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Liver cancer represents a complex and severe ailment that poses tough challenges to
global healthcare. Transcriptome sequencing plays a crucial role in enhancing our
understandingof cancer biology and accelerating the developmentofmore effective
methods for cancer diagnosis and treatment. In the course of our current
investigation, we identified a total of 1,149 differentially expressed genes (DEGs),
encompassing 499 upregulated and 650 downregulated genes, subsequent to
prunetrin (PUR) treatment. Our methodology encompassed gene and pathway
enrichment analysis, functional annotation, KEGG pathway assessments, and
protein-protein interaction (PPI) analysis of the DEGs. The preeminent genes
within the DEGs were found to be associated with apoptotic processes, cell cycle
regulation, the PI3k/Akt pathway, the MAPK pathway, and the mTOR pathway.
Furthermore, key apoptotic-related genes exhibited close interconnections and
cluster analysis found three interacting hub genes namely, TP53, TGFB1 and
CASP8. Validation of these genes was achieved through GEPIA and western
blotting. Collectively, our findings provide insights into the functional landscape of
liver cancer-related genes, shedding light on the molecular mechanisms driving
disease progression and highlighting potential targets for therapeutic intervention.
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1 Introduction

Liver cancer is a global health problem that is rapidly increasing in prevalence, particularly in
Western countries. Chemotherapeutic agents are essential in the treatment of various types of
cancer, but they often come with a range of side effects (Carr et al., 2008; Nurgali et al., 2018;
Zhao et al., 2022). These side effects can significantly impact the quality of life of cancer patients
undergoing chemotherapy (Mohammedi et al., 2008). It is important for healthcare providers to
closely monitor and manage these side effects to ensure the best possible outcomes for patients.
Additionally, some chemotherapeutics can also cause long-term side effects such as organ
damage, fertility issues, and an increased risk of developing secondary cancers (Brianna and Lee,
2023; Phillips et al., 2023). The diagnostic challenges associated with liver cancer further
compound the issue. Liver cancer presents a diagnostic challenge due to its diverse etiology and
lack of specific symptoms in the early stages (Bakrania et al., 2023; Omar et al., 2023). Moreover,
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differentiating primary liver cancer from secondary liver cancer can be
challenging due to overlapping imaging features, similar
histopathological characteristics, and the lack of specific biomarkers,
metastatic lesions can mimic primary liver tumors in appearance, and
molecular profiles may not clearly differentiate between the two. These
factors complicate accurate diagnosis and require a comprehensive
approach integrating clinical, radiological, and molecular data (Zhou
et al., 2023).

Transcriptome sequencing, also known as RNA-Seq, is a
powerful tool used to analyze and quantify the complete set of
RNA molecules present in a sample (Deshpande et al., 2023). This
technique allows researchers to study gene expression patterns and
identify differentially expressed genes in various biological
conditions, including cancer (Hong et al., 2020). The availability
of transcriptome sequencing data has greatly contributed to the
understanding of cancer biology and has led to the discovery of
novel biomarkers and therapeutic targets (Pedersen and Kanigan,
2016; Wang et al., 2020). Furthermore, transcriptome sequencing
has revolutionized cancer research by providing insights into the

intricate mechanisms underlying tumor development, progression,
and response to treatment (Guan et al., 2012; Fumagalli et al., 2017).

By analysing the transcriptome, researchers can identify specific
genes and pathways that are dysregulated in cancer cells, providing
valuable information for the development of targeted therapies and
personalized treatment approaches (Ho et al., 2015; Kori and Yalcin
Arga, 2018). By comparing the transcriptome profiles of cancer cells to
normal cells, researchers can also identify potential diagnostic markers
that can aid in early detection and prognosis of cancer (Larson et al.,
2021; Yasui et al., 2009). The continual advancements in transcriptome
sequencing technologies, data analysis methods, and integrative multi-
omics approaches hold promise for further uncovering the intricate
molecular networks governing cancer pathogenesis and for translating
these findings into clinical applications (Moncada et al., 2020; Satam
et al., 2023; Tsakiroglou et al., 2023).

Prunetrin (Prunetin 4′-O-glucoside; PUR) is a glycosyloxyisoflavone.
Its precursor, prunetin, has been demonstrated to induce necroptotic cell
death in gastric cancer, as evidenced by next-generation sequencing
(Vetrivel et al., 2022). Additionally, prunetin in its glycosidic form, known

FIGURE 1
Schematic illustration of the stepwise workflow adopted in current study.
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as prunetinoside, has shown therapeutic effects by targeting gastric cancer
cells (Vetrivel et al., 2021). Furthermore, our previous study has revealed
PUR’s ability to induce apoptosis in Hep3B cells (Abusaliya et al., 2023).
Hence, the primary objective of the present investigation is to delineate
the gene expression profile in Hep3B hepatocellular carcinoma (HCC)
cells subjected to PUR treatment. Employing a comprehensive
sequencing approach, the Illumina NextSeq550 platform was utilized
to discern differentially expressed genes within the comparative contexts
of control and PUR-treated conditions. The comprehensive schematic
illustration of the stepwise workflow employed in the study, offering a
visual representation of the experimental design and analytical processes,
is encapsulated in Figure 1.

