
In silico approaches for drug
repurposing in oncology:
a scoping review

Bruno Raphael Ribeiro Cavalcante1,2, Raíza Dias Freitas1,3,
Leonardo de Oliveira Siquara da Rocha1,2,
Roberto de Souza Batista Dos Santos1,
Bruno Solano de Freitas Souza1,4, Pablo Ivan Pereira Ramos1,5,
Gisele Vieira Rocha1,4 and Clarissa Araújo Gurgel Rocha1,2,4,6*
1Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil, 2Department
of Pathology and Forensic Medicine of the School of Medicine, Federal University of Bahia, Salvador,
Brazil, 3Department of Social and Pediatric Dentistry of the School of Dentistry, Federal University of
Bahia, Salvador, Brazil, 4D’Or Institute for Research and Education (IDOR), Salvador, Brazil, 5Center of
Data and Knowledge Integration for Health (CIDACS), Salvador, Brazil, 6Department of Propaedeutics,
School of Dentistry of the Federal University of Bahia, Salvador, Brazil

Introduction: Cancer refers to a group of diseases characterized by the
uncontrolled growth and spread of abnormal cells in the body. Due to its
complexity, it has been hard to find an ideal medicine to treat all cancer
types, although there is an urgent need for it. However, the cost of
developing a new drug is high and time-consuming. In this sense, drug
repurposing (DR) can hasten drug discovery by giving existing drugs new
disease indications. Many computational methods have been applied to
achieve DR, but just a few have succeeded. Therefore, this review aims to
show in silico DR approaches and the gap between these strategies and their
ultimate application in oncology.

Methods: The scoping review was conducted according to the Arksey and
O’Malley framework and the Joanna Briggs Institute recommendations.
Relevant studies were identified through electronic searching of PubMed/
MEDLINE, Embase, Scopus, and Web of Science databases, as well as the grey
literature. We included peer-reviewed research articles involving in silico
strategies applied to drug repurposing in oncology, published between 1
January 2003, and 31 December 2021.

Results: We identified 238 studies for inclusion in the review. Most studies
revealed that the United States, India, China, South Korea, and Italy are top
publishers. Regarding cancer types, breast cancer, lymphomas and leukemias,
lung, colorectal, and prostate cancer are the top investigated. Additionally, most
studies solely used computational methods, and just a few assessed more
complex scientific models. Lastly, molecular modeling, which includes
molecular docking and molecular dynamics simulations, was the most
frequently used method, followed by signature-, Machine Learning-, and
network-based strategies.

Discussion: DR is a trending opportunity but still demands extensive testing to
ensure its safety and efficacy for the new indications. Finally, implementing DR
can be challenging due to various factors, including lack of quality data, patient
populations, cost, intellectual property issues, market considerations, and
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regulatory requirements. Despite all the hurdles, DR remains an exciting strategy for
identifying new treatments for numerous diseases, including cancer types, and
giving patients faster access to new medications.
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1 Introduction

Cancer is a term that refers to a group of diseases that occur
when cells divide uncoordinatedly with other tissues and do not
respond appropriately to the signals that control cellular behavior
(Sarkar et al., 2013). This feature happens as a result of multifactorial
molecular events that involve interactions between the genes and the
environment of an organism through a process called carcinogenesis
(Karidio and Sanlier, 2021). As the disease progresses, those aberrant
cells may invade and ultimately colonize other tissues and
neighboring normal organs in a process called metastasis, which
is a cancer hallmark that accounts for the most significant number of
cancer-related deaths (Fares et al., 2020).

Given the diverse complexity of cancer phenotypes and genotypes,
researchers have faced significant challenges in identifying optimal
chemical entities as therapeutic agents for each type of cancer,
aiming to halt disease progression at both molecular and
physiological levels. However, the scarcity of approved drugs remains
burdensome and requires discovering new therapeutic molecules.

Developing a new drug is expensive and time-consuming.
Indeed, bringing a single medicine from scratch to pharmacy
shelves ranges from US$ 944 million to US$ 2.8 billion (adjusted
to 2019 prices) (Simoens and Huys, 2021) and takes approximately
10–15 years to be commercially available, with a success rate of only
2.01% (Yeu et al., 2015; Xue et al., 2018). Not to mention that nearly
90% of all clinical drug development fails due to the absence of
clinical efficacy, unmanageable toxicity, poor drug-like properties,
and lack of commercial demand (Sun et al., 2022). Alternatively,
drug repurposing (DR, also drug repositioning, redirecting,
reprofiling, and re-tasking), which consists of using existing
drugs for new disease indications, can hasten the drug discovery
process through the use of validated, toxicologically safe, and already
regulated drugs (Martínez-García and Hernandez-Lemus, 2021),
making DR a hot topic, currently.

Many methodologies can be used to achieve DR and overcome the
difficulties and lengthy processes inherent to new drug discovery. An
efficient DR workflow for both Academia and pharmaceutical
companies requires the combination of availability and access to
molecular data, analytical expertise provided by a cross-disciplinary
team, experimental set-up for validation, and clinical development
process (Cha et al., 2018). In this regard, repurposing methods can
be subtly divided into those based on experimental screening settings
and in silico approaches that analyze existing data to identify potential
new drug-disease associations.

Although we may have witnessed much progress in the field, the
gap between what can be found through computational methodologies
and drug repurposing itself is yet to be fully understood. As a matter of
fact, repurposing is successful only in certain cases. It denotes that these
computational approaches have been misleading, primarily because of
the questionable chosen input data, poor data quality, and debatable

analysis methods. In addition, patent issues, regulatory considerations,
and organizational hurdles also make drug repurposing hard to be
implemented (Pushpakom et al., 2018). Thus, this review aims to give
an overview of the general approaches to computational drug
repurposing, showcasing the gap between the in silico strategies and
their practical application in drug repurposing in oncology.

