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As an increasingly well-known derivative of coumarin, daphnetin (7,8-
dithydroxycoumarin) has demonstrated various pharmacological activities,
including anti-inflammation, anti-cancer, anti-autoimmune diseases,
antibacterial, organ protection, and neuroprotection properties. Various
studies have been conducted to explore the action mechanisms and synthetic
methods of daphnetin, given its therapeutic potential in clinical. Despite these
initial insights, the precise mechanisms underlying the pharmacological activities
of daphnetin remain largely unknown. In order to address this knowledge gap, we
explore themolecular effects from the perspectives of signaling pathways, NOD-
like receptor protein 3 (NLRP3) inflammasome and inflammatory factors; and try
to find out how these mechanisms can be utilized to inform new combined
therapeutic strategies.
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1 Introduction

Herbal medicines have been used for thousands of years. Even in recent years, not only
in developing countries but also in developed countries, including Europe and North
America, it is estimated that more than 50% of the population has used herbal medicinal
approaches at least once (Bhoi et al., 2023). Furthermore, herbal medicine has captivated the
attention of scientists to probe bioactive compounds derived from natural sources for future
drug discovery.

Among plant active metabolites, coumarins and their derivatives are prominent
paradigms and have been used widely. Coumarin, first isolated from tonka beans and
melilot flowers by Vogel in 1820, is considered the most basic heterocyclic compound with
fused phenolic benzene and α-pyrone rings (Ando et al., 2018). As secondary metabolites,
coumarins have been found in bacteria, fungi, and about 150 species of plants, where more
than 1,300 natural-based coumarins are isolated and identified (Iranshahi et al., 2009).
Based on their chemical structure, coumarins are classified into six main types: simple
coumarins, furanocoumarins, dihydrofuranocoumarins, phenylcoumarins,
pyranocoumarins, and biscoumarins (Hassanein et al., 2020). All six types comprise a
coumarin moiety and exert diverse medical functions via their distinct structural
characteristics. Therefore, coumarins have been widely used in complementary and
alternative medicine owing to their potent and comprehensive pharmacological
activities, including anti-inflammatory (Min et al., 2023), antibacterial (Zeng et al.,
2023), antiviral (Hwu et al., 2022), antioxidant (Sultana et al., 2022), anti-Alzheimer’s
Disease (AD) (LiuW. et al., 2022), and antitumor effects (Ahmed et al., 2022). Based on this,
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a variety of derivative drugs containing a coumarin moiety have
been developed and used in clinics, such as esculetin,
phenprocoumon, warfarin, acenocoumarol, hymecromone,
carbochromen, dicoumarol, and daphnetin (Figure 1). Structural
modification of coumarin can derivate new compounds with potent
bioactivities. Of all the derivative drugs, warfarin is the most famous.
Warfarin has been widely used as an oral anticoagulant medication
for prophylaxis and treatment of venous thrombosis and
thromboembolic events (Yaghi et al., 2022).

Daphnetin, another well-known derivative of coumarin, was
first isolated from plants of the Daphne genus, hence the name
(Wróblewska-Łuczka et al., 2023). Like coumarin, daphnetin is a
plant secondary metabolite widely distributed in food and medicinal
herbs, especially in Chinese medicinal herbs. As a consequence,
daphnetin can be extracted from a variety of natural plants, such as
D. gnidium, D. giraldii, D. mezereum, D. oleoides, and so on (Han

et al., 2020; Khouchlaa et al., 2021). Chemically, daphnetin includes
an essential coumarin-like backbone, yet it owns two more hydroxyl
groups at C-7 and C-8 compared to coumarin. Thus, daphnetin is
also called 7,8-dithydroxycoumarin (Figure 1). Physically,
daphnetin exists as an odorless and tasteless powder, dissolving
freely in ethanol, methanol and dimethyl-sulfoxide but water slightly
(Zhu et al., 2010). As a natural product, daphnetin was mainly
extracted from plants at first, which limited its large-scale utilization.
Though there is no report suggesting that coumarin can be
synthesized via coumarin, daphnetin can be synthesized from
pyrogallol, 2,3,4-trihydroxybenzaldehyde, and umbelliferone (7-
hydroxycoumarin) as illustrated in Figure 2 (Bizzarri et al., 2017;
Wang et al., 2017; Pardo-Castaño et al., 2019). When pyrogallol and
propionic acid are heated at 125 C, daphnetin can be synthesized
under the catalysis of concentrated sulfuric acid (Pardo-Castaño
et al., 2019). Daphnetin is synthesized when 2,3,4-

FIGURE 1
The structures of coumarin-contained drugs widely used and daphnetin.
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trihydroxybenzaldehyde and ethyl acetate are chemical reaction
substrates in the presence of N, N-diethylaniline under a
nitrogen atmosphere (Wang et al., 2017).

As a representative derivative of coumarins, the biological
activities of daphnetin have drawn much attention among
scientists and have been the subject of extensive research (Wang
et al., 2020b; Boulebd and Amine Khodja, 2021; Pei et al., 2021).
Since the 1980s, daphnetin has been an adjunctive therapy for
cardiovascular diseases (Gao et al., 2008). Additionally, daphnetin
has been increasingly identified as an essential compound of the
Zushima tablet, a traditional Chinese medicine preparation used to
treat rheumatoid arthritis (Han et al., 2020). Recently, more
pharmacological activities of daphnetin have been reported,
including anti-inflammation, anti-cancer, anti-autoimmune
diseases, and neuroprotection properties (Figure 3) (Finn et al.,
2004; Shu et al., 2014; Lv et al., 2018; Zhi et al., 2019; Yan et al., 2022;
Zhang et al., 2022). Although the bioactivities and therapeutic
potentials of daphnetin have been well documented (Hang et al.,
2022; Javed et al., 2022), the elaborate molecular mechanisms
associated with its functions remain largely unknown. Here, we
appreciate more attention to the molecular effects underlying the
pharmacological activities of daphnetin. We intend to explore how
daphnetin performs its pharmacological effects via distinct signaling
pathways, NLRP3 inflammasome, and inflammatory factors
(Figure 4; Table 1) to provide insights for developing new
therapeutic strategies for relevant diseases.