2 Results

2.1 Cell viability and morphological
characteristics associated with
PUR treatment

To assess the cytotoxic potential of PUR in Hep3B cells, MTT
assay was conducted. The results depicted in Figure 2A

demonstrate that PUR induces cytotoxic effects in cancer cells,
leading to significant dose-dependent inhibition of cell
proliferation, with an observed IC50 value of 15.0 μM for
24 h. Additionally, morphological alterations were examined
under a light microscope. As illustrated in Figure 2B, cells
treated with PUR exhibited characteristic features of cell
death, such as cellular shrinkage, irregular shape, and
cytoplasmic blebbing, in comparison to untreated control
cells. Moreover, a dose-dependent decrease in cell counts was
observed in PUR-treated cells, with a notable increase in the
number of detached cells.

2.2 Differentially expressed genes
(DEGs) analysis

The total read mapping statistics of all the samples are
represented in Supplementary Table S1. The DEGs elicited by
PUR treatment in comparison to control cells underwent analysis
by ExDEGA (v.5.0.0) (Ebiogen, Korea). Genes exhibiting a log2-
fold-change ≥ 1 and a false discovery rate (FDR) below 0.05 in
pairwise comparison between two conditions were identified and

FIGURE 2
Effect of PUR on cell viability. (A)Cytotoxicity Assessment in Hep3BCells; (B)Morphological Alterations Induced by Prunetrin Treatment. Cell viability
was evaluated using MTT assays following a 24-hour exposure to varying concentrations of prunetrin (0, 2.5, 5, 10, 15, 20, 25, 30, 35, and 40 μM). For
morphological analysis, cells were treated with prunetrin at concentrations of 10, 20, and 30 μM for 24 h, after which they were examined under an
invertedmicroscope. The results are expressed asmean± standard error of themean (SEM). Statistical significancewas denoted as follows: ** for p <
0.01, and *** for p < 0.001.
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selected as DEGs. These criteria were chosen to balance the
identification of biologically meaningful changes in gene
expression with statistical rigor. Consequently, a total of
1,149 genes exhibited significant differential expression
between the control and treated cellular conditions. Among
these, 499 genes demonstrated an up-regulated expression
pattern, while 650 genes displayed down-regulated expression,
as shown in Figure 3A. Employing a volcano plot analysis based
on logFC and false discovery rate (FDR < 0.05) values, Figure 3B
illustrates the distinct expressions of each gene. In this
representation, the blue colour signifies higher gene
expression, whereas the red colour signifies lower gene
expression, providing a comprehensive overview of the
differential expression landscape between control and
treated cells.

2.3 Gene ontology analysis of DEGs

Metascape was employed for Gene Ontology (GO) analysis of
DEGs across three distinct categories: biological process, cellular
components, and molecular function. The resultant findings,
illustrated in Figure 4, present the top 10 GO terms within each
category. In terms of biological processes, the DEGs demonstrated
enrichment in cell-substrate adhesion, regulation of the apoptotic
signaling pathway, regulation of cell morphogenesis, and intrinsic
apoptotic signaling pathway. Similarly, within cellular components,
enrichment was observed in cell-substrate junctions, focal
adhesions, cell-cell junctions, and membrane rafts. In the domain
of molecular function, the DEGs exhibited enrichment in DNA-
binding transcription factor binding, cadherin binding, integrin
binding, and transcription coregulatory activity. This

comprehensive analysis provides insights into the functional roles
and interactions of the identified DEGs across various
biological contexts.

2.4 GO enrichment analysis between up-
regulated and down-regulated genes

Further, GO enrichment analysis were systematically
conducted across three distinct categories. The culmination of
these analysis was represented in a bubble plot, integrating p
values for both upregulated and downregulated genes (Figure 5).
The findings unveiled a downregulation in processes associated
with the regulation of cell differentiation, positive regulation of
macromolecule metabolic processes, cell migration, and cell
cycle. Conversely, an upregulation was observed in the GO
terms related to the regulation of cellular processes, positive
regulation of biological processes, exocytosis, and cell activation.
These findings collectively suggest a comprehensive
restructuring of cellular functions in response to the PUR
treatment. This underscores the intricate regulatory
mechanisms of the dynamic nature of cellular responses and
the potential implications for various physiological and
pathological processes.

2.5 Functional annotation analysis

For comprehensive functional annotation, DEGs underwent
analysis using GeneCodis, which provides a comprehensive
overview of the functional attributes of the gene set,
emphasizing significantly enriched biological processes,