2 Material and methods

2.1 Study protocol and registration

This scoping review followed the methodological framework
proposed by Arksey and O’Malley (2005) and complies with the
recommendations of the Joanna Briggs Institute for elaborating
scoping reviews (Peters et al., 2015). The protocol has been
previously published (Cavalcante et al., 2022) and registered on
the Open Science Framework (https://osf.io/yx7kp). Additionally,
this review is reported following the PRISMA extension for scoping
reviews (Supplementary File S1) (Moher et al., 2015; Page et al., 2021).

2.2 Population, concept, and context

We used the population-concept-context (PCC) mnemonic to
guide the research questions, eligibility criteria, and literature search.
The articles in this scoping review should focus on in silico approaches
for drug repurposing (concept) within the Oncology research field
(context). We did not specify a population since we were interested in
computationalmethods used inOncology research in general, including
different study designs and populations (Table 1).

2.3 Research question

The following research question guided this scoping review: How
can in silico strategies be implemented inDR in oncology? Based on this
question, the three main objectives were: 1) to identify the most used in
silico strategies, 2) to identify the gap between what can be found
through computational strategies and the lacking knowledge
concerning DR in oncology and 3) to identify the regulatory barriers
to DR when using in silico strategies in cancer research.

2.4 Eligibility criteria

The eligibility criteria were determined through the PCC
mnemonic. We included peer-reviewed, English-language research
articles published between January 2003 and December 2021 that
have implemented in silico strategies for DR in oncology. We
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excluded narrative or systematic reviews, book chapters, author’s
opinions/comments, editorials, erratum, meeting abstracts,
conference abstracts, and study protocols. Also, we excluded studies
that used in silico strategies for other objectives rather than DR, where
no abstract was available or full-text articles could not be obtained, and
studies on DR in oncology intended for animal use.

2.5 Information sources and search

At first, a preliminary search was conducted on Pubmed
(Medline) to map relevant articles on DR in oncology. The titles
and abstracts of these articles and their keywords were used to create
a comprehensive search strategy. Our search strategy included
Medical Subject Headings (MeSH) terms, their corresponding
synonyms, and the Boolean operators “AND” and “OR”. The
search strategy was organized into three concept clusters: 1) in
silico approach, 2) drug repurposing, and 3) oncology. The search
strategy initially created for Pubmed (Medline) (Table 2) was
modified for the Embase, Scopus, and Web of Science databases.
We also explored the grey literature through Open Grey, and the
reference lists of all the included sources of evidence were examined
to identify any additional studies (Supplementary File S2). The
electronic search strategies were conducted on 22 March 2022.
Details regarding the search strategies employed in each database
were previously published (Cavalcante et al., 2022).

2.6 Selection of sources of evidence

Following the search, all identified citations were exported in
Comma-Separated Values (CSV) format to Microsoft Excel
(Version 2019), and duplicates were removed. Two independent
reviewers (BRRC and LOSR) screened all titles and abstracts for
assessment against the inclusion criteria. The full text of selected
articles was assessed against the exclusion criteria by the same
reviewers, independently. Any disagreements between the
reviewers were resolved through discussion. The inter-rater
agreement was assessed through Cohen’s κ before the abstract
review stage using the Jamovi software (version 1.2).

2.7 Data charting and data items

Data was extracted from the included articles using a Microsoft
Excel spreadsheet (Version 2019). Following the review questions,
two independent reviewers (BRRC and GVR) developed and tested
the data charting tool with ten random studies. Data extracted
comprised the following items: 1) title, 2) publication date, 3)
authors, 4) country, 5) study aim, 6) study design, 7) type of
cancer, 8) in silico method used, 9) study outcome, 10) mention
of regulatory aspects, and 11) occurrence of drug rescue or
repurposing.

2.8 Synthesis of results

We present the results narratively and use tables containing the
topics detailed in the previous section. The key findings are
described according to the review questions, with maps to
portray the geographical location of publications and graphs for
better data visualization. Also, this review was divided into sections
that include the main results of individual sources of evidence
followed by the most used methodologies in the included studies
and challenges in DR in oncology.

The world map was constructed using the rnaturalearth and
ggplot2 packages in the R programming environment (version
4.3.1). These packages provided the geographical data of the
globe, where we built a data frame of the publication count with
the selected countries from the previous charting of the studied
articles. Publications that involved the collaboration of different
countries, each country was counted as one. Next, we merged the
map with the data frame and generated the plot using the geom_sf
function to plot the selected countries. We also used the scale_fill_
gradient function to create a color scale for the assigned values.

3 Results

3.1 Selection of sources of evidence

We identified 2,701 articles through our search, 907 of which
were duplicates. After de-duplicating the sample, we screened
1,794 articles for relevance. The full list of records screened for
eligibility are available at OSF (https://osf.io/yx7kp/files). We found
1,515 records eligible for full-text review, 279 of which were included
in our complete analysis. After thorough analysis, 41 articles were
excluded for not meeting inclusion criteria, leaving 238 articles
eligible for full-text scrutiny (Figure 1). A table with the
summary of all included studies is available in Supplementary
File S3 and at OSF (See “data charting” at https://osf.io/yx7kp/
files/).

3.2 Characteristics of sources of evidence

The 238 studies that met our inclusion criteria were
developed in 44 countries (Figures 2A, B). Most studies
identified were from the United States, India, China, South
Korea, and Italy, which stand out as the top publishers. Other

TABLE 1 The main population-concept-context mnemonic (PCC).

Population Concept Context

N/A The main concept of interest is in silico
approaches for drug repurposing

Oncology
field

TABLE 2 Search strategy for Pubmed (Medline).

Database Search strategy

PubMed [(“drug repositioning” OR “drug repurposing” OR “drug rescue”
OR “off-label use” OR “off-label uses” OR “off-label prescribing”
OR “unlabeled indication” OR “high throughput screening” OR
“high throughput screening assays”) AND (“in silico” OR “in
silicos” OR “computer simulation” OR “computerized model")
AND (oncolog* OR cancer* OR tumor* OR tumour* OR
neoplas*)]
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countries and regions, such as the United Kingdom, Germany,
and Spain, have also contributed to the progress of employing
computational approaches in oncology. The remaining countries
had fewer than ten published studies across all the continents.
The central-eastern portions of Europe, many regions of South
America and Africa, and northern parts of the Asian continent
are regions that did not appear in the data charting of the
selected articles.