To determine whether elaborate evidence elucidates the
molecular effects underlying the pharmacological activities of
daphnetin, we conducted a comprehensive search across multiple
reputable databases, including MEDLINE, EMBASE, Web of

Science, and Google Scholar, to identify relevant articles
published. The search strategy used a combination of MeSH
terms pertaining to signaling pathways and daphnetin (7,8-
dithydroxycoumarin) and Boolean operators to retrieve articles.
The inclusion criteria to guide the selection process was as
follows: well-controlled intervention studies in cell lines and
animal models detecting the changes of signaling pathways in the
presence of daphnetin. Studies that did not assign a control group
and irrelevant literature were excluded. Two independent
investigators conducted an initial screening of the articles based
on the inclusion criteria above. Articles that met the predefined
inclusion criteria were selected for a full-text assessment. Any
discrepancies between investigators were resolved by discussion
until a consensus was reached. Subsequently, based on this point,
we proposed the possible signaling pathways, inflammation cells and
factors linked to the pharmacological activities of daphnetin and
promising combined therapeutic strategies.

2 Effects of daphnetin on
signaling pathways

2.1 Effects of daphnetin on NF-κB
signaling pathway

Nuclear Factor-kappa B (NF-κB), an essential transcription
factor, has been reported to exert an increasingly fundamental
role in regulating inflammatory and immune responses (Zhang
et al., 2017; Yu et al., 2020; Fang et al., 2023). NF-κB family
consists of five prominent inducible members: RELA (p65),

FIGURE 2
Synthesis of daphnetin via umbelliferone.
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RELB, c-REL, NF-κB1 (p50), and NF-κB2 (p52). These proteins
interact with each other to form distinct homodimers and exert their
physiological functions (Ghosh et al., 1998). NF-κB proteins usually
are kept in inactive, as bound to the inhibitor of κB (IκB) family.
Various inflammatory stimuli can trigger the phosphorylation of
IκB, which leads to its degradation and the release of the active NF-
κB dimer (Esposito et al., 2016).

NF-κB can be activated through the canonical pathway, which
responds to various external stimuli involved in inflammation and
immune responses such as cytokines, pathogens, and stress
(Lawrence, 2009; Sun, 2017). NF-κB1, RELA, and c-REL are
activated and translocated to the nucleus to mediate downstream
gene transcription in the canonical pathway (Figure 4A).

Recently, mounting evidence shows that daphnetin possesses
multiple bioactivities via regulating the NF-κB signaling pathway in
various exogenous inflammatory animal models. Western blot
analysis reveals that the NF-κB signaling pathway is over-
activated in a rat severe acute pancreatitis model induced by
sodium taurocholate. Pretreatment of daphnetin at 4 mg/kg
significantly blocks the TLR4/NF-κB signaling pathway by
inhibiting the phosphorylation of IκBα and the expression of
TLR4, thereby attenuating pancreatic injury in rat severe acute
pancreatitis (SAP) model compared to the control group (Liu
et al., 2016). Similarly, in a rabbit model of osteoarthritis called
the Hulth-Telhag model, Zhang et al. found that daphnetin exerted a
fundamentally chondroprotective role in Hulth-Telhag rabbit

FIGURE 3
The pharmacological activities of daphnetin.
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chondrocytes (Rogart et al., 1999). Furthermore, in vitro assays
suggested that daphnetin (12, 24 and 48 ng/mL) markedly
suppressed the expression of matrix metalloproteinases MMP-3,

MMP-9 and MMP-13 in synovial cells, which is partially due to the
inhibition of NF-κB signaling pathways and subsequent
downregulation of IL-1β, IL-6, IL-12 (Zhang X. et al., 2020).

FIGURE 4
The molecular effects underlying the pharmacological activities of daphnetin include (A) NF-κB, (B) Nrf2, (C) PI3K/AKT, (D) JAK2/STAT3, (E) Wnt/
GSK-3β/βcatenin, (F) TGF-β1/Smad2/3signaling pathways and (G) inflammatory factors and cells.
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TABLE 1 The pharmacological activities and underlying mechanisms of daphnetin.

Molecular
effects

Targets Pharmacological
effects

Models/
Methods

Dose Research Results
stage

Ref.

Pathways NF-κB
pathway

Anti-inflammation Rat acute
pancreatitis model

4 mg/kg Acute pancreatic
injury is alleviated

Animal
experiment

Liu et al. (2016)

Chondroprotective and
antiarthritic properties

Rabbit osteoarthritis
model

12, 24 and
48 ng/mL

Chondrocytes and
articular cartilage are
protected

Animal
experiment

Zhang et al. (2020a)

Protective properties Endotoxin-induced
pulmonary injury
model

5 and
10 mg/kg

Pulmonary injury is
suppressed

Animal
experiment

Yu et al. (2014)

Hepatoprotective and anti-
inflammation properties

LPS/GalN-induced
mice ALF model

20, 40, and
80 mg/kg

ALF and its
complications are
suppressed

Animal
experiment

Lv et al. (2018)

Neuroprotective properties EAE mice model
for MS

8 mg/kg Clinical symptoms of
EAE are alleviated

Animal
experiment

Wang et al. (2016)

Anti-inflammation
properties

NZB/W F1 SLE
model

5 mg/kg Survival rate and
damage of SLE are
improved

Animal
experiment

Li et al. (2017)

Anti-cancer properties DMBA-induced
breast carcinoma
model

20, 40,
80 mg/kg

Breast carcinogenesis
is inhibited

Animal
experiment

Kumar et al. (2016)

Anti-cancer and
hepatoprotective properties

Chemically induced
hepatocellular
carcinoma

10, 20, and
30 mg/kg

Hepatocellular
carcinoma incidence
and symptoms are
suppressed

Animal
experiment

Li et al. (2022)

Anti-cancer properties HMGB1 induced
A549 cell EMT
model

10–80 mg/kg Epithelial-
mesenchymal
transition of
A549 cells is
inhibited

Cell
experiment

Gong et al. (2023)

Nrf2 pathway Antioxidant properties t-BHP-induced
RAW 264.7 cells
dysfunction

2.5, 5, and
10 μg/mL

RAW 264.7 cells are
protected against
t-BHP-induced
oxidative damage

Cell
experiment

Lv et al. (2017)

Antioxidant properties NaAsO2-induced
Beas-2B-cells
cytotoxicity

2.5, 5, and
10 μg/mL

Beas-2B-cells are
protected from
oxidative stress and
cytotoxicity

Cell
experiment

Lv et al. (2019)

Renoprotection properties GM-induced renal
injury mice model

40 mg/kg GM-induced
nephrotoxicity is
inhibited

Animal
experiment

Fan et al. (2021a)

Renoprotection properties Cisplatin-induced
nephrotoxicity mice
model

40 mg/kg Cisplatin-induced
Nephrotoxicity is
reversed

Animal
experiment

Zhang et al. (2018)