FIGURE 3
Differentially expressed genes (DEGs) analysis. (A) Number of DEGs among control and treated. A total of 499 up-regulated and 650 down-
regulated differentially expressed genes was found between PUR-treated and control samples; (B) Scatter plot analysis displaying the distinct pattern of
the genes between PUR-treated and control samples.
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molecular functions and cellular components networks as
illustrated in Supplementary Figure S1. These findings facilitate
the interpretation of the gene set and offer insights into the
potential roles of these genes in response to PUR treatment.
The top 10 Gene Ontology (GO) terms characterized by low
p-values and closely associated networks were delineated in
Tables 1–3. In the biological process category, annotated terms
included apoptotic process (GO:0006915), positive regulation of
apoptotic process (GO:0043065), apoptotic mitochondrial
changes (GO:0008637), and positive regulation of release of
cytochrome c from mitochondria (GO:0090200). Similarly, in
the cellular components category, highlighted terms
encompassed Bcl-2 family protein complex (GO:0097136),
mitochondrion (GO:0005739), cytoplasm (GO:0005737), and
cytosol (GO:0005829). Molecular function annotations revealed
terms such as death receptor binding (GO:0005123), identical
protein binding (GO:0042802), type III transforming growth
factor beta receptor binding (GO:0034714), BH3 domain
binding (GO:0051434), and protein kinase binding (GO:
0019901) was found. These network predictions offer insights
into the functional roles and interactions of DEGs across various

biological contexts, emphasizing the significance of apoptotic
processes in the observed gene expression alterations.

2.6 KEGG pathway enrichment analysis
of DEGs

To elucidate the pathways implicated in the DEGs, a pathway
enrichment analysis was conducted utilizing the Kyoto
Encyclopaedia of Genes and Genomes (KEGG). The results,
showcased in Figure 6, present the top 10 enriched pathways.
Notably, the top significantly enriched pathways, as detailed in
Supplementary Table S2, exhibited based on P values and the
number of gene counts. These pathways encompassed crucial
biological processes, including but not limited to pathways in
cancer, PI3K-Akt signaling pathway, MAPK signaling pathway,
cell cycle, and apoptosis. Alterations in the PI3K-Akt signaling
pathway could shed light on mechanisms of tumor growth or
resistance, while changes in the MAPK signaling pathway might
offer insights into cellular responses to stress or proliferation.
Additionally, understanding shifts in cell cycle and apoptosis

FIGURE 4
Gene ontology analysis of differentially expressed genes (DEGs). The x-axis is the enrichment score and y-axis shows the name of the process or
function. The colour and size of the dots were based on the p-value and number of gene count.
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pathways can reveal how gene expression changes affect cellular
turnover and survival. The comprehensive identification of these
pathways found that the molecular mechanisms underlying the
observed gene expression alterations, provide valuable insights
into the potential functional roles of the DEGs in the context of
these pathways.

2.7 Apoptotic gene expression analysis
by KEGG

Following the preceding analysis, which identified
apoptotic-related genes and the apoptotic pathway as
significantly prominent, a detailed exploration of the

FIGURE 5
Gene ontology enrichment analysis of DEGs displaying upregulated and downregulated DEGs with–log10 and number of counts. The x-axis shows
the p-value and y-axis shows the name of the process or function. The colour and size of the dots were based on the p-value and number of genes count.
Red represents high significance, while pink represents low.

TABLE 1 Top 10 significant GO terms of DEGs in terms of biological process.

Description GO
term

P-Value Genes

Apoptotic process GO:0006915 2.09E-10 DAB2IP, TNFSF10, BCL2L1, BID, TGFB1, BAX, TGFBR2, PYCARD, CDKN2A,
FADD, FHIT

Positive regulation of apoptotic process GO:0043065 4.01E-09 DAB2IP, TNFSF10, TP53, BCL2L1, BID, BAX, PYCARD, CDKN2A, FADD

Apoptotic mitochondrial changes GO:0008637 6.12E-09 BCL2L1, BID, BAX, CDKN2A

Positive regulation of protein-containing complex assembly GO:0031334 6.49E-09 DAB2IP, BID, TGFB1, BAX, VEGFA

Positive regulation of protein phosphorylation GO:0001934 7.44E-09 IGF2, PTK2, RELN, TGFB1, RAC1, VEGFA, CCND1

Positive regulation of release of cytochrome c from
mitochondria

GO:0090200 3.48E-08 TNFSF10, BID, BAX, PYCARD

Positive regulation of extrinsic apoptotic signaling pathway GO:2001238 4.71E-08 TNFSF10, BID, PYCARD, FADD

Negative regulation of fibroblast proliferation GO:0048147 5.43E-08 MYC, DAB2IP, GSTP1, BAX

Release of cytochrome c from mitochondria GO:0001836 2.39E-06 BCL2L1, BID, BAX

Positive regulation of phosphatidylinositol 3-kinase
signaling

GO:0014068 3.15E-06 PTK2, RELN, EGF, VEGFA
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expression patterns of apoptotic-related genes was conducted.
Utilizing the KEGG, the apoptotic pathway was mapped, and
the expression patterns of relevant genes were visualized
through the Pathview R tool. The result shown in Figure 7,
highlights a predominance of upregulated expression among
the genes participating in the apoptotic pathway. This
observation underscores the potential activation or
modulation of apoptotic processes and the regulatory
dynamics of apoptosis-related genes and their potential
significance in PUR treated cells.

2.8 Protein-protein interaction and module
network construction

The Protein-Protein Interaction (PPI) analysis conducted using
the STRING database from genes selected based on functional
annotation revealed a network comprising 30 nodes and
230 edges, with a high clustering coefficient value of 0.799 and a
significant enrichment p-value of < 1.0e-16 (Supplementary Figure
S2) and the identified network was visualized using Cytoscape.
Further, clustering analysis using the MCODE plugin in

TABLE 2 Top 10 significant GO terms of DEGs in terms of cellular components.