3.3 Results of individual sources of evidence
and data synthesis

Regarding study design, we sought to investigate if the
publications fit into a broad categorization of the in silico
strategies. We found that most studies solely used computational
methods without further testing their findings in other scientific
settings (46.64%) (Shah et al., 2012; Abazeed et al., 2013; Ain et al.,
2013; Eichhorn et al., 2013; Emig et al., 2013; Leung et al., 2013; Liu
et al., 2013, 2020, 2021; Menden et al., 2013; Naresh et al., 2013;
Omotuyi et al., 2013; Singh et al., 2013; Chen, 2014; Dean et al., 2014;
Xu and Wang, 2014; Chuang et al., 2015; Dunna et al., 2015;
Gustafson et al., 2015; Hammad and Azam, 2015; Kaur et al.,
2015; Paula et al., 2015; Rubio-Perez et al., 2015; Sarvagalla et al.,

2015; Zhang et al., 2015; Brown et al., 2016; Gayvert et al., 2016; Lee
et al., 2016; Shafique et al., 2016; Tan, 2016; Verma et al., 2016;
Spiliotopoulos et al., 2017a, 2017b; Jadhav and Karuppayil, 2017;
Kabir et al., 2017, 2018, 2019; Khanam et al., 2017; Salentin et al.,
2017; Sohraby et al., 2017; Ulfa et al., 2017; Arora and Singh, 2018;
Barua et al., 2018; Fröhlich et al., 2018; Jubie et al., 2018; Juritz et al.,
2018; Karube et al., 2018; Konidala et al., 2018; Lagarde et al., 2018;
Mady et al., 2018; Montes-Grajales et al., 2018; Shi et al., 2018; Shin
et al., 2018; Wang et al., 2018; Xu et al., 2018; Yu et al., 2018;
Amusengeri and Bishop, 2019; Catalano et al., 2019; Cheng et al.,
2019; Floresta et al., 2019; Kuthuru et al., 2019; Natarajan et al., 2019;
Patidar et al., 2019; Ramos et al., 2019; Sahrawat and Kaur, 2019;
Sweta et al., 2019; Turanli et al., 2019; Yadav et al., 2019; Yang et al.,
2019, 2021; Çınaroğlu and Timuçin, 2019; Wu et al., 2020a; Choi
et al., 2020; Jiang et al., 2020; Karthik and Vijayakumar, 2020; Kumar
et al., 2020; Liñares-Blanco et al., 2020; Prakash and Nath Dwivedi,
2020; Shehadi et al., 2020; Siam et al., 2020; Aier et al., 2021a; Alisha
and Tripti, 2021; Aier et al., 2021b; Biswas et al., 2021; Bourdakou
et al., 2021; Cadow et al., 2021; Chandel et al., 2021; Florio et al.,
2021; Kadioglu et al., 2021; Nasiri et al., 2021; Parveen, 2021;
Radaeva et al., 2021; Saranyadevi, 2021; Song et al., 2021;
Zagidullin et al., 2021; Deokar and Shaikh, 2022; Gao et al., 2022;
Madhukar and Subbarao, 2022; Cell et al., 2024). Surprisingly,
several studies combined in silico and in vitro approaches to

FIGURE 1
Flow diagram of literature search and selection criteria adapted from PRISMA (Page et al., 2021).
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validate their results (42.02%) (Jordheim et al., 2013; Lafleur et al.,
2013; Schonbrunn et al., 2013; Tabchy et al., 2013; Brewer et al.,
2014; Kanematsu et al., 2014; Stachnik et al., 2014; Takeuchi et al.,
2014; Calvete et al., 2015; De La Cruz-Hernandez et al., 2015; Fako
et al., 2015; Istyastono et al., 2015; Liao et al., 2015; McNeil et al.,
2015; Rameseder et al., 2015; Riddick et al., 2015; Segura-Cabrera
et al., 2015; Zalloum et al., 2015; Zeino et al., 2015; Zhong et al., 2015;
Chong et al., 2016; Hengel et al., 2016; Lara-Castillo et al., 2016;
Montes-Grajales et al., 2016; Radi et al., 2016; Rocca et al., 2016;

Wilson et al., 2016; Chen et al., 2017; Di Lello et al., 2017; Digiacomo
et al., 2017; Jaeger et al., 2017; Jernigan et al., 2017; Klingenberg et al.,
2017; Kolosenko et al., 2017; Mould et al., 2017; Ozsvari et al., 2017;
Platonova et al., 2017; Prabhu et al., 2017; Salim et al., 2017; Vilaboa
et al., 2017; Yang et al., 2017; Amaral et al., 2018; Chang et al., 2018;
He et al., 2018; Holt et al., 2018; Hyter et al., 2018; Krishna et al.,
2018; Manohar et al., 2018; Ayoub et al., 2018; Sakr et al., 2018; Tian
et al., 2018; Amrutha et al., 2019; Fischer et al., 2019; Li et al., 2019; Li
et al., 2021; Metz et al., 2019; Mishra et al., 2019; Poli et al., 2019; Qi

