-dimensional ruler

Through the exploration of hepatotoxic signatures from both
data-driven and knowledge-driven perspectives, we identified PT
samples with a high likelihood of harboring drug-induced
hepatotoxic signatures, as well as biological mechanisms
associated with hepatotoxicity and corresponding pathways.
Leveraging this valuable information, we introduced MDTR,
quantifies the degree of hepatotoxicity as dysfunctions of
biological mechanisms. The MDTR is represented as a five-
dimensional radar chart, with each dimension corresponding to a
biological mechanism, calculated through mechanism-level
toxic distances.

Formally, given a biological mechanism M � {p1, . . . , pk} of k
pathways, the mechanism-level toxic distance DM(x) (Equation 3)
is defined as a sum of multiple weighted pathway-level distances
as below:

TABLE 1 The five hepatotoxicity mechanisms used in the MDTR. The table shows the mechanisms of hepatotoxicity categorized into five major groups
based on literature search, serving as the axis of MDTR. For eachmechanisms, it shows the action in the liver and the number of KEGG pathways belonging
to the mechanism.

Mechanism Hepatotoxicity process Num. of pathways

Oxidative stress Disruption of essential molecules through production of ROS 6

Immunological response Immunological response including inflammation induced by drugs or metabolites 3

Altered lipid metabolism Disruption of normal lipid metabolism and accumulation of lipids leading to tissue damage 13

Mitochondrial dysfunction Impairment of MT function and subsequent disruption of cellular energy metabolism 2

Bile acids accumulation Accumulation of bile acids and impaired bile flow in the liver can cause liver injury 2

*Num.: Number, ROS: Reactive oxygen species, MT: Mitochondria.
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DM x( ) � ∑
p∈M

w p, x( )dp x( ) (3)

where w(p, x) (Equation 5) is a weight of pathway p with respect to
x and dp(x) (Equation 4) is a pathway-level distance that measures
the activity of how the pathway p is dysregulated on x, which is
calculated on the non-linear kernel space to learn complex
interactions of genes.

Given a pathway p � {g1, . . . , glp} consisting of lp genes and
PT samples XPT

p , the toxicity kernel space Hp ∈ Rd is derived
from XPT

p using KernelPCA with RBF kernel, implemented via
the Python Scikit-learn package. The gamma parameter γ is set to
1/l, while all other parameters remain at their default settings. To
construct the toxicity kernel space Hp, the dimensionality d of
Hp is determined by the first min(0.1plp, 3) principal
components. By considering the relationships between
transcriptomic samples in the latent space represented by
genes within pathways, we can alleviate the high
dimensionality issue mentioned in challenge #1. After the
construction of toxicity kernel space, PT samples XPT

p and
non-PT samples Xnon−PT

p are mapped into the toxicity kernel
space Hp with sample distribution Qp ∈ Rd. Then, a pathway-
level distance dp(x) is calculated as the Mahalanobis distance in
the toxicity kernel space of the mapped samples:

dp x( ) �
�����������������
z − μp( )TS−1p z − μp( )√

(4)

where z represents the latent embedding of the sample x mapped
into the kernel space Hp. μp and Sp are the mean vector and the
positive-definite covariance matrix derived fromQp, respectively. In
other words, once the toxicity kernel space is constructed using PT
samples, all samples, including both PT and non-PT samples, are
mapped into this space. The Mahalanobis distance is then calculated
for each sample in this toxicity kernel space. After calculating dp(x)
for all samples, min-max normalization is performed to adjust
the scale.

The weight w(p, x) represents the significance of dysregulation
of the pathway p in the sample x against the pathway-level distances
of Xnon−PT

p . Formally, as our observation, the distribution of
{dp(x)|x ∈ Xnon−PT

p } follows F-distribution. Then, the weight
w(p, x) is calculated as:

w p, x( ) � −log F dp; d1, d2( )( )
� −log I

d1 ·dp/ d1 ·dp+d2( )
d1

2
,
d2

2
( )( ) (5)

where dp denotes dp(x). d1 and d2 are degrees of freedom that
measured from {dp(x)|x ∈ Xnon−PT

p }. I is the regularized incomplete
beta function.

2.3 Website for measuring the degree of
toxicity through MDTR

The website (http://biohealth.snu.ac.kr/software/MDTR) is
designed to measure the degree of liver toxicity of drugs by
analyzing their gene expression data. The website uses MDTR to
show the potential liver toxicity of drugs across the five mechanisms
of hepatotoxicity.