Description GO
term

P-Value Genes

Bcl-2 family protein complex GO:0097136 3.96E-05 BCL2L1, BAX

Mitochondrion GO:0005739 5.23E-05 MYC, GSTP1, TERT, BCL2L1, BID, BAX, PYCARD, CDKN2A, FHIT

Cytoplasm GO:0005737 7.16E-05 MYC, DAB2IP, GSTP1, TERT, PTK2, RELN, BCL2L1, BID, TGFB1, BAX, TGFBR2, PYCARD, RAC1,
CDKN2A, FADD, VEGFA, FHIT, CCND1

Extracellular region GO:0005576 0.000275,519 GSTP1, MET, IGF2, TNFSF10, RELN, TGFB1, EGF, PYCARD, VEGFA, ANGPT2

Extracellular space GO:0005615 0.000898,234 GSTP1, IGF2, TNFSF10, RELN, TGFB1, EGF, VEGFA, ANGPT2

Cytosol GO:0005829 0.001,061,733 DAB2IP, GSTP1, TERT, PTK2, BCL2L1, BID, BAX, TGFBR2, PYCARD, RAC1, CDKN2A, FADD, FHIT,
CCND1

Mitochondrial membrane GO:0031966 0.001,189,134 BCL2L1, BID, BAX

BAX complex GO:0097144 0.001218027 BAX

Mitochondrial outer
membrane

GO:0005741 0.001673487 BCL2L1, BID, BAX

BAK complex GO:0097145 0.002434634 BAX

TABLE 3 Top 10 significant GO terms of DEGs in terms of molecular function.

Description GO term P-value Genes

Death receptor binding GO:0005123 1.19244E-
06

DAB2IP, BID, FADD

Identical protein binding GO:0042802 1.96582E-
06

DAB2IP, MET, TERT, TNFSF10, BCL2L1, TGFB1, BAX, PYCARD, FADD, VEGFA,
FHIT

Type III transforming growth factor beta receptor
binding

GO:0034714 9.19027E-
06

TGFB1, TGFBR2

BH3 domain binding GO:0051434 2.29403E-
05

BCL2L1, BAX

Protein kinase binding GO:0019901 2.30089E-
05

DAB2IP, PTK2, BCL2L1, RAC1, CDKN2A, CCND1

Tumor necrosis factor receptor superfamily binding GO:0032813 3.20916E-
05

TNFSF10, FADD

Growth factor activity GO:0008083 4.73177E-
05

IGF2, TGFB1, EGF, VEGFA

JUN kinase binding GO:0008432 5.49295E-
05

GSTP1, PTK2

Vascular endothelial growth factor receptor 2 binding GO:0043184 5.49295E-
05

DAB2IP, VEGFA

Protein-containing complex binding GO:0044877 6.79995E-
05

MYC, DAB2IP, RAC1, FADD, CCND1
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Cytoscape was employed to identify densely interconnected clusters
(Figure 8A). Subsequently, module network construction was
performed using FunRich, a functional enrichment analysis tool
to determine the core hub targets of each cluster. This clearly
revealed three specific targets TP53, TGFB1, and CASP8 within
the network with the maximum interaction between other
proteins (Figure 8B).

2.9 Assessment of mRNA and protein
expression of target genes

The mRNA expression levels of all the genes from the three
network clusters were systematically investigated through the
utilization of the TCGA (The Cancer Genome Atlas-Liver
Hepatocellular Carcinoma) and GTEx by GEPIA (Supplementary
Figure S3). Focusing on identified pivotal targets, namely TP53,
TGFB1, and CASP8, the analysis was performed employing the
LIHC (Liver Hepatocellular Carcinoma) as a reference dataset. The
outcome, as illustrated in Figure 9A, distinctly showcased a
substantial upregulation in mRNA expression levels within LIHC
tissues in comparison to their normal tissues. The results derived
from the GEPIA database underscored a statistically significant
elevation (p < 0.01) in mRNA expression levels for all three
targets in LIHC tissues relative to normal tissues. However, our
western blotting analysis reveals significant activation and increased
expression levels of all three proteins subsequent to treatment with
PUR. This substantiates the activation of these central target
proteins by PUR (Figure 9B). Thus, these findings suggest that

PUR has the capacity to induce apoptosis in Hep3B cancer cells via
the identified hub targets. This evidence underscores the potential
therapeutic utility of PUR in modulating crucial signaling pathways
associated with apoptosis induction in Hep3B cancer cells.