FIGURE 2
(A) Worldwide distribution of selected studies about drug repurposing in oncology (n = 238). (B) Distribution of publications per country.
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et al., 2019; Song et al., 2019; Ben-Hamo et al., 2019; Frejno et al.,
2020; Gibbons et al., 2020; Anderson et al., 2020; Ariey-Bonnet et al.,
2020; Naeem et al., 2020; Aydin et al., 2020; Strätker et al., 2020;
Faridi et al., 2020; Velázquez-Quesada et al., 2020;Wakai et al., 2020;
Benavides-Serrato et al., 2020; Wu et al., 2020b; Zhang J. et al., 2020;
Bonnet et al., 2020; Al-Shar’i et al., 2021; Correia et al., 2021;
Elkamhawy et al., 2021; Enríquez-Flores et al., 2021; Giubilaro
et al., 2021; Nagamalla and Kumar, 2021; Parcha et al., 2021;
Rashidieh et al., 2021; Renna et al., 2021; Rimpelová et al., 2021;
Suphavilai et al., 2021; Traylor et al., 2021). Only a few publications
combined in silico, in vitro, and in vivo methods (10.92%) (Chan
et al., 2013; Shi et al., 2013; Van Kesteren et al., 2013; Choi D. S. et al.,
2014, Choi et al., 2014 B. H.; Gazzard et al., 2014; Nakamura et al.,
2014; Parks et al., 2014; Liu et al., 2015; Druzhyna et al., 2016; Jiang
et al., 2017; Ke et al., 2017; Mirza et al., 2017; Pessetto et al., 2017;
Kang et al., 2018; Lodagekar et al., 2019; Mottini et al., 2019; Zou
et al., 2019; Zhang M. et al., 2020; Kwon et al., 2020; Chequin et al.,
2021; Rabben et al., 2021; Sulsenti et al., 2021; Zhao et al., 2021), and
a single study added ex vivo models in their approach (0.42%)
(Jahchan et al., 2013) (Figure 3A).

Many cancer types can benefit from DR. While the majority
of publications (43%) utilized computational techniques to target
cancer broadly, including identifying inhibitors (Brewer et al.,
2014; Zhong et al., 2015; Shafique et al., 2016; Ulfa et al., 2017;
Çınaroğlu and Timuçin, 2019; Siam et al., 2020), agonists (Kaur
et al., 2015; Wang et al., 2018), Drug-Target interaction
predictions (Emig et al., 2013; Kuthuru et al., 2019), and
virtual screening (Rocca et al., 2016; Spiliotopoulos et al.,

2017b; Lagarde et al., 2018), a portion of the literature
concentrated on specific cancer types. Among these, breast
cancer (12%) (Emig et al., 2013; Jiang et al., 2017; Montes-
Grajales et al., 2018; Velázquez-Quesada et al., 2020; Chequin
et al., 2021), lymphomas and leukemias (9%) (Lara-Castillo et al.,
2016; Sohraby et al., 2017; Karube et al., 2018; Sahrawat and Kaur,
2019; Boulos et al., 2021; Parcha et al., 2021), lung (6%) (Kwon
et al., 2020; Saranyadevi, 2021), colorectal (5%) (Liñares-Blanco
et al., 2020; Biswas et al., 2021; Deokar and Shaikh, 2022; Leung
et al., 2022), and prostate (4%) (Kang et al., 2018; Ariey-Bonnet
et al., 2020; Benavides-Serrato et al., 2020; Liu et al., 2021; Lin
et al., 2022) cancers were the most frequently
investigated (Figure 3B).

Several promising computational techniques have been
developed to aid in repurposing. They can be broadly categorized
as 1) signature-based, 2) molecular modeling, 3) network-based, 4)
genome-wide association studies (GWAS) (Altay et al., 2020), and
Machine Learning (ML)-based. Most of these methodologies require
precise and curated data inputs that demand many datasets and
databases. As shown in Figure 3C, molecular modeling (MM), which
includes molecular docking (MD) and molecular dynamics
simulations (MDS), has emerged as one of the most frequently
used methods (63.45% of publications), followed by signature-based
(9.66%). Next, some authors have employed ML- (8.82%) and
network-based strategies (8.40%). Lastly, a single publication
(0.42%) used GWAS to achieve DR. Supplementary File S4
summarizes the main in silico methods used for drug
repurposing and their respective softwares.

FIGURE 3
(A) Study design of publications broadly categorized as in silico, in silico/in vitro, in silico/in vitro/in vivo, and in silico/in vitro/in vivo/ex vivomodels.
(B) Prevalence of the most investigated cancer types under in silico DR approaches. (C) Prevalence of the most used methodologies in the
included studies.
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3.4 Molecular modeling (molecular docking
and molecular dynamics simulations)

In molecular modeling, MD has become an increasingly
important tool for DR. It can be used to model the interaction
between a small molecule and a protein at the atomic level (Meng
et al., 2011). Then, some calculations can be performed to investigate
the binding affinity of the ligands within the protein active site
(i.e., groove or pocket formed by the folding pattern of the protein),
elucidating fundamental biochemical processes. Complementarily,
MDS can be used to obtain more accurate results since the dynamic
behavior of proteins and other biomolecules can bemonitored in full
atomic detail and at different timescales since MDS allow the
understanding of several critical biomolecular processes, such as
conformational change, ligand binding, and protein folding,
revealing the positions of all the atoms at femtosecond
(Hollingsworth and Dror, 2018).

Some publications have used molecular modeling to identify
new inhibitors (Mady et al., 2018; Radaeva et al., 2021) or propose
new pipelines (Liu et al., 2020; Deokar and Shaikh, 2022),
considering only in silico approaches. Nevertheless, some
authors used MD as a kick-off start of a more extensive
approach to check biological activity in vitro and in vivo for
breast cancer and bladder carcinoma. Chequin et al. (2021)
showed a repurposing strategy through molecular docking
studies of the antitumoral activity of liraglutide, a well-known
diabetes type II drug, by modulating epigenetic modifications in
breast cancer cell lines in vitro and in vivo using Ehrlich mice
tumors models. Ke et al. (2017) used MD to identify potential
inhibitors of FGFR3 from 3,167 worldwide approved small-
molecule drugs through a repositioning approach. After in vitro
testing, the acaricide drug fluazuron exhibited the highest anti-
proliferative effect in human bladder carcinoma cell lines
RT112 and RT4 and anticancer effect in vivo in BALB/C nude
mice subcutaneously xenografted with RT112, suggesting that
fluazuron is a potential inhibitor of FGFR3 and a candidate
anticancer drug for the treatment of this carcinoma.