Hepatoprotective properties APAP or t-BHP-
induced ALF mice
model

40 and
80 mg/kg

Hepatotoxicity is
alleviated

Animal
experiment

Lv et al. (2020)

Hepatoprotective properties CCl4-induced
hepatotoxicity rat
model

4.5 mg/kg Hepatotoxicity
related to oxidative
stress is ameliorated

Animal
experiment

Mohamed et al.
(2014)

PI3K/AKT Immunoregulatory
properties

Cells co-culture 10 μM The activation of NK
cells is enhanced

Cell
experiment

Yao et al. (2021)

Neuroprotective properties Alzheimer’s disease
mice model

2, 4, and
8 mg/kg

Memory impairment
is mitigated

Animal
experiment

Yan et al. (2022)

Chondroprotective and
antiarthritic properties

CIA rat model 0–60 μg/mL The proliferation of
CIA-FLS and
autophagy is
inhibited

Animal
experiment

Deng et al. (2020)

(Continued on following page)
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Daphnetin at 5 and 10 mg/kg also exerts anti-inflammatory and
protective properties in a mouse endotoxin-induced lung injury
(EILI) model, a severe inflammatory condition caused by bacterial
toxins (Yu et al., 2014). Subsequently, both in vitro and in vivo
experiments indicated that daphnetin decreased the levels of
inflammatory cytokines, reactive oxygen species, and apoptotic

markers in EILI by modulating the NF-κB signaling pathways in
a dose-dependent manner at a range from 10 to 160 μM, which
partly explains the role of daphnetin (Yu et al., 2014). Likewise, in a
mouse acute liver failure (ALF) model induced via
lipopolysaccharide (LPS)/D-galactosamine (GalN), the NF-κB
signaling pathway is involved in the process of inflammation,

TABLE 1 (Continued) The pharmacological activities and underlying mechanisms of daphnetin.

Molecular
effects

Targets Pharmacological
effects

Models/
Methods

Dose Research Results
stage

Ref.

Anti-cancer properties A2780 xenograft
mice model

30 mg/kg Ovarian cancer is
inhibited

Animal
experiment

Fan et al. (2021b)

JAK2/STAT3 Anti-inflammation and
antioxidant properties

DSS-induced UC
mouse model

16 mg/kg Colitis and intestinal
structure in DSS-
induced mice are
attenuated

Animal
experiment

He et al. (2023)

Anti-inflammation
properties

PALI mice model 2–4 mg/kg The severity of
pancreatic and lung
injury is reduced

Animal
experiment

Yang et al. (2021)

Anti-inflammation
properties

LPS induced
Raw264.7 cells
inflammation

5–20 μM LPS-induced ROS
production is
suppressed

Cell
experiment

Shen et al. (2017)

Wnt/GSK-3β/
β-catenin

Osteoprotective properties glucocorticoid-
induced
osteoporosis rat
model

1 and 4 mg/kg The symptoms and
biochemical markers
of GIOP are
ameliorated

Animal
experiment

Wang et al. (2020a)

Anti-cancer and
hepatoprotective properties

Xenograft HCC cells
mice models

25 and
50 mg/kg

viability and
tumorigenesis of
HCC cells are
inhibited

Animal
experiment

Liu et al. (2022a)

TGF-β1/
Smad2/3

Antioxidant and
cardioprotective properties

The transverse aortic
constriction mice
model

10 and
20 mg/kg

Ischemia/
reperfusion injury
and cardiac function
are improved

Animal
experiment

Syed et al. (2022)

Autophagy Antibacterial and anti-
inflammation properties

S. aureus-induced
model pneumonia

10 mg/kg Inflammatory
responses are
reduced and
bacterial clearance is
augmented

Animal
experiment

Zhang et al. (2019)

Inflammasome NLRP3 Anti-inflammation and
hepatoprotective properties

LPS/GalN-induced
mice ALF model

20, 40, and
80 mg/kg

ALF and its
complications are
suppressed

Animal
experiment

Lv et al. (2018)

Inflammatory
reaction

Inflammatory
factors

Anti-inflammation and
neuroprotective properties

Neuropathic pain rat
model

12.5 μg/rat Neuropathic pain is
ameliorated

Animal
experiment

Zhang et al. (2023)

Anti-inflammation and
neuroprotective properties

EAE mice model 2 and 8 mg/kg The symptoms of
EAE are alleviated

Animal
experiment

Soltanmohammadi
et al. (2022)

Anti-cancer and
hepatoprotective properties

Chemically induced
HCC rat model

10, 20, and
30 mg/kg

Expansion of HCC is
ameliorated

Animal
experiment

Li et al. (2022)

Th cells Chondroprotective and
antiarthritic properties

CIA rat model 1 and 4 mg/kg The symptoms of
CIA are alleviated

Animal
experiment

Tu et al. (2012)

Immunoregulatory and
antiarthritic properties

CIA rat model 1 and 4 mg/kg The severity of the
arthritis is alleviated

Animal
experiment

Yao et al. (2011)

Maintaining the balance of
Th cells

PBMC from patients
with URPL loss
assay

20 and
40 μg/mL

Th17 and Treg cells
in URPL are
balanced

Cell
experiment

Zhang et al. (2020c)

Anti-inflammation and
neuroprotective properties

EAE mice model
for MS

8 mg/kg Clinical symptoms of
EAE are alleviated

Animal
experiment

Wang et al. (2016)

ALF, acute liver failure; EAE, experimental autoimmune encephalomyelitis; MS, multiple sclerosis; SLE, systemic lupus erythematosus; DMBA, 7,12-dimethylbenz(a)anthracene; t-BHP, tert-

butyl hydroperoxide; GM, gentamicin; APAP, acetaminophen; CIA, collagen-induced arthritis; FLS, fibroblast-like synoviocytes; UC, ulcerative colitis; PALI, SAP-associated acute lung injury.
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mediating the occurrence and progression of ALF. Compared with
the LPS/GalN-challenged group, daphnetin at 20, 40, and 80 mg/kg
effectively and dose-dependently inhibited JNK, ERK, and P38,
blocking the phosphorylation and degradation of IκBα.
Therefore, daphnetin decreased the translocation of NF-κB (p65),
significantly induced autophagy activation and finally prolonged the
survival of the treatment group, suggesting that the anti-
inflammation property of daphnetin is partly attributed to the
inhibition of the NF-κB signaling pathway activation (Lv
et al., 2018).