Additionally, the website leverages the LINCS dataset to access
gene expression data from 514 drugs across 70 different cell lines,
specifically utilizing L1000 Level 5 data, which are generated by
calculating z-scores relative to the controls. This provides a
comprehensive assessment of potential hepatotoxicity at the
transcriptomic level. The website is implemented using the
Django 3.2 framework and Bootstrap 4.6 for the front-end. The
interactive radar chart, representing the indicators of liver toxicity, is
generated using Chart. js. Each axis of the radar chart represents an
indicator of liver toxicity. The website is tested for compatibility and
functionality on various web browsers, including Chrome, Microsoft
Edge, Firefox, and Safari.

2.4 Preparation of drug hepatotoxicity
information and drug-induced
transcriptome data

Two databases, Drug Induced Liver Injury Rank (DILIrank,
Chen et al. (2016)) and LiverTox (Hoofnagle, 2013), were used to
gather information on drug-induced hepatotoxicity. DILIrank
categorizes drugs into four classes based on their potential for
causing hepatotoxicity, while LiverTox assigns likelihood scores
indicating the extent of reported liver injury cases. For this study,
drugs categorized as most-DILI concern in DILIrank, and A and B in
LiverTox were considered hepatotoxic. Drugs categorized as no-
DILI concern in DILIrank, and D and E in LiverTox were considered
non-hepatotoxic. A total of 220 hepatotoxic drugs and 402 non-
hepatotoxic drugs were used in the analysis.

Drug-treated samples from the LINCS database (accession
number GSE92742) were obtained for investigating drug-induced
hepatotoxicity at the transcriptomic level. For the gene expression
matrix of these samples, we used Level 5 data, which are generated
by calculating z-scores relative to the controls. Categorization of
these samples into DMSO, non-toxic, and toxic groups was guided
by annotations from DILIrank and LiverTox. A total of 20,529 drug-
treated samples (6,405 toxic, 11,333 non-toxic and 2,791 DMSO-
treated samples) were collected. From the LINCS dataset, among the
10,174 LINCS best inference genes, 4,693 genes related to drug-
induced liver injury were selected based on the Comparative
Toxicogenomics Database (CTD, Davis et al. (2021)) and
enrichment analysis of Gene Ontology (GO) terms. Further
description and discussion of drug hepatotoxicity information,
transcriptome data collection, and the selection of gene sets are
provided in the Supplementary Methods section.

3 Results and discussion

3.1 MDTR: a knowledge-guided
representation for liver toxicity at
transcriptomic level

Among the 1,896 drug-treated transcriptome samples, Dual-
SVDD selected the most perturbed samples, the extreme point of
MDTR. As a result, 64 potentially toxic (PT) samples were identified
(Supplementary Table S6). We showed the utility of Dual-SVDD
through its ability to distinguish toxic samples and the robustness of
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dual-boundaries (Supplementary Figure S2). In addition, to evaluate
the reliability of the proposed measurement, we conducted self-
validation by partitioning the total dataset and performing cross-
check analyses (Supplementary Figure S3). As a result, our
measurement method showed consistent distances regardless of
the configuration of the data.

Based on the PT samples and the curated biological
mechanisms, MDTR measures the degree of DILI. Figure 2A
shows a distribution of maximum distances, representing the
density distribution of maximum values on the MDTR of the
samples. Notably, significant statistical differences were observed
between the sample groups identified by Dual-SVDD. This indicates
that the MDTR distance measured from PT samples meaningfully
reflects the perturbation of gene expression affected by drug
treatments. Among the drug-induced transcriptome data,
Figure 2B illustrates examples of radar charts from MDTR. The
red-colored radar chart (Figure 2B, right), representing the treated
compound labels as structural toxicity as ‘Toxic’, shows greater
distances in comparison to the other two examples. Interestingly,
even when the chemical structural information is identical and
labeled as ‘Non-toxic’, the MDTR results of the two drug-
induced transcriptome samples (green vs. blue-colored) show
obvious differences. This indicates the importance of analyzing
drug hepatotoxicity at the transcriptome level.