Some authors have taken advantage of molecular studies to
elucidate whether some drugs display relevant binding properties.
Kang et al. (2018) used Molecular modeling simulation to explain
the capability of the synthesized analogs to increase the intracellular
Ca2+ levels to understand variations in the ability of synthesized
analogs of the antipsychotic drug trifluoperazine for the treatment of
glioblastoma. They identified fourteen compounds that were
biologically active in vitro and in vivo (assessed in brain
xenograft mouse model of glioblastoma), presenting the
compound 3dc as a new tool for the adjuvant chemotherapy of
glioblastoma. Druzhyna et al. (2016) used docking simulations to
elucidate how benserazide, a DOPA decarboxylase inhibitor, is
related to the inhibition of cystathionine-β-synthase activity and
suppresses colon cancer cell proliferation and bioenergetics in vitro
and tumor growth in vivo in nude mice bearing human colon
cancer cell.

Although applications of combined workflows, including MD
and MDS, have been explored to assist different tasks of DR, it is
noteworthy to mention that each computational method has its
limitations, especially when analyzing less-characterized molecular
targets (Pinzi and Rastelli, 2019).

3.5 Signature-based strategies

The exponential growth of omics data across multiple biological
levels, encompassing genomics, transcriptomics, andmetabolomics, has
presented significant opportunities for identifying previously
undisclosed targets and comprehending underlying mechanisms in
various cancer types. The accessibility of such data in publicly accessible
repositories has played an indispensable role in driving substantial
progress within the realm of DR research, particularly in exploring
genetic signatures associated with dysfunctional signaling pathways in
cancer. Signature-based methods are frequently employed to compare
gene expression profiles between non-disease and disease states to
identify specific gene signatures, which can serve as targets for
repurposing existing drugs or guiding the development of new
therapeutic compounds. This approach holds the potential for more
targeted and effective therapeutic strategies in treating diseases.

Choi D. S. et al. (2014) identified Chloroquine as a potential
cancer stem cell (CSC) inhibitor through in silico gene expression
signature analysis of the CD44(+)/CD24(-/low) CSC population in
Triple-negative breast cancer (TNBC). They reported that
Chloroquine could sensitize TNBC cells to paclitaxel through
inhibition of autophagy and reduced the CD44(+)/CD24(-/low)
CSC population in both preclinical and clinical settings.
Similarly, to identify new therapeutic options for Ewing sarcoma
(EWS), Pessetto et al. (2017) employed an integrated bioinformatics
approach based on disease signature alongside an in vitro screen of
FDA-approved drugs to predict drug activity. They showed that two
drugs, Auranofin (a thioredoxin reductase inhibitor) and
Ganetespib (an HSP90 inhibitor), displayed anticancer activities
in silico and in vitro. Still taking advantage of disease signature
patterns, Jahchan et al. (2013) employed a DR strategy to identify
FDA-approved candidate drugs to treat non-small cell lung cancer
(SCLC). They identified tricyclic antidepressants and related G
protein–coupled receptor inhibitors as potent inducers of cell
death in SCLC cells and other neuroendocrine tumors.

Although widely employed for DR, signature-based approaches
face significant challenges. There are genetic signatures that do not
provide comprehensive coverage of the transcriptome, that is, all
possible gene expressions in an organism. Also, interpreting these
signatures often requires a deep understanding of the biological
context and the intricate interactions between genes and proteins,
which may hinder the identification of causal relationships between
signatures and observed effects.

3.6 Machine learning-based approaches

ML is a branch of artificial intelligence (AI) and refers to
acquiring predictive information or identifying informative
clusters within data. In recent years, ML has been in the
spotlight, being applied to several purposes, including the field of
drug design, such as the prediction of drug–target interaction and
drug discovery. In fact, ML has been used in many other approaches
revised in this work, including structure-based approximations
(ML-based scoring functions), network-based approaches, etc.
Overall, machine learning offers powerful tools and
methodologies for accelerating drug repurposing efforts, enabling
researchers to leverage existing knowledge and data to identify new
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therapeutic opportunities, improve drug safety and efficacy, and
advance personalized medicine approaches.

Since DR depends on extensive data from existing drugs and
diseases, ML methods have been widely used to supply the
application of data science to signaling disease, medicine,
therapeutics, and identifying potential targets (Yang et al., 2022).
Song et al. (2021) developed an ML approach to infer unknown
DTIs for breast cancer, called PsePDC-DTIs. The model achieved
good prediction results and provided ten potential DTIs. Further,
Salim et al. (2017) identified the molecule COTI-2 through a
computational platform and checked its role in in vitro and in
vivo settings. They showed that COTI-2 was effective against a
diverse group of human cancer cell lines regardless of their tissue of
origin or genetic makeup. Anderson et al. (2020) used two strategies
to enable DR, one by taking advantage of ML models of chordoma
inhibition to further screen compounds of interest in vitro and the
other by testing combinations of approved kinase inhibitors already
being evaluated for chordoma.

If, on one hand, ML has brought more understanding and has
provided advances in DR, on the other hand, some limitations may
pose some challenges for its implementation, which involve (a) the
lack or quality of good data, (b) bias and discrimination (the data
might not represent overall population), (c) overfitting and
underfitting problems (when ML models fail to provide a suitable
output), and (d) lack of reproducibility (inability to replicate or
reproduce the results of a ML experiment or study).

3.7 Network-based approaches

Network-based approaches have emerged as promising methods
forDR, specifically for treating diverse types of cancer. These techniques
require the integration of multiple data sources, such as publicly
available datasets and high-throughput data, to model the molecular
interactions within complex biological systems using graph theory. In
this system, the nodes can be represented by drugs, proteins, diseases, or
genes, and edges represent their relationships. The networks modeling
drug-drug, drug-target, drug-disease, disease-gene, and protein-protein
interactions can provide insights into non-obvious associations related
to drug mechanisms of action (MOA).

Since many drug targets act like transcription factors in gene
regulation, transcriptome data are extensively used to identify
potential drug targets through gene regulatory networks. Network
measures such as neighborhood scoring, interconnectivity, network
propagation, and random walk enable the discovery of new gene-
target associations, prioritizing new candidate targets, and revealing
new diseases associated with the selected target.