By modulating the NF-κB signaling pathway, daphnetin can also
relieve several auto-immune inflammation diseases. Given that
autoreactive T-cell has been implicated in the pathogenesis of a
variety of autoimmune diseases (Rosetti et al., 2022), researchers
have focused on the inhibitory effects of daphnetin(0–64 mg/mL) at
48 h and 24 h on concanavalin A (ConA) induced T-cell
proliferation and found that daphnetin significantly suppressed
splenocyte proliferation and cell cycle progression by blocking
the G0/G1 transition and the NF-κB pathway activation in
mouse T-cell, finally mediating immunosuppressive activity on
T-cell (Song et al., 2014). As one of the most common chronic
disabling neurological diseases, multiple sclerosis (MS) mainly
affects young adults and is closely related to aging (Zhang Y.
et al., 2020; Graves et al., 2023). In a mice experimental
autoimmune encephalomyelitis (EAE) animal model for MS,
constant administration of daphnetin(8 mg/kg) for 28 days
markedly alleviated the clinical symptoms and demyelination of
the mouse by repressing Th1 and Th17 cell responses.
Mechanistically, daphnetin repressed the phenotype and function
of dendritic cells via modulating NF-κB signaling pathways (Wang
et al., 2016). Recently, daphnetin has been used to intervene in
systemic lupus erythematosus (SLE), a systemic autoimmune disease
with multiple pathogenic factors and organ involvement (Gatto
et al., 2013). In an SLE NZB/WF 1 mouse model, administration of
daphnetin (at 5 mg/kg) once a day for 12 weeks reduced the organ
damage caused by SLE, lowered the serum autoantibody production,
and increased the survival rate of mice with SLE via suppressing
RELA and NF-κB signaling pathways (Gatto et al., 2013).
Furthermore, phosphorylation and degradation of IκBα, the
indicators of NF-κB activation, are prevented by daphnetin (Li
et al., 2017).

Moreover, daphnetin has been identified to prevent against
cancer via modulating NF-κB signaling pathways. In Sprague-
Dawley rats with mammary carcinogenesis induced by 7,12-
dimethylbenz(a)anthracene (DMBA), constant daphnetin
treatment for 28 days at 20, 40, 80 mg/kg dose-dependently
corrected these inflammatory changes as well as enhanced the
antioxidative protection in these cancer-bearing animals by
hindering the expression and nuclear translocation of NF-κB
(Kumar et al., 2016). Still, administration of daphnetin at 10, 20,
and 30 mg/kg for 16 weeks was verified to ameliorate the invasion of
chemically induced hepatocellular carcinoma via reduction of
inflammation and oxidative stress in a concentration-dependent
manner (Li et al., 2022). Daphnetin suggestively suppressed the
tumor incidence and the weight of the liver and spleen in a dose-
dependent manner compared with the untreated group. The
mechanism of anti-cancer in daphnetin involved the suppression
of inflammatory responses via the NF-κB signaling pathway (Li

et al., 2022). Furthermore, daphnetin affected the epithelial-
mesenchymal transition process in human lung adenocarcinoma
cells. Gong et al. (2023) found that daphnetin(10–80 mg/kg)
inhibited the proliferation and migration of human lung
adenocarcinoma epithelial A549 cells through regulating the NF-
κB signaling pathway (Gong et al., 2023).

Consequently, daphnetin exerts its bioactivity via modulating
NF-κB pathways, including anti-inflammation and anti-
cancer effects.

2.2 Effects of daphnetin on Nrf2 signaling

Nuclear factor erythroid 2-related factor 2 (Nrf2) is known as a
pivotal transcription factor that belongs to the Cap’n’Collar (CNC)
family of conserved basic leucine zipper (bZIP) transcription factors
(Moi et al., 1994). Structurally, Nrf2 is composed of seven conserved
Nrf2-ECH homology domains (Neh1–7) with different functions to
regulate Nrf 2 transcriptional activity (Hayes and Dinkova-Kostova,
2014). Of all Nehs, Neh1 allows the recognition of antioxidant
response elements (ARE) to activate gene transcription. Under
normal physiological homeostasis, Neh2 is bound to Kelch-like-
ECH-associated protein 1 (Keap1), which stimulates
CULLIN3(CUL3) E3 ubiquitin ligase and leads to proteasomal
degradation of Nrf2 via the proteasome system. This degradation
mechanism maintains Nrf2 dynamic equilibrium at the protein
level, ensuring only a tiny fraction of Nrf2 reaches the nucleus to
regulate the basal expression of target genes (Torrente and
DeNicola, 2022). Once stress occurs, inhibition of Nrf2 directed
by Keap1 is abrogated, resulting in Nrf2 stabilization (Dayalan
Naidu and Dinkova-Kostova, 2020). Consequently, Nrf2 can
liberate and translocate into the nucleus to interact with AREs,
activating their transcription and antioxidant characteristics
(Figure 4B) (Itoh et al., 1997; Kobayashi et al., 2016). Nrf2 has
emerged as a pivotal player in various cellular processes maintaining
cell homeostasis (Shaw and Chattopadhyay, 2020). By upregulating
the Nrf2 pathway, daphnetin can alter the expression levels of Bcl-2,
Bax, and caspase 3, critical apoptosis regulators (programmed cell
death) in cells exposed to oxidative stress or injury (Liang
et al., 2010).

By modulating the Nrf2 signaling pathway, daphnetin protects
cells against oxidative damage and mitochondrial dysfunction. The
organic peroxide tert-butyl hydroperoxide (t-BHP), acting as a
cellular toxin, promotes oxidative stress and leads to various types
of cell damage. In a cell apoptosis model induced by t-BHP,
daphnetin (2.5, 5, and 10 μg/mL) significantly guarded RAW
264.7 cells against t-BHP-induced cytotoxicity and cell
apoptosis in a concentration-dependent manner (Lv et al.,
2017). Furthermore, daphnetin decreased t-BHP-induced ROS
generation and inhibited the expression of cytochrome c in
RAW 264.7 cell cytoplasm and mitochondria, which preserved
the mitochondrial physiological function (Lv et al., 2017).
Mechanically, daphnetin activated the Keap1-Nrf2/ARE
signaling pathway to exert antioxidant effects and modulate the
expression of numerous antioxidant enzymes, including GCLC,
GCLM, and HO-1 (de Oliveira et al., 2016). However, daphnetin-
mediated cell viability, ROS blockade, and the expression of
antioxidative enzymes was almost abolished in Nrf2 knockout

Frontiers in Pharmacology frontiersin.org08

Wei et al. 10.3389/fphar.2024.1407010

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1407010


RAW 264.7 cells, which verified that the role of daphnetin in
preventing mitochondrial dysfunction was largely dependent on
the upregulation of the Nrf2 pathway (Niture et al., 2014; Lv
et al., 2017).