3 Discussion

Transcriptome sequencing plays a pivotal role in liver cancer
research by providing comprehensive insights into the dynamic gene
expression patterns underlying the development and progression of
the disease (Govaere et al., 2020; Wu et al., 2021). Through
transcriptome analysis, researchers can identify dysregulated
genes, alternative splicing events, and non-coding RNAs
associated with hepatocarcinogenesis, thus elucidating key
molecular pathways and potential therapeutic targets (Kori and
Yalcin Arga, 2018; Li S. et al., 2019). Additionally, it enables the
stratification of liver cancer subtypes based on gene expression
signatures, facilitating personalized treatment strategies and
prognostic assessments. Furthermore, transcriptome sequencing
facilitates the exploration of tumor microenvironment
interactions, immune evasion mechanisms, and drug resistance
mechanisms in liver cancer, ultimately contributing to the
advancement of precision medicine approaches and the
development of novel diagnostic and therapeutic interventions
for this heterogeneous malignancy (Cummings et al., 2017; Li W.
et al., 2019; Natua et al., 2022). Transcriptome sequencing has been
instrumental in the identification of alternative splicing events, non-
coding RNAs, and fusion genes, shedding light on the complex

FIGURE 6
Enrichment of KEGG pathway based on the count and p-value. The x-axis shows the enrichment score and y-axis shows the name of the pathway.
The colour and size of the dots were based on the p-value and number of genes count. Green represents high significance, while red represents low.
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molecular landscape of cancer (Maher et al., 2009; Mutz et al., 2013;
Casamassimi et al., 2017). In our previously reported study, we
elucidated the pharmacological action of PUR by presenting in vitro
evidence of its capability to induce apoptotic cell death in
Hep3B cells (Abusaliya et al., 2023). For further exploration, we
adopted NGS analysis to investigate deeper into the molecular
mechanism of PUR induced apoptotic cell death. The primary
objective of the study is to gain comprehensive insights into the
differential gene expression profile elicited by PUR treatment, with a
specific focus on identifying potential candidate biomarkers.

The transcriptomic impact on cellular gene expression was
systematically investigated. As a result, a comprehensive analysis
revealed a total of 1,149 genes displaying statistically significant
differential expression in response to PUR treatment when contrasted
with control cells. Specifically, the upregulation of 499 genes indicates the
activation of cellular processes related to cell death, stress responses, or
metabolic changes. Conversely, the downregulation of 650 genes suggests
the suppression of pathways crucial for growth, survival, or treatment
response, which might be detrimental under experimental conditions.
These findings are directly aligned with the goal of the study to identify
potential targets for therapeutic intervention, biomarkers for diagnosis,
or key regulators of disease progression.

The top 10 enriched GO terms, indicative of significant
functional annotations, were selected for each category (biological

processes, molecular function, and cellular components). These
terms collectively provide insights into the diverse roles and
associations of the identified liver cancer-related genes within
cellular and molecular contexts. Our results show that in terms
of biological processes, the differentially expressed genes (DEGs)
displayed enrichment in several key functional categories.
Enrichment was observed in processes related to cell-substrate
adhesion, which underscores the importance of interactions
between cells and their extracellular environment. The regulation
of the apoptotic signaling pathway, cell morphogenesis, and intrinsic
apoptotic signaling pathway emerged as enriched biological
processes, suggesting a dynamic interplay between cell survival,
morphology, and regulatory mechanisms and highlighting the
involvement of intrinsic cellular mechanisms in regulating
programmed cell death.

Within cellular components, the DEGs demonstrated
enrichment in structures crucial for cell adhesion and
communication. Specifically, enrichment was observed in cell-
substrate junctions, focal adhesions, membrane rafts and cell-cell
junctions, emphasizing the significance of these structures in
maintaining tissue integrity, facilitating cellular interactions and
the potential involvement of specialized membrane microdomains
in cellular processes associated with liver cancer. In the domain of
molecular function, the DEGs exhibited enrichment in molecular

FIGURE 7
KEGG pathway mapping of genes involved in apoptosis pathway based on the p-value and dark red colour denotes high expression while green
denotes low expression.
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interactions critical for gene regulation and cell adhesion. DNA-
binding transcription factor binding indicates the involvement of
transcriptional regulation in modulating gene expression patterns
associated with liver cancer. Similarly, enrichment in cadherin
binding, integrin binding and transcription coregulatory activity
highlights the importance of cell adhesion molecules in mediating
cell-cell, cell-extracellular matrix interactions and involvement of
regulatory proteins in modulating transcriptional responses
underlying liver cancer pathogenesis.

To enhance the interpretability of these findings, a gene
functional annotation cluster network was meticulously
constructed, visually encapsulating the relationships and
interactions among the enriched terms across biological
processes, molecular functions, and cellular components. The
network predictions derived from these analysis collectively offer
comprehensive insights into the functional roles and interactions of
DEGs across various biological contexts. Notably, the emphasis on
apoptotic processes in the identified gene expression alterations
suggests a significant role of apoptosis-related pathways in the
observed molecular changes.

Our investigation uncovered substantial changes in cellular
processes, indicating a nuanced response to the experimental
conditions. Firstly, we observed a noteworthy downregulation in
pathways related to the regulation of cell differentiation. This
suggests a potential impairment in the cellular mechanisms
governing the specialization of cells into distinct lineages, which
could have implications for tissue homeostasis and development.
We found there was a decrease in the positive regulation of
macromolecule metabolic processes. This alteration hints at a
potential slowdown in the biosynthesis and turnover of essential
cellular components, which could impact various physiological
functions such as energy production, signal transduction, and
cellular repair processes. Moreover, we observed a decrease in
pathways associated with cell migration. This finding suggests a
potential attenuation in the ability of cells to move within tissues,
which could affect the process of cancer metastasis and there was a
downregulation observed in the cell cycle process, indicating a
potential deceleration in the progression of cells through the

various phases of the cell cycle. This alteration could have
implications for cell proliferation, differentiation, and genomic
stability under the PUR treatment.