Protein-protein interaction (PPI) networks are strategies to find
drug targets that interact directly or indirectly with other proteins.
This method aims to predict drug-target interactions (DTI),
considering that proteins targeted by similar drugs are neighbors
and functionally related within the interaction network. Many drugs
are non-specific and may modulate additional targets beyond their
primary targets. Therefore, in addition to protein-protein similarity,
network analysis is employed to elucidate drug-drug similarity.
When a drug has a known interaction target, models can be
predicted based on protein similarity; however, if the drug lacks
a known target, its potential target is determined based on the

similarity of its molecular structure. Moreover, proteins exhibiting
high sequence similarity may interact with analogous drugs.

Some authors used network analysis to provide insightful
strategies to promote DR. Emig et al. (2013), for instance,
employed a network-based approach for the prediction of drug
targets for different types of cancer with their underlying biological
processes by using cancer gene expression signature and a high-
quality interaction network as inputs and having a prioritized list of
drug targets as outputs. Jaeger et al. (2017) used a computational
network biology approach to discover new synergistic drug
combinations for breast cancer treatment and many cancer types.
They found that the combination of raloxifene with the c-Met/
VEGFR2 kinase inhibitor cabozantinib potentiated the drugs’
individual antitumor effects in a mouse model of breast cancer.
Another exciting approach proposed by Segura-Cabrera et al. (2015)
integrated random walk-based network framework to identify
known and novel drug indications against different subsets of
breast cancers through contextual prioritization based on
genome-wide gene expression, shRNA, and drug screen and
clinical survival data, conceiving a platform, NetWalker (http://
netwalkersuite.org), for contextual prioritization of drugs, genes,
and pathways. Similarly, Cheng et al. (2019) proposed an integrated,
network-based methodology for cancer type-specific disease module
identification and in silico drug repurposing. They developed a
Genome-Wide Positioning System Network (GPSnet) algorithm
for DR using whole-exome sequencing and transcriptome profiles
from ~5,000 patients across 15 cancer types from The Cancer
Genome Atlas. They found that ouabain, an approved cardiac
arrhythmia and heart failure drug, displays potential antitumor
activities in lung adenocarcinoma.

The drug repositioning strategies based on applying molecular
interactomes have significant limitations. There needs to be a
complete understanding of the molecular interactions at different
biological levels: the interactions among the various molecules
within a cell or tissue can encompass interactions between different
levels, from the interaction of two proteins to the interaction of multiple
metabolic pathways. This complexity requires the consideration of
many variables that affect molecular interactions, which can lead to
inconsistent or difficult-to-interpret results.

3.8 Genome-wide association studies

Current scientific advances have allowed new visions and
therapeutic strategies to be included in medical approaches,
making room for an increasingly personalized and inclusive
medicine regarding human variability. In this context, one
relevant approach is the GWAS.

GWAS comprise a genomic approach that uses the association
of genotypes with the phenotypes by testing for differences in the
allele frequency of genetic variants between individuals who are
ancestrally similar but differ phenotypically (Uffelmann et al., 2021).
In this approach, DNA strand loci are used for further analysis of the
allele frequency of this region. GWAS aims to identify genetic
variants, or single nucleotide polymorphisms (SNPs), that are
associated with a particular trait or disease. These SNPs are then
used to create a genomic risk score that can be used to predict an
individual’s likelihood of developing the disease or trait.
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Over the past decades, GWAS have uncovered many genetic
variants that may provide targets for DR. However, only one
publication used GWAS to promote DR. Zhang et al. (2015)
developed an in silico pipeline based on GWAS to prioritize the
candidate genes at the colorectal cancer risk loci, targeting them with
approved therapies for colorectal cancer, such as crizotinib, arsenic
trioxide, vrinostat, dasatinib, estramustine, and tamibarotene.

The valuable information GWAS provide has outstanding
potential to guide drug discovery or repurposing. However, there
are several limitations underlying these studies, which include: (a)
the top genes identified fromGWASmay not be easily druggable, (b)
the focus on the effect of the top SNPs may miss biologically relevant
target genes with small effect sizes, (c) the use of a single candidate
gene may miss multi-target drugs, and (d) the inadequate
annotation procedures due to the complexity of the human
genome (Lau and So, 2020).

3.9 Why is it so challenging to use
computational strategies to promote de
facto drug repurposing in oncology?

Cancer is a complex disease encompassing a range of different
tumor types in terms of genetic and molecular characteristics
(Shlyakhtina et al., 2021; Hanahan, 2022) and demands new
therapeutic agents. Although DR through computational
approaches might be beneficial, it has been quite challenging to
implement for numerous reasons.

Several public databases, such as The Cancer Genome Atlas
Program (TCGA), broadly provided omics (e.g., genomic,
transcriptomics, and proteomic) and clinical data, enabling
comprehensive in silico studies in DR in oncology (Mottini et al.,
2021). However, high-quality data is not always readily accessible or
standardized across studies and databases (Grannis et al., 2019). For
the results to be reliable, the datasets must be accurate,
comprehensive, reproducible, and representative. Data quality is
key for any scientific and clinical research, and it starts with
mitigating data imprecisions that lead to inaccurate or misleading
analytics results. Some problems include unstructured dataset
metadata and inconsistent data processing and quality control,
which demand crucial extensive curation and data reprocessing
(Lim et al., 2021). Due to the data’s heterogeneity, combining
different data types, such as transcriptomic data, chemical
structure data, and clinical literature data, poses another
computational challenge for effective DR (Ko, 2020).
Additionally, relevant and public patient data is limited in low-
and mid-income countries (Hung et al., 2020; Abdul-Rahman et al.,
2023). Other issues involve reproducibility and replicability in
science. Although there are journals with an open data and code
policy that require that, as a rule, code and data be released at the
latest upon publication (Laurinavichyute et al., 2022), several
published studies do not supply raw data and codes, leading to a
high burden for those conducting the reproductions (Seibold et al.,
2021). Underrepresented data in genomics and multi-omics studies,
especially regarding racial and ethnic groups, has hindered advances
in human genetics, with the vast majority of research conducted,
developed, and validated in individuals of European descent (Landry
et al., 2018).