We further investigated the capability of MDTR in identifying
samples treated with hepatotoxic drugs. We screened top-rankded
drugs for liver toxicity, labeled as ‘Most-DILI’ in DILIrank or
assigned category ‘A’ in LiverTox, as well as drugs with an
absence of reported toxicity, labeled as ‘No-DILI’ in DILIrank or
category ‘E’ in LiverTox. Then, we used samples treated with the
selected drugs in liver cell lines, including HEPG2, HUH7, and
PHH. This resulted in the identification of 10 toxic and 43 non-toxic
samples, respectively. When comparing the distances between the
two sample groups, we observed larger distances for toxic samples
across all mechanisms, with statistically significant differences found
in all mechanisms except for Bile acids accumulation (Figure 3).
Interestingly, similar results were observed when the experiment was
conducted not only in liver cell lines but also in the entire cell lines
belonging to the data used (Supplementary Figure S4). Therefore, we

showed the effectiveness of the multi-dimensional ruler in
stratifying toxic and non-toxic samples at the transcriptomic level.

3.2 Comparison of dose-dependent
liver toxicity

Our research goal is not only to measure the five-dimensional
toxic mechanisms in drug-treated transcriptomic samples, but also
to facilitate the understanding of toxicity mechanisms using the
multi-dimensional ruler in the form of the radar chart. We explored
the drug treated environment, especially the sample distance
according to the drug dose. For dose-dependence analysis, a total
of 198 combinations of 33 drugs with five or more drug dose points
in fixed cell line and time point were used. Under the assumption
that toxicity increases with increasing drug dose (Schenker et al.,
1999; Hoofnagle and Björnsson, 2019), the correlation between dose
and distance was calculated, and then evaluated that higher
correlation resulted in better results. We compared MDTR
distance with three methods: (1) Mathematical distances (Cosine,
Euclidean, and Mahalanobis) calculated from the expression values
of all genes in LINCS, (2) Transcriptomic Signature Distance (TSD,
Manatakis et al. (2020)), and (3) Pathway Activity Score Learning
(PASL, Karagiannaki et al. (2023)) with mathematical distances
similar to (1) (details in Supplementary Methods).

As shown in Table 2, MDTR outperformed the other distance
methods, achieving 70% positive ratio. Additionally, MDTR
consistently showed the highest positive correlation ratio even
when the number of drug dose points was three or four
(Supplementary Table S7). Notably, the Mahalanobis distance
yielded better results than Cosine and Euclidean distances. In
addition, distances calculated based on biological information
(MDTR and PASL) exhibited better performances compared to
using the entire genes without the prior knowledge.

The main advantages of MDTR are that it not only provides
distances indicating the degree of toxicity depending on the drug-
treated environment but also allows interpretation of the
mechanisms of liver toxicity. Among drugs that show a positive
correlation with MDTR and dose, we conducted case studies for the

FIGURE 2
The results of MDTR. (A) Maximum distance distribution on the ruler. The density distribution shows the maximum values on the MDTR of the
samples divided according to the Dual-SVDD boundary. (B) Examples of multi-dimensional rulers using radar charts for drug-treated
transcriptome samples.
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following three drugs: Doxorubicin, Mitoxantrone, and
Rosiglitazone.

Case 1: We investigated Doxorubicin, a chemotherapy medication
widely used for the cancer treatments, including breast and bladder
cancer, while also known for its hepatotoxicity (Prasanna et al.,
2020). In the MCF7 cell line and at the 6-h time point, Doxorubicin
exhibited dose-dependent toxicity signature (Figure 4, ρ = 0.93, p =
1.1e-6). These positive correlations were observed in 9 out of the
10 Doxorubicin-treated combinations (Supplementary Table S8). In
particular, the radar chart revealed distinct changes across different

dose points in two mechanisms: Mitochondrial dysfunction and Bile
acids accumulation. These findings support the understanding of the
potential association between bile acid metabolism and Doxorubicin
sensitivity (Chen et al., 2017), as well as the preferential
accumulation of Doxorubicin in the mitochondria and nucleus
(Wallace et al., 2020).

Case 2: We investigated the potential toxicity of Mitoxantrone, a
cytotoxic agent and anthracenedione analogue of Doxorubicin (Fox,
2004), which exhibits similar metabolic pathways (Paciucci and
Sklarin, 1986; Llesuy and Arnaiz, 1990; Rossato et al., 2014a).
Mitoxantrone, despite being classified with a likelihood score of
D in the LiverTox database, showed a positive correlation between
distance and dose across all combinations of MCF7, PC3, and
A549 cell lines and 6 and 24 h time points, similar to
Doxorubicin (Supplementary Table S9). For example, Figure 4B
illustrates the dose-dependent changes in distance for Mitoxantrone
in the PC3 cell line at the 24-hour time point (ρ = 0.87, p = 0.012).