Similarly, daphnetin treatment significantly alleviated the
cellular toxic effects of arsenic on human lung epithelial cells (Lv
et al., 2019). As a natural toxicant, arsenic is demonstrated to induce
acute and chronic toxicity in lung tissue, including tissue injury and
cell apoptosis (Putila and Guo, 2011; Wang et al., 2023). Further
research showed that daphnetin (2.5, 5 and 10 μg/mL) enhanced
Nrf2 activation and translocation and increased Keap1 degradation
in Beas-2B cells, which activated genes downstream of Nrf2 in Beas-
2B cells to protect Beas-2B cells from arsenic-induced oxidative
stress and cytotoxicity (Lv et al., 2019). Significantly, pretreatment
with daphnetin reversed the decrease in the anti-apoptotic factor
Bcl-2 induced by arsenic and reduced the increase in the pro-
apoptotic factor Bcl-2-associated X protein (Bax), which was
considerably attenuated when Nrf2 was depleted in vitro (Lv
et al., 2019).

Not only cellular protection, but also organic preservation is
remarkably mediated by daphnetin. Through enhancing the
Nrf2 antioxidant signaling pathway, daphnetin inhibits
inflammatory and oxidative responses, protects against organic
injury and toxicity, and sustains the physiological function and
homeostasis of organs (Mohamed et al., 2014; Zhang et al., 2018; Lv
et al., 2020; Fan et al., 2021a).

Though known as a potent antimicrobial agent against Gram-
negative infections, gentamicin (GM) has limited clinical
applicability due to its nephrotoxic effects (Lopez-Novoa et al.,
2011; Lee et al., 2012). In a GM-induced renal injury mice
model, daphnetin at 40 mg/kg is demonstrated to ameliorate
GM-induced kidney dysfunction and cell damage in mice.
Pretreatment with daphnetin significantly reduced the level of
BUN and creatinine and improved renal appearance and
histopathological evaluation in mice impaired by GM (Fan et al.,
2021a). Mechanism research showed that daphnetin activated the
Nrf2/ARE pathway in a dose-dependent manner, attenuated
oxidative stress and inflammation, and protected against tubular
cell apoptosis induced by GM (Fan et al., 2021a). Meanwhile,
daphnetin (40 mg/kg) markedly ameliorated nephrotoxicity and
renal dysfunction induced by chemotherapeutic cisplatin via
modulating the Nrf2 pathway (Zhang et al., 2018). Daphnetin
lessened both cisplatin-induced kidney biochemical parameters
disorder and histopathological changes. Subsequent evidence
proved that daphnetin improved the kidney’s oxidative stress and
inflammatory reaction, reversed the nephrotoxicity caused by
cisplatin, and sustained renal normal physiological function
(Zhang et al., 2018).

Based on the remarkably protective effects of daphnetin in
t-BHP-induced mitochondrial dysfunction, Lv et al. (2020)
verified that daphnetin (40 or 80 mg/kg) alleviated t-BHP and
acetaminophen (APAP)-induced hepatotoxicity through altering
Nrf2 pathway activation. Moreover, the pharmacological effect
was improved with the mounting concentration. It is reported
that daphnetin attenuated t-BHP-triggered hepatotoxicity as well
as mitochondrial dysfunction in HepG2 cells, protected against
APAP-induced acute liver failure in mice, and prolonged the
survival of mice treated by APAP. The hepatoprotective

mechanism of daphnetin against APAP relies on the regulation
of the Nrf2 signaling pathway, and these beneficial effects were
eliminated in Nrf2-deficient mice. Additionally, daphnetin
suppressed JNK and ASK1 phosphorylation, Txnip and
NLRP3 expression, and caspase-3 cleavage in WT mice, which
were related to oxidative phosphorylation, inflammation, and
apoptosis (Cao et al., 2017; Woolbright and Jaeschke, 2017; Lv
et al., 2020).

Another previous research suggested that daphnetin
administrated for 4 weeks at 4.5 mg/kg effectively protected the
liver from CCL4-induced damage, possibly through its antioxidant
and anti-inflammatory effects (Mohamed et al., 2014). Daphnetin
restored near control levels of the hepatic enzymes ALT and AST
and markedly improved the histopathology of the liver in CCL4-
treated mice, indicating its improvement in liver function.
Moreover, daphnetin reduced the levels of oxidative stress
marker malondialdehyde in the liver tissues of CCL4-treated
mice, indicating its ability to suppress inflammatory responses.
mRNA analysis revealed that the expression of HO-1, which was
dependent on the Nrf2 pathway, was induced. Consequently,
daphnetin facilitated Nrf2 nuclear translocation to confer
hepatoprotection against oxidative injury (Mohamed et al., 2014).

Accordingly, by regulating the Nrf2 pathways, daphnetin
mediates antioxidant damage and mitochondrial maintenance at
cellular and organic levels.

2.3 Effects of daphnetin on PI3K/
AKT signaling

The Phosphatidylinositol 3-kinase (PI3K)/Protein Kinase B
(PKB, also named AKT) signaling pathway, is renowned for its
pivotal role in regulating various cellular processes, including
proliferation, differentiation, and apoptosis (Arcaro and
Guerreiro, 2007). Among three PI3Ks (Vanhaesebroeck et al.,
2010), Class IA PI3K, a heterodimeric protein, comprises a
catalytic (p110) and a regulatory subunit(p85) (Vidal et al.,
2022). In normal physiological conditions, catalytic subunits are
bonded and inhibited by regulatory proteins. The regulatory
proteins bring the catalytic subunits in contact with their lipid
substrates at the membranes on cellular activation (Bilanges
et al., 2019; Vidal et al., 2022). AKT serine/threonine kinase
family plays pivotal roles as key downstream effector molecules
in the PI3K signaling pathway (Toulany et al., 2017). When
extracellular signals are detected, PI3K is recruited to the plasma
membrane and subsequently activated by either receptor tyrosine
kinases or G-protein coupled receptors, initiating the conversion of
PIP2 into PIP3 (Vanhaesebroeck et al., 2010). Subsequently, AKT
and phosphoinositide-dependent kinase 1 (PDK1) are recruited to
the inner surface of the plasma membrane. Once at the membrane,
PDK1 phosphorylates AKT at Thr308 to initiate AKT activation
(Figure 4C) (Toulany et al., 2017).

Subsequent regulatory effects of activated AKT on cellular
biological processes are mediated by various downstream target
proteins. AKT regulates downstream target proteins through a
phosphorylation cascade, including FOXO, mTOR, and GSK3b,
to control cell survival, growth, and proliferation (He et al.,
2021). Given the essential function of PI3K/Akt signaling
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including cell proliferation, survival, metabolism and motility,
the promising ability of daphnetin to selectively modulate PI3K
signaling has garnered increasing attention for its potential
development.