Conversely, we noted an upregulation in gene ontology terms
related to the regulation of various cellular processes. This suggests
an increased emphasis on the control and coordination of cellular
activities in response to the experimental conditions, possibly
reflecting a compensatory mechanism to maintain cellular
homeostasis. Furthermore, there was an increase in the positive
modulation of biological activities, implying an enhanced activation
of cellular functions and pathways involved in sustaining cellular
viability and function. An upregulation was observed in pathways
related to exocytosis, indicating a potential increase in the secretion
of cellular components and signaling molecules, which could play
crucial roles in intercellular communication and tissue remodeling.
Also, we observed an increase in pathways associated with cell
activation mechanisms, suggesting a heightened responsiveness of
cells to various stimuli and signals in the microenvironment upon
PUR treatment.

The integration of PPI analysis and module network
construction facilitates a comprehensive exploration of protein
interactions and network organization, contributing to our
understanding of the molecular mechanisms underlying complex
biological processes and found that TP53, TGFB1 and CASP8 as the
central nodes. These central nodes may serve as key regulators or
mediators of biological pathways or processes, warranting further
investigation into their roles and potential therapeutic implications.
The mRNA expression and protein expression observation
emphasises the potential relevance of TP53, TGFB1, and CASP8
in the context of liver cancer, suggesting their possible involvement
in the molecular mechanisms underlying the pathogenesis of this
particular malignancy.

TGFB1 is a multifunctional cytokine, that exhibits dual origins
in HCC as it can be produced by HCC cells or the surrounding
tumor stroma (Brenner et al., 2013). Notably, its significant
metabolism and clearance primarily occur within the liver. The
detection of TGFB1 in the early stages of HCC underscores its
potential as an early biomarker for the disease (Hanahan and

FIGURE 8
Protein-Protein Interaction (PPI) analysis and Module network construction. (A) Clustering analysis using the STRING-Cytoscape by MCODE plugin
(Red-high interaction; Blue- Moderate; White-low); (B) Central target proteins prediction by FunRich module network construction.
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Weinberg, 2011). The intricate interplay between cancer cells and
the tumor microenvironment, coupled with the liver’s central role in
TGFB1 clearance, highlights the dynamic nature of TGFB1 in the
hepatocellular cancer (Yamashita et al., 2008; Hoshida et al., 2009).
Understanding these aspects contributes to the exploration of
TGFB1 as a diagnostic indicator, providing valuable insights into
the early stages of HCC and paving the way for potential early
intervention strategies (Giannelli et al., 2014).

In liver cancer, TP53 plays a crucial role and identification of
TP53 mutations or abnormal expression as a diagnostic marker
improves the accuracy of diagnoses by characterizing the genomic
landscape of malignancies (Liu and Gelmann, 2002; Robles and
Harris, 2010). Within the prognostic domain, TP53 mutations are
powerful predictors, associated with increased disease progression
and worse clinical outcomes (Kortekaas et al., 2020; Raffone et al.,
2020). Monitoring TP53 status informs prognostic evaluations and
directs the development of personalized treatment plans. TP53 is a
target that shows potential for therapeutic intervention since it is at
the core of cellular responses to DNA damage (Essmann and
Schulze-Osthoff, 2012; Sabapathy and Lane, 2018). Targeted
therapeutic interventions in liver cancer can be achieved by
strategies that aim to modulate or restore TP53 function, which
could lead to breakthroughs in treatment approaches for this
complex malignancy (Farnebo et al., 2010).

CASP8 is a multifaceted player in liver cancer. The expression
levels and activity may offer insights into the status of apoptotic
pathways, allowing for a nuanced characterization of the molecular
profile in liver cancer (Liao et al., 2015). Furthermore, CASP8
alterations or deficiencies emerge as potent prognostic indicators,
correlating with heightened disease aggressiveness and diminished
clinical outcomes in affected patients (Olsson and Zhivotovsky, 2011;
Mandal et al., 2020). Leveraging its central role in apoptotic
regulation, CASP8 stands out as a promising therapeutic target,
prompting the exploration of strategies to restore or enhance its
activity for interventions that induce apoptosis in cancer cells
(Stupack, 2013). Beyond this, CASP8’s status serves as a biomarker
guiding therapeutic responses, enabling tailored treatment strategies
for cancer with compromised CASP8 function.

The findings derived from our western blotting analysis reveal a
notable activation and significantly increased expression of all three
proteins following treatment with PUR. This compelling evidence
substantiates the assertion that PUR actively triggers the activation
of these central target proteins. The activation of these specific
proteins, as demonstrated by our results, provides valuable
molecular insights into the mechanistic pathways influenced by
PUR treatment, thereby supporting its potential as an inducer of
apoptosis in the context of Hep3B cancer cells. Collectively, these
observations contribute to a deeper understanding of the molecular
events associated with PUR treatment, emphasizing its potential
therapeutic relevance in the modulation of critical signaling
pathways linked to apoptosis and regulated cell death. The
observed activation of key proteins associated with apoptosis
provides a strong rationale for advancing PUR into subsequent
clinical trials, where its efficacy, safety profile, and therapeutic
potential can be rigorously assessed for future therapeutic
applications in cancer treatment.