In particular, the toxicity of the sample showed a non-
monotonic tendency that decreased in the early stage of dose
escalation (from 0.1 to 0.5μM) and then increased again after the
1uM dose (Tang et al., 2023). These results showed that MDTR is
capable to capture the pattern of drugs showing such hormesis.
Overall dose-distance relationship suggest that Mitoxantrone not
only induces functional impairments observed with Doxorubicin,
such as bile acids accumulation and mitochondrial dysfunction, but
also affects lipid metabolism (Kharasch and Novak, 1985; Rossato
et al., 2014b).

Furthermore, we performed the MDTR on an unseen drug,
Rosiglitazone, a drug that has a lack of medical reports concerning

FIGURE 3
Distance comparison between toxic and non-toxic samples. The bar plot shows the distances between samples of toxic drugs (red) and samples of
drugs with unknown toxicity (blue) in liver cell lines.

TABLE 2 Performance comparison for dose-distance relationship. The table
shows the ratio (in numbers) of samples exhibiting a positive correlation
between dose and distance among the 198 samples for MDTR and three
comparison methods. Bold values indicate the best results.

Method Positive ratio (Num. of positive samples)

MDTR 0.70 (139)

Raw + Cosine 0.62 (123)

Raw + Euclidean 0.62 (122)

Raw + Maha 0.64 (127)

TSD 0.64 (127)

PASL + Cosine 0.53 (105)

PASL + Euclidean 0.61 (121)

PASL + Maha 0.67 (133)

*Num.: Number, Maha.: Mahalanobis.
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liver toxicity and was not utilized in the generation of dual-
boundaries or the calculation of the ruler.

Case 3: We investigated the liver toxicity of Rosiglitazone, a
thiazolidinedione drug used for the treatment of type 2 diabetes
treatment but discontinued in many countries due to cardiovascular
risks (Nissen and Wolski, 2007). While its counterpart Troglitazone
has been withdrawn from the market due to severe hepatotoxicity
(Lloyd et al., 2002; Kaplowitz, 2005), limited research exists on the
hepatotoxic effects of Rosiglitazone. To address this gap, we
employed the multi-dimensional ruler to evaluate its toxicity. In
the PC3 cell line at the 24-h time point, Figure 4C demonstrates an
increase in toxic mechanisms corresponding to higher drug doses.
Specifically, significant variations were observed in Bile acids
accumulation and Lipid metabolism in response to varying doses.
These findings align with known issues associated with
Rosiglitazone, such as disturbances in fatty acid and triglyceride
metabolism (Gershell, 2005; Tan et al., 2005;Watkins et al., 2002), as
well as intrahepatic cholestasis (Zhang et al., 2020).

Through comparative and case study results, we show that
MDTR is an interpretable method that can capture both known
and potentially mechanisms of toxicity, while exhibiting a dose-
dependent distance to hepatotoxicity.

3.3 MoA interpretation: Oxidative stress as a
case study

Oxidative stress, one of the axis of MDTR, arises from an
imbalance between oxygen-reactive species (ROS) generation and
accumulation (Figure 5A, Jaeschke et al. (2002), Jaeschke et al.
(2012)). The accumulation of ROS, triggered by factors such as
AMP-activated protein kinase (AMPK) activation (Kang et al., 2016;
Steinberg and Hardie, 2022) and an imbalance in glutathione (GSH)
and glutathione disulfide (GSSG) levels (DeLeve and Kaplowitz,
1991; Yuan and Kaplowitz, 2009), promotes inflammation, disrupts

cellular energy regulation, depletes antioxidants, impairs protein
handling, and induces hepatocellular apoptosis, ultimately leading
to liver damage.