Recent studies have identified daphnetin as a natural compound
that effectively activates NK cell effector functions. Further research
revealed that daphnetin at 10 μM directly improved the cytotoxicity
of NK cells and promoted IFN-γ production in the presence of IL-12
(Yao et al., 2021). Subsequent RNA-sequencing analyses
demonstrated that the mechanisms of daphnetin in regulating
NK cells are dependent on the PI3K-Akt signaling pathway,
which is further confirmed by the impact of PI3K-Akt and
mTOR inhibitors (such as LY294002 and rapamycin) on
daphnetin-mediated NK cell activation (Yao et al., 2021).

Daphnetin (2, 4, and 8 mg/kg) is reported to exert
neuroprotective action in Alzheimer’s disease (AD) model mice
(Yan et al., 2022). As a progressive neurodegenerative disorder with
genetic complexity, AD is clinically characterized by the dysfunction
of memory and cognition (Author Anonymous, 2023).
Neuropathological features of AD include neurofibrillary tangles,
neuroinflammation, and β-amyloid accumulation, which
significantly contribute to AD development due to their impact
on synaptic function (Author Anonymous, 2023; Jorfi et al., 2023).
In AD-linked transgenic model mice, daphnetin alleviated cognitive
impairment by reducing β-amyloid deposition compared to the
control group. Moreover, daphnetin promotes the dendrite branch
density and increases synaptic protein generation via activating
PI3K-Akt signaling (Yan et al., 2022). This finding was
corroborated by the use of the PI3K inhibitor LY294002, which
reversed daphnetin-induced neuroprotective effects.

By targeting the PI3K/AKT/mTOR signaling pathway,
Daphnetin(0–60 μg/mL) can inhibit autophagy and relieve
inflammation in fibroblast-like synoviocytes (FLS) in rats with
collagen-induced arthritis (CIA) induced by TNF-α. Likewise, the
pharmacological inhibitive effects increased with the increasing
concentration (Deng et al., 2020). In this disease, the PI3K-Akt
signaling pathway significantly impacts the migration of FLS and the
inhibition of cartilage formation (Su et al., 2019; Weng et al., 2023).
Compared to the disease model group, daphnetin reduces the
phosphorylation of AKT and mTOR by inhibiting the mRNA
expression of AKT and increasing the mRNA expression of the
PI3K negative regulatory gene PTEN. Subsequently, PI3K/AKT
signaling downstream effector mTOR and BAD, which govern
autophagy negatively and apoptosis respectively, are significantly
suppressed. Consequently, daphnetin may be a potential therapeutic
approach in treating rheumatoid arthritis (Deng et al., 2020).

In addition, daphnetin is believed to possess antitumor potential
(Kumar et al., 2018; Deng et al., 2020), and exhibit potent antitumor
effects in ovarian cancer by inducing ROS-dependent apoptosis,
which relies on the Akt/mTOR pathway (Fan et al., 2021b).
Daphnetin inhibited ovarian cancer proliferation and promoted
cell apoptosis in vivo at 30 mg/kg and in vitro at 0, 5, 10, 20,
and 40 μg/mL in three different cell types, which was mediated via
the production of ROS. Moreover, daphnetin treatment
accumulated the level of LC3B-II, autophagic vacuoles, and
autophagic flux in ovarian cancer, suggesting that cytoprotective
autophagy was activated. Notably, once combined with autophagy
inhibitor HCQ, the anti-cancer effect of daphnetin on ovarian

cancer cells was enhanced. Daphnetin-induced autophagy and
apoptosis may depend on the AMPK/Akt/mTOR pathway in
ovarian cancer cells (Lei et al., 2013). Furthermore, daphnetin
significantly elevated the level of AMPK in A2780 cells, yet the
expression levels of p-Akt and p-mTOR were downregulated.
APMK inhibitor (Compound C) reversed the expression of p-Akt
and p-mTOR in A2780 cells treated with daphnetin and synergically
enhanced daphnetin-induced antitumor effects. Briefly, the Akt/
mTOR pathway is involved in Daphnetin-induced protective
autophagy and apoptosis (Fan et al., 2021b).

Collectively, daphnetin modulates immune reaction and
autophagy, as well as exerts anti-inflammation and anti-cancer
effects via the PI3K/AKT pathway.

2.4 Effects of daphnetin on JAK2/
STAT3 signaling

The JAK2/STAT3 pathway has become a crucial regulator in the
initiation and progression of inflammatory and immune responses
across a wide range of pathological conditions, thereby exerting
significant influence in the pathogenesis of various diseases (Chen
et al., 2023; Ott et al., 2023). Janus kinase 2 (JAK2) belongs to the
JAK family. These kinases are implicated in immune system
regulation, immunocyte differentiation and proliferation, and
pro-inflammatory response (Agashe et al., 2022). As a member of
the signal transducer and activator of the transcription family,
STAT3 acts as a transcription factor, controlling cell cycle
progression and apoptotic mechanisms. In addition, STAT3 is
also associated with autoimmune and inflammatory diseases
(Dong et al., 2021). The JAK2/STAT3 pathway has attracted
considerable interest for its distinctive impact on inflammation
and lung injury (Figure 4D) (Montero et al., 2021; Liu D.
et al., 2022).

Daphnetin has been demonstrated to exert gastrointestinal
protective effects, ameliorating the severity of colitis and
attenuating the damage to the intestinal structure in DSS-
induced ulcerative colitis mice (He et al., 2023). In addition,
daphnetin regulated the expression of apoptosis-related proteins
in vivo at 16 mg/kg for six consecutive days. Daphnetin treatment
significantly decreased the level of pro-apoptotic proteins Bax and
cleaved caspase 3, while enhanced the anti-apoptotic protein
(BCL-2) expression compared with the control
group. Daphnetin substantially suppressed the activity and the
levels of inflammatory cytokines, including MDA and SOD,
conferring anti-inflammatory effects. Likewise, in vitro assays
verified the cytoprotective effects of daphnetin on Caco-2 cells
from LPS-stimulated viability impairment, apoptosis, oxidative
stress, and inflammation. Furthermore, daphnetin suppressed
the activity of JAK2/STAT3 signaling in LPS-induced Caco-2
cells in a REG3A-dependent manner. Meanwhile, JAK2/STAT
signaling inhibition synergized with daphnetin in LPS-
stimulated Caco-2 cells. Hence, daphnetin inhibited the UC
progression primarily through REG3A-mediated JAK2/
STAT3 signaling (He et al., 2023).