Translating computational predictions into experimental
preclinical validation and clinical studies requires time, resources,
and collaboration among researchers, clinicians, and regulatory
agencies (Seyhan, 2019). Regarding cancer, capturing the
complexity and dynamics of the microenvironment (Baghban
et al., 2020) through computational strategies, cell lines, and
animal models struggles to predict drug responses accurately.
Thus, identifying existing drug candidates for repurposing
requires a deep understanding of underlying biological
mechanisms and pathways involved in diverse cancer types. The
accurate prediction of potential drug candidates and their efficacy is
related to the knowledge of drug mechanisms, potential side effects,
and safety concerns (Berlin et al., 2008). However, there are
numerous drugs whose mechanisms and targets still need to be
fully understood, and some drugs may have multiple targets or
display off-target effects (Palve et al., 2021), further complicating the
repurposing process.

The gap between in silico approaches and DR arises because
computational strategies and experimental studies may sometimes
disagree. The simulations’ results must be validated through
experimental and clinical studies before they can be used to
support drug repurposing efforts. In vitro and in vivo models are
commonly used to validate the predicted potential drugs.
Nevertheless, these settings diverge from physiological conditions,
requiring new robust experimental designs that resemble in vivo
tissue and disease pathology (Ko, 2020), which can be costly. Since
drug response differs among patients, more clinical studies are
needed to provide a new appropriate dose for the candidate drug
since the original dose might no longer be the same. Indeed,
pharmaceutical companies still struggle with rising clinical trial
costs yearly due to more complex clinical development programs,
which involve increased regulatory scrutiny and the growing need to
demonstrate the safety and efficacy of new drugs and their value
(Martin et al., 2017). A recent paper that assessed the clinical trials
cost, gathering data from 726 studies conducted in patients from
2010 to 2015, showed that the median cost of conducting a study
from protocol approval to final clinical trial report was
US$3.4 million for phase I trials involving patients, $8.6 million
for phase II trials and $21.4 million for phase III trials (Martin et al.,
2017). Although repurposing a drug can be a cost-effective
alternative to developing a new drug, the cost of clinical trials
and regulatory submissions can still be substantial.

3.10 Regulatory barriers to drug repurposing
when using in silico strategies in
cancer research

DR can face several difficulties in the regulatory agencies’
approval process. Overcoming the legal and regulatory barriers is
critical for succeeding, as the potential drug candidates must comply
with regulatory agencies’ demands. In an ideal scenario, those drugs
that show relevant clinical endpoints must be available quickly. In
this regard, the US Food and Drug Administration (FDA) has an
accelerated approval pathway for cases in which there is an
improvement in overall survival or patients willing to tolerate
uncertainty about such benefits in exchange for early access to
promising cancer drugs (Gyawali et al., 2021). However, the
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same is not true regarding how other agencies worldwide deal with
this issue. Considering that different countries may have different
requirements for drug approval, it is difficult to obtain global
approval for a repurposed drug. Overall, the approval process for
DR can be more challenging than for new drugs. Still, with the
increasing recognition of the potential benefits of drug repurposing,
regulatory agencies are expected to become more willing to consider
repurposed drugs for approval.

Intellectual property issues must also be considered concerning
DR. Pharmaceutical companies may only be willing to invest in
developing repurposed drugs if they can obtain new patents for the
new indications (Krishnamurthy et al., 2022). Another problem is
that pharmaceutical companies were described as patenting many
compounds, even if they will be abandoned later, thus preventing
others from developing these compounds without a license
(Tartaglia, 2006). Overall, the financial support for DR has been
insufficient, along with shorter patent durations and low returns on
investments.

4 Discussion

Computational methods contribute to the process of drug
repurposing by streamlining target discovery and drug screening
at a preclinical level. This scoping review has highlighted significant
advancements and challenges in the field of DR in oncology, led by a
variety of in silico strategies. We have shown the dominance of
certain countries, such as the United States, India, China, South
Korea, and Italy, in computational approaches for drug repurposing
for cancer treatment. Overall, these countries often have well-
established research infrastructures, including academic
institutions, research centers and collaborative networks, which
enable the establishment of a thriving environment, filled with
necessary resources and expertise for conducting computational
research in drug repurposing. Additionally, these countries are often
leaders in technological innovation, including advancements in
artificial intelligence, machine learning, and bioinformatics.
Finally, countries with large populations, such as India and
China, may have access to diverse patient populations and
clinical datasets, which are invaluable for training computational
models and identifying potential drug candidates for repurposing.

Molecular modeling is crucial in drug repurposing efforts in
oncology by providing insights into the interactions between
drugs and their molecular targets. This can be achieved by
predicting existing drugs’ binding affinity and mode of action
against specific molecular targets implicated in cancer. Molecular
modeling provides detailed structural insights into drug-target
interactions and enables rational drug design, whereas signature-
, machine learning-, and network-based strategies offer
complementary approaches for identifying potential drug
candidates and understanding drug-disease associations. These
approaches lack mechanistic interpretability or correlations
without explicit consideration of molecular structure and
function. The incorporation of molecular modeling,
particularly MD and MDS, has identified novel inhibitors and
repurposing strategies for existing drugs, as evidenced in studies
targeting breast cancer and bladder carcinoma (Ke et al., 2017;
Chequin et al., 2021). However, applying these methodologies is

limited, especially when exploring less-characterized molecular
targets (Pinzi and Rastelli, 2019).

Signature-based strategies have capitalized on the rapid
expansion of omics data, revealing new targets and disease
mechanisms. These methods hold great promise in the quest for
potential cancer treatments, as exemplified by the identification of
Chloroquine for Triple-negative breast cancer (TNBC) and
Auranofin and Ganetespib for Ewing sarcoma (EWS)) (Choi D.
S. et al., 2014; Pessetto et al., 2017). However, the challenges
associated with these strategies, such as the incomplete coverage
of the transcriptome and the complexity of interpreting gene
expression signatures within their biological context, remain
(Jahchan et al., 2013).