4 Limitations and conclusion

This study represents an initial pilot investigation building on
our previous work. The limitations of our present study stem from
practical constraints regarding resource availability and
experimental feasibility. These constraints influenced our decision
to opt for a single sample analysis. However, it’s crucial to recognize
that utilizing a single sample in scientific research, especially in
exploratory or preliminary studies, can still provide valuable
insights. Numerous studies documented in the scientific literature
have effectively employed single-sample analysis to derive
hypothesis and generate preliminary data, which subsequently
underwent further investigation and validation. Despite the
inherent limitation, our study adds significant insights to the
current pool of knowledge. It sheds light on pertinent areas for
future research, suggesting the necessity for larger sample sizes or
additional replicates to strengthen the robustness and
generalizability of our findings. The findings highlight specific

FIGURE 9
Assessment of mRNA and protein expression of target genes. (A) mRNA analysis via TCGA (The Cancer Genome Atlas-Liver Hepatocellular
Carcinoma) and GTEx by GEPIA; (B) For protein expression, following a 24-hour exposure to 30 μM PUR, cellular proteins were isolated by SDS-PAGE
(10% gel were used for all proteins) for subsequent Western blotting analysis. Densitometry was employed to quantify expression levels, utilizing the
standard error of the mean (SEM) calculated from three independent values. Protein expression was normalized using β-actin. The outcomes are
depicted as the mean ± SEM, with significance levels denoted as ***p < 0.001.
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aspects of gene expression changes and their potential implications
for PUR treatment, offering a foundational understanding that can
guide further investigations. This initial analysis has illuminated
several key areas for future research, underscoring the importance of
expanding upon our preliminary results to gain a more
comprehensive understanding of the underlying mechanisms.
One critical area for further exploration involves increasing the
sample size to enhance the robustness and reliability of the results.
Larger sample sizes are essential for capturing a broader range of
biological variability and for confirming that the observed patterns
are not unique to the single sample used. By including more samples,
future studies can improve the reproducibility of the findings,
ensuring that the results are consistent across different
individuals and conditions. This approach will help validate the
initial observations and provide a more accurate representation of
how PUR treatment affects gene expression on a larger scale.
Additionally, incorporating multiple replicates within the same
study can further strengthen the validity of the results.

Collectively, this study contributes to the understanding of the
molecular events associated with PUR treatment, emphasizing its
potential therapeutic relevance in the modulation of critical
signaling pathways linked to apoptosis and regulated cell death.
The observed activation of key proteins associated with apoptosis
provides a strong rationale for advancing PUR into subsequent
clinical trials, where its efficacy, safety profile, and therapeutic
potential can be rigorously assessed for future therapeutic
applications in cancer treatment. Future research should include
additional preclinical studies in diverse animal models to validate
findings and evaluate off-target effects, along with trials using varied
dosing regimens to determine the optimal therapeutic window.
Longitudinal studies are also recommended to evaluate long-term
safety and efficacy. Exploring biomarkers for treatment response
and testing combination therapies could further enhance outcomes.

5 Materials and methods

5.1 Cell culture maintenance and
PUR treatment

The Hep3B cell line (ATCC Cat# HB-8064) was procured and
propagated in Dulbecco’s Modified Eagle Medium (DMEM)
augmented with fetal bovine serum (FBS) at a concentration of
10% (v/v), along with streptomycin (100 μg/mL) and penicillin
(100 U/mL) obtained from Gibco (Thermo Fisher Scientific). The
cellular cultures were maintained in a controlled environment set at
37°C, characterized by a humidified atmosphere containing 5%
carbon dioxide (CO2). For the treatment with PUR, cells were
initially seeded at a density of 4 × 105 cells per culture vessel.
Subsequently, PUR was added to the culture medium and the cells
were incubated for 24 h according to standard protocols.

5.2 Total RNA isolation

To obtain the total RNA, the cells were washed with 1 × PBS
after 24 h of treatment. Total RNA was isolated using Trizol reagent
(Invitrogen) from the two samples (treated and control cells) and

isolated RNA was dissolved in Diethylpyrocarbonate-treated water
(iNtRON Biotechnology). The Agilent TapeStation 4,000 system
(Agilent Technologies, Amstelveen, The Netherlands) was utilized
to assess RNA quality and quantification was conducted using the
ND-2000 Spectrophotometer (Thermo Inc., United States).

5.3 Library construction and sequencing

To obtain high-throughput transcriptome data from human
liver cancer (Hep3B) cells, libraries were generated using the
QuantSeq 3′mRNA-Seq Library Prep Kit (Lexogen, Inc., Austria)
for both control and test RNAs, following the manufacturer’s
instructions. Total RNA samples underwent reverse transcription
with an oligo-dT primer that included an Illumina-compatible
sequence at the 5′end. After degradation of the RNA template,
second-strand synthesis was initiated using a random primer with
an Illumina-compatible linker sequence at its 5′end. For the quality
control step, magnetic bead purification was performed to remove
reaction components from the double-stranded library. The library
was then amplified to incorporate all necessary adaptor sequences
for cluster generation, followed by purification to separate the final
library from PCR components. High-throughput sequencing was
conducted on the NextSeq 550 platform (Illumina, Inc.,
United States) with a read length of 75 bp, using single-end
sequencing.