By suppressing the JAK2/STAT3 pathway, daphnetin is verified
to ameliorate acute lung injury in mice with severe acute pancreatitis
(Yang et al., 2021). In the L-arginine-induced SAP-associated acute
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lung injury model, daphnetin at 2–4 mg/kg significantly reduced IL-
6 and TNFα concentrations in both serum and lung tissues, serum
amylase and myeloperoxidase activities, and macrophage and
neutrophil infiltration and cell apoptosis in the lung tissue; finally
alleviating SAP-induced pancreatic and lung tissue damage.
Notably, immunohistochemical staining assays suggested that
daphnetin pretreatment attenuated the levels of p-JAK2 and
p-STAT3, which were comparably increased in the SAP group
(Yang et al., 2021). These results are consistent with a previous
study that found daphnetin reduces endotoxin lethality and
improves LPS-induced acute lung injury in mice via suppressing
JAK/STATs activation and ROS production (Shen et al., 2017).
Moreover, cell viability was not influenced notably during the
daphnetin treatment.

In conclusion, these results showed that inhibiting the JAK2/
STAT3 pathway is the essential mechanism of daphnetin to mediate
antioxidant activity and anti-inflammatory properties.

2.5 Effects of daphnetin on Wnt/GSK-3β/β-
catenin signaling

As a highly conserved signaling pathway, the Wnt/β-catenin
signaling pathway is pivotal in regulating fundamental physiological
and pathological processes, including cell proliferation, survival,
differentiation, and migration (Liu J. et al., 2022; Yao et al., 2023).
The activation of the canonical Wnt pathway relies on the
cooperation between Wnt glycoproteins and several
transmembrane receptors (Ma et al., 2023). However, the
regulation of β-catenin is influenced by GSK3β, as GSK3β is the
upstream molecule of β-catenin. Nonphosphorylated GSK3β can
cause the phosphorylation and degradation of β-catenin in the
cytoplasm. When GSK3β is inhibited, the phosphorylation of β-
catenin will be blocked and cannot be degraded (Figure 4E) (Xia
et al., 2019; Cheng et al., 2020).

In a current dexamethasone-induced osteoporosis model,
dexamethasone remarkably affected the histological changes,
femoral bone mineral content, and femoral microstructure
parameters of experimental rats, finally causing osteoporosis
(Wang et al., 2020a). However, daphnetin treatment improved
bone mineral content and microstructure parameters at 1 and
4 mg/kg, restoring the levels of bone turnover markers (Wang
et al., 2020a). Moreover, the Wnt/GSK-3β/β-catenin signaling
pathway was stimulated when daphnetin was added, which
indicated that daphnetin performed osteoprotective effects via
Wnt/GSK-3β/β-catenin signaling pathway. Further study verified
this mechanism via XAV939, which inhibits the Wnt/GSK-3β/β-
catenin signaling pathway. Once the small-molecule inhibitor
XAV939 was added, the transduction of Wnt/GSK-3 β/β-catenin
pathway was blocked, which abolished the effect of daphnetin on the
differentiation and mineralization of MC3T3-E1 cells, indicating
that daphnetin specifically exerted its effects against GIOP via Wnt/
GSK-3β/β-catenin pathway (Stakheev et al., 2019; Wang
et al., 2020a).

However, daphnetin (25 and 50 mg/kg) is reported to exert
antitumor effects by inhibiting the Wnt/β-catenin signaling
pathway in hepatocellular carcinoma xenograft models (Liu C.
et al., 2022). The roles of daphnetin in apoptosis and G1 phase

arrest of hepatocellular carcinoma cells were potently neutralized by
activation of the Wnt/β-catenin signaling with SKL2001 treatment,
which is an agonist of the Wnt/β-catenin signaling pathway (Liu C.
et al., 2022).

Consequently, the effects of daphnetin on Wnt/GSK-3β/β-
catenin signaling pathway may vary from the microenvironment
of targeting cells; however, daphnetin governs the maintenance of
physiological homeostasis by modulating this pathway.

2.6 Effects of daphnetin on TGF-β1/Smad2/
3 signaling

Known for its pivotal effects on the progression of organic
fibrosis, TGF-β1 signaling is closely related to immune response,
inflammation, and matrix synthesis (Su et al., 2020; Saadat et al.,
2021; Liu Z. et al., 2022). In addition, TGF-β1 can stimulate the
phosphorylation of the pro-fibrotic transcription factors Smad2 and
Smad3, further driving the expression of TGF-β-sensitive and pro-
fibrotic genes (Figure 4F) (Hu et al., 2020).

Currently, a study by Lee et al. explored the effects of daphnetin
on transverse aortic constriction (TAC)-induced cardiac
hypertrophy and myocardial fibrosis in mice at 10 and 20 mg/kg
and angiotensin II (Ang II)–induced hypertrophy in
H9c2 cardiomyoblasts at 10 and 20 μg/mL (Syed et al., 2022).
The results showed that daphnetin reduced cardiac remodeling
by modulating the TGF-β1/Smad2/3 signaling pathway. In
addition, daphnetin decreased ECM overproduction, cardiac
fibrotic event, and myofibroblast alterations by inhibiting TGF-
β1/Smad2/3 signaling proteins, indicating that daphnetin effectively
protected against cardiac hypertrophy and fibrosis.

Therefore, daphnetin may have potential therapeutic benefits for
cardiac diseases involving heart enlargement and scarring.

2.7 Effects of daphnetin on
autophagy signaling

Triggered by stress or starvation, autophagy evolves as an
intracellular conserved catabolic process mediated by lysosome
sustains to degrade cellular components (Yamamoto et al., 2023).
During this process, targeting proteins and aged or damaged
organelles sequestered in double-membrane vesicles are called
autophagosomes, which ultimately fuse to lysosomes, leading to
the degradation of the sequestered components (Behrends et al.,
2010). The stimulation of autophagy is usually beneficial in disease,
as it helps to remove toxic proteins and cells. However, autophagy
can serve both tumor-suppressive and tumor-promoting roles,
which depend on the tumor stage, biology, and the
microenvironment in cancer (Debnath et al., 2023). Therefore,
autophagy is a complex and dynamic mechanism that interacts
with other cellular pathways in tumorigenesis.