ML-based approaches have introduced a new perspective to DR,
enabling the prediction of drug-target interactions and the discovery
of new drugs. Notable examples include creating the PsePDC-DTIs
model for breast cancer and identifying COTI-2 as an effective agent
against various cancer cell lines (Salim et al., 2017; Song et al., 2021).
However, the effectiveness of MLmodels is dependent on the quality
and representativeness of the data, and challenges such as bias,
overfitting, and lack of reproducibility continue to exist (Yang
et al., 2022).

Network-based approaches offer a holistic view of the molecular
interactions in cancer, facilitating the discovery of new drug targets
and drug-drug similarities. These methods have been successfully
employed in predicting drug targets and synergistic drug
combinations for various cancers (Emig et al., 2013; Jaeger et al.,
2017). Nevertheless, the complexity of molecular interactions and
the need for comprehensive data integration present significant
hurdles (Segura-Cabrera et al., 2015).

GWAS have also contributed to DR, identifying genetic variants
linked to specific diseases. Zhang et al.’s use of GWAS for colorectal
cancer illustrates this approach’s potential (Zhang et al., 2015).
Nevertheless, the challenges associated with GWAS, including the
difficulty in identifying druggable genes and the limitations of
focusing on single-gene effects, must be considered (Lau and
So, 2020).

The overarching challenge in applying computational strategies
for DR in oncology lies in the disease’s complexity and the
discrepancies between in silico predictions and experimental
validations (Shlyakhtina et al., 2021; Hanahan, 2022), since
translating computational findings into clinical applications
demands considerable resources and collaboration, with the
additional complexity of capturing tumor microenvironments
and predicting drug responses (Berlin et al., 2008; Baghban et al.,
2020). However, our study identified many works that have
employed solely computational approaches. Without further
validations and tests, these computational findings become
merely suggestive or predictive, hindering the chances of a
potentially repurposed drug reaching clinical practice.
Furthermore, repurposing drugs also implies that other scientific
methodologies (i.e., in vitro validations, in vivo or ex vivo models,
accurate toxicology studies, efficacy and effectiveness trials) must be
undertaken to reduce the risks to the patient and increase the success
rate of repurposed drugs in the product development process.

Lastly, regulatory barriers and intellectual property issues pose
significant drug approval and commercialization challenges. The
varied requirements of different regulatory agencies and the
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financial aspects associated with DR, including patenting and
investment returns, are critical considerations in this field
(Tartaglia, 2006; Gyawali et al., 2021; Krishnamurthy et al.,
2022). Additionally, intellectual property issues and market
considerations significantly impact the uptake and
commercialization of repurposed drugs for cancer treatment.
While patent protection and market exclusivity incentivize
investment in repurposing efforts, they can also lead to pricing
pressures and access barriers. Balancing the need for innovation and
profitability with patient access and affordability is essential to
ensure that repurposed drugs effectively address unmet medical
needs in cancer treatment.

Computational methods for drug repurposing in cancer
treatment have limitations that restrain their use to a preclinical
level. Molecular models that predict compound-target interaction
and treatment response may result in an oversimplification of the
pharmacological complexity behind oncological chemotherapy, as it
does not consider tumor heterogeneity, spatial and structural
complexity, and potential treatment resistance development.
Additionally, using biomedical databases harbors a potential
human error, as information may be incomplete or misleading,
resulting in output bias. Therefore, the application of in silico
approaches in drug repurposing does not excuse the validation of
results through qualified in vitro or in vivo methods. Finally, most
datasets consist of transcriptomes from Caucasian populations,
reflecting the lack of representation of minorities in clinical
studies. In this sense, it is hard to extrapolate results and adapt
promising treatments in Caucasian populations to a racially diverse
population, especially black and Hispanic ethnic-racial identities.

Expediting drug discovery through repurposing existing
medications for cancer treatment has ethical implications. This
requires careful consideration of patient safety, transparency in
communication, equitable access to treatments, robust regulatory
oversight, management of conflicts of interest, and responsible
stewardship of resources. Collaboration among stakeholders,
including patients, healthcare providers, researchers, regulatory
agencies, and pharmaceutical companies, is essential to navigate
these ethical challenges and ensure that the benefits of expediting
drug discovery through repurposing existing medications outweigh
the potential risks.

As a scoping review, a notable limitation of this study design is
the absence of a critical quality assessment of the included studies.
However, it is crucial to emphasize that the objective of this review
was to map the available evidence, rather than to conduct a
methodological quality appraisal of the studies. For such detailed
evaluations, more focused systematic reviews are advisable. Another
limitation observed in this scoping review is that the studies
generally failed to provide scripts or databases necessary for
reproducibility. Furthermore, it is significant to point out the lack
of established guidelines for a robust methodology or best practices
in implementing in silico approaches, which should be explored in
further research within this field.

5 Conclusion

Cancer is a generic term for a large group of diseases in which
some are more likely to have a more suitable treatment and

eventually be cured than others. Because each cancer needs to be
treated differently, new approaches, including chemical entities,
must be taken to improve oncological patients’ outcomes. In this
scenario, repurposing drugs might be an advantageous alternative
for faster clinical translation.

DR is an exciting opportunity to give the existing marketed drug
new therapeutic indications. However, identifying potential drugs to
be repurposed is not trivial, and implementing DR can be
challenging due to various factors, including lack of quality data,
patient populations, cost, intellectual property issues, market
considerations, and regulatory requirements.

It is important to note that the trend of DR continues to grow,
propelled mainly by employing advanced AI techniques. These
techniques offer fresh perspectives on disease drug targets and
enhance the likelihood of successful drug repurposing. In
conclusion, despite the inherent challenges, DR is a promising
strategy for discovering new treatments for a range of diseases,
including various types of cancer, facilitating quicker patient access
to novel medications and treatments.
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