To explore the biological implications of pathway-level distances
within the mechanism, we focused on the Chemical carcinogenesis -
ROS pathway (hsa05208, hereafter referred to as the ROS pathway),
which is one of the six pathways chosen for the oxidative stress
mechanism. We divided the samples evenly into four groups (Low,
Middle1, Middle2, and High) based on each pathway distance. Then,
we performed co-expression network analyses based on the
expression values of samples within each group (Figure 5B). As a
result, larger distances correspond to large co-expression network
sizes, indicating that increased distance is associated with more
interactions between genes and, simultaneously, a higher degree of
gene dysregulation. For example, during the transition from the Low
group to the Middle1 group, downregulation of MAPK8 (also
known as JNK) may hinder the expression of the AP-1
transcription factor, potentially impacting the MAPK signaling
pathway (Turner et al., 2014). Furthermore, as the network
progressed from the Middle1 to Middle2 and High groups,
upregulation of genes associated with PI3K signaling (e.g.,
PIK3CA or PIK3CD) and NADPH oxidase (e.g., NOX4) was
observed, indicating ROS production (Koundouros and
Poulogiannis, 2018). These findings validate the efficacy of the
proposed pathway-level distance in capturing biological activity.
Similar results were observed for the remaining pathways
(Supplementary Figures S5-S9).

We next calculated the mechanism-level distance of oxidative
stress as a weighted sum of the six related pathways, including the
ROS pathway. To explore the association between oxidative stress
signaling and the mechanism-level distance of samples, we
performed GO enrichment analysis using commonly perturbed
genes from the respective group. Figure 5C and Supplementary
Figure S10 illustrate that as the distance increases, the GO terms
related to oxidative stress, such as response to endoplasmic
reticulum stress and cellular response to oxidative stress, exhibit

FIGURE 4
The relationship between the distance on the multi-dimensional ruler and the dose. The box plots and radar charts show the change in distance
based on the dose of drug treatment under fixed cell line and time point. (A) Doxorubicin at MCF7 cell line and 6-hour, (B)Mitoxantrone at PC3 cell line
and 24-hour, and (C) Rosiglitazone at PC3 cell line and 24-hour. Except the zoomed radar chart, all radar charts exhibit a scale ranging from aminimumof
0 to a maximum of 1.
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more significant and abundant enrichment. These GO enrichment
analysis results were consistently observed across all the
mechanisms (Supplementary Figures S11-S14). Thus, our findings
demonstrate that both pathway- and mechanism-level distance
effectively reflect the activity level of the corresponding
mechanism as the distance increases.

3.4 A web service for MDTR

Our model is implemented as a freely available website (http://
biohealth.snu.ac.kr/software/MDTR). The website allows for our
MDTR to be utilized from two perspectives (Supplementary
Figure S15): (1) detection of hepatotoxicity from the user’s drug-
induced transcriptome data, (2) investigation of hepatotoxicity
through drug-induced transcriptome data in the LINCS database
by selecting any combinations of drugs, tissues, and cell lines.

4 Conclusion

In this study, we introduced MDTR that quantifies the degree
of liver toxicity in terms of five hepatotoxicity mechanisms by
analyzing transcriptome data. An important contribution of this
study is that it sought to translate transcriptome data to toxicity-
related mechanisms between transcriptome data and DILI
mechanisms. To understand the DILI mechanisms at the
transcriptomic level, MDTR integrated the KEGG pathways,
mapped the transcriptome data to the pathway-specific kernel
space to measure the distance, and aggregated the pathway-level
distance to measure the mechanism-level distance. MDTR
explores complex genetic relationships in a non-linear RBF
kernel space constructed from biological pathways, while at
the same time having the explanatory power of DILI through
a five-dimensional radar chart where integrated pathways are
represented on one axis.

We showed that MDTR represents dose-dependent liver toxicity
compared to existing models that measure distance or similarity of
transcriptome data. In addition, through the case studies, we showed
the ability of MDTR to interpret dose-dependent DILI not only for
drugs with known liver toxicity but also for drugs with no reported
liver toxicity. Furthermore, MDTR measures distances for different

drug-treated environments, especially for different treatment doses,
thereby capturing not only monotonic drug responses but also non-
monotonic phenomena such as hormesis. Lastly, we provided a
user-friendly and freely accessible website, enabling users to easily
measure DILI in drug-induced transcriptome data. Therefore,
MDTR serves as both an interpretable and computational
method, addressing the limitations of existing studies that relied
only on experimental and literature information to measure
potential drug toxicity across various treatment environments.

While we have expanded the gene set based on the functional
analysis of genes curated from the CTD, future studies may further
enhance this gene set by including genes with correlated expression
levels within the dataset. Moreover, although the current study
involved a manual curation process to identify liver toxicity
mechanisms and their associated biological pathways from the
literature, we plan to conduct a more comprehensive analysis of
liver toxicity by utilizing additional external resources, such as
Ingenuity Pathway Analysis (IPA).
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