5.4 Data analysis

The raw reads obtained from sequencing underwent rigorous
quality assessment and trimming procedures to ensure reliability
and accuracy in subsequent analysis. Quality control measures were
implemented, and reads were trimmed based on a threshold of
greater than average Q20, utilizing the BBDuk tool. Trimmed reads
underwent alignment utilizing Bowtie2 version 2.5.1 (Langmead and
Salzberg, 2012). The resulting alignment file facilitated transcript
assembly. Differentially expressed genes were identified based on
counts obtained from unique and multiple alignments utilizing
coverage in Bedtools v2.31.0 (Quinlan and Hall, 2010). Read
Count (RC) data were subjected to processing via the TMM
(Trimmed Mean of M values) + CPM (Counts per million)
normalization method using EdgeR within the R environment (R
Development Core Team, 2020) (Makowski et al., 2020). Genes
exhibiting a log2-fold-change ≥ 1 and a false discovery rate (FDR)
below 0.05 in pairwise comparison between two conditions were
selected as differentially expressed genes. The log2FC threshold was
set to ≥ 1 to ensure that the identified DEGs represent substantial
changes in gene expression that are likely to be biologically relevant
also FDR threshold of 0.05 was selected to control for multiple
testing errors.

5.5 Gene ontology and KEGG analysis

Metascape version 3.5.20240101 (Zhou et al., 2019) (https://
metascape.org/gp/index.html#/main/step1) is used as the
computational tool for the prediction and clustering Gene
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Ontology (GO) terms of DEGs. The terms were categorized into
biological processes, cellular compounds, and molecular functions.
Additionally, for the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis, the Pathview software (Luo et al., 2017)
(https://pathview.uncc.edu/analysis) was employed, and the
resulting pathways were visualized. Enrichment analysis for both
GO terms and pathways was conducted with a significance threshold
set at a p-value < 0.05. All the bubble plots in the manuscript were
made from SR Plot (Tang et al., 2023) (https://www.bioinformatics.
com.cn/srplot) based on the ggplot2 R package.

5.6 Functional annotation analysis

In the context of functional annotation analysis, the GeneCodis
platform (https://genecodis.genyo.es/) (Garcia-Moreno et al., 2022)
was employed to systematically explore the gene set. The criteria for
selection included specifying Homo sapiens as the organism and
using gene/protein identifiers as the input type. For the analysis,
functional enrichment of GO terms was performed across three
domains: Biological Process (GO BP), Cellular Component (GO
CC), and Molecular Function (GO MF). The top 10 enriched
terms were used to construct a gene-annotation cluster
network. This analysis aimed to elucidate the functional
significance of the identified genes, particularly in relation to
their roles in biological processes, molecular functions, and
cellular components.

5.7 Protein-protein interaction network
construction

The PPI network for the common genes from the functional
annotation network was sorted and the PPI network was
constructed using STRING v12.0 (https://string-db.org/) with
average local clustering coefficient of 0.9. The results from
STRING were exported to Cytoscape v3.9.1. The Molecular
Complex Detection (MCODE) plugin in Cytoscape V 3.9.1
(https://cytoscape.org/) was employed to identify densely
interconnected clusters. The selection criteria were: degree ≥ 2,
node score ≥ 0.2, K-core ≥ 2, and max depth = 100. For color
gradient mcodeCluster–continuous mapping was applied with the
range 1.0–3.0. The clustered networks were analysed using FunRich
V 3.1.3 (http://www.funrich.org/) software for module construction
and central node gene prediction.

5.8 Western blot analysis

Hep3B cells were seeded at a density of 5 × 104 cells/plate to
investigate protein expression. Cells were treated with 0 and
30 μM PUR for 24 h at 37°C. Subsequently, following cell
harvesting, RIPA buffer (iNtRON Biotechnology, South Korea)
was employed to lyse the cells. The protein concentration was
determined using the Pierce™ BCA protein assay kit (Thermo
Scientific). A total of 10 μg of protein was loaded and separated on
SDS-PAGE. The gel was then transferred to PVDF membranes
using a Semi-Dry Transfer machine (Atto-Corporation, Tokyo).

Following blocking for one to 2 hours at room temperature, then
membranes were incubated with diluted primary antibodies (1:
1,000) at 4°C overnight. After washing with 1 × TBST solution,
horseradish peroxidase-conjugated secondary antibodies (1:
5,000) were used to probe the membranes for 2 h at room
temperature (antibody dilutions were followed from standard
protocols). Again blots were washed with 1 × TBST and
developed using an ECL (electro-chemiluminescence) detection
system (Bio-Rad Laboratory, United States). Protein densitometry
was assessed using the ImageJ software program (NIH,
United States). The data are validated using Bonferroni’s
Multiple Comparison Test using GraphPad Prism
V.5.01 statistical analysis software.
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