As described above, daphnetin at 10 mg/kg performed
antitumor effects in the ovarian cancer A2780 xenograft model
(Fan et al., 2021b). Meanwhile, daphnetin also induced autophagy
due to the accumulation of LC3-II and endogenous LC3, which was
verified as cytoprotective autophagy in ovarian cancer. Because an
autophagy inhibitor further enhanced the antitumor efficacy of
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daphnetin, indicating intricate roles of daphnetin in anti-ovarian
cancer effects (Zhang et al., 2019).

By inducing an autophagic response, daphnetin prevents
methicillin-resistant Staphylococcus aureus and attenuates
inflammation (Zhang et al., 2019). A study indicated that
daphnetin enhanced microphage bactericidal activity and
suppressed inflammatory responses via mTOR-dependent
autophagic pathway in C57BL/6 mice. However, once a putative
autophagy inhibitor, Bafilomycin A1, was added, the autophagy
pathway was blocked, and DAPH-elicited repression of the
inflammatory response as well as macrophage antibacterial
capability, was abolished (Zhang et al., 2019).

Thus, daphnetin exerts anti-cancer and anti-infection effects by
modulating autophagy signaling.

3 Effects of daphnetin on
NLRP3 inflammasome

Defined as an inflammasome for its ability to respond to
DAMPs or PAMPs, NLRP3 Belongs to the nucleotide-binding
domain (NBD)- and leucine-rich repeat (LRR)-containing protein
(NLR) family, containing a caspase-recruitment domain (ASC)
and Caspase-1 (Fu and Wu, 2023). NLRP3 inflammasome
functions as a cytosolic signaling complex to mediate the
activation of potent inflammation, particularly responding to
aging, physical inactivity, over-nutrition, or environmental
factors (Mangan et al., 2018).

In the LPS/GalN induced ALF mice model described above, the
levels of NLRP3 inflammasome, as well as its downstream
inflammatory proteins ASC, Cleaved-caspase-1 (p20), and
Mature-IL-1β (p17), were evidently elevated (Lv et al., 2018). As
western blotting analysis showed, LPS/GalN activated NLRP3 and
related inflammatory proteins were inhibited when treated with
daphnetin at 20, 40, and 80 mg/kg (Lv et al., 2018). Therefore, the
inflammatory suppression effects of daphnetin are partly attributed
to inhibiting NLRP3 inflammasome activation. In addition,
daphnetin inhibited the corneal inflammation and
neovascularization induced by alkali burn in vitro and vivo.
Moreover, further research showed that alkali burn-induced
NLRP3 inflammasome activation was significantly blocked when
daphnetin was added, attenuating inflammation and improving
wound healing and corneal clarity (Lv et al., 2018; Shimizu
et al., 2019).

As mentioned above, the NLRP3 inflammasome exerted a
substantial influence on ovarian aging, and high TXNIP protein
expression indicates oxidative damage to cells. Daphnetin treatment
significantly decreased NLRP3 protein expression compared to the
control group, confirming that daphnetin significantly rescued
premature ovarian failure (Shimizu et al., 2019).

4 Effects of daphnetin on
inflammatory factors

As essential mediators, inflammatory factors play critically
modificative roles in immune responses (Wang et al., 2022). It is
believed that pro-inflammatory factors, including interleukin-1 (IL-

1), IL-6, and tumor necrosis factor (TNFα), are dependent on the
type I cytokine receptors. While anti-inflammatory factors mainly
consist of IL-4 and IL-10 (Turner et al., 2014). Dysregulation in
inflammatory factors may cause immune aberrances,
hypercoagulability, and reproductive disorders. Intriguingly,
daphnetin seems to regulate inflammatory responses by affecting
levels of inflammatory factors (Figure 4G).

In the neuropathic pain rats, daphnetin was demonstrated to
suppress the expression of pro-inflammatory factors IL-1β, IL-6, and
TNF-α, exerting neuroprotective effects. Meanwhile, daphnetin
suppressed the activation of microglia, astrocytes, and neurons,
thus reducing the nociceptive sensitization in neuropathic pain
rats (Zhang et al., 2023). In addition, in an experimental
autoimmune encephalomyelitis (EAE) mice model, daphnetin
(2 and 8 mg/kg) treatment significantly decreased lymphocyte
infiltration and demyelination, which was attributed to reduction
in pro-inflammatory factors, including TNF-α and IL-17 and an
increase in anti-inflammatory factors, such as IL-4 and IL-10
(Soltanmohammadi et al., 2022). Evidence showed that daphnetin
ameliorated the progress of hepatocellular carcinoma by reducing
inflammation (Li et al., 2022). Daphnetin(10, 20, and 30 mg/kg)
potently suppressed oxidant and inflammatory reactions by
reducing the secretion of inflammatory factors TNF-α, IL-1β, and
IL-6, ultimately leading to growth cease of hepatic cancer (Kumar
et al., 2017; Li et al., 2022).

In fact, these inflammatory factors are secreted by T helper (Th)
cells, which can be divided into Th1/Th2/Th17 and regulatory
T cells (Tregs) according to specialized functions and patterns of
cytokine secretion (Yin et al., 2021). Therefore, the regulatory effects
of daphnetin on Th cells have increasingly received widespread
attention. By regulating Th17 cells, daphnetin occurred to inhibit
immune responses and exert protective effects in a CIA model.
Moreover, the level of Th1/Th2 type inflammatory factors was also
reduced after daphnetin treatment at 1 and 4 mg/kg (Tu et al., 2012).
By modulating both Th17 differentiation and the TGF-β signaling
pathway, daphnetin is expected to be a drug candidate for the
treatment of idiopathic pulmonary fibrosis, a chronic and
refractory interstitial lung disease (Park et al., 2023). As
described above, daphnetin at 8 mg/kg profoundly repressed
Th1 and Th17 responses, inhibited the secretion of inflammatory
factors, and alleviated the clinical symptoms of EAE mice (Wang
et al., 2016). Another previous study demonstrated that daphnetin
(1 and 4 mg/kg) improved the clinical symptoms and pathological
changes in arthritis joints and the beneficial effects associated with
restoring the balance of Th cells, including enhancement of Tregs
responses and inhibition of Th1/Th2/Th17 cells (Yao et al., 2011).
Similarly, in patients with unexplained recurrent pregnancy loss,
daphnetin (20 and 40 μg/mL) may exert a regulatory effect on the
balance of Th17 and Tregs via decreasing IL-2 and increasing TGF-
β1 and IL-6 levels (Zhang Z. et al., 2020). Collectively, daphnetin
effectively modulates Th cells and related inflammatory factors.

5 Conclusion and perspective

In this review, we provide a novel perspective of the essential
molecular effects to elucidate the mechanisms of daphnetin’s
sophisticated pharmacological activities. Notably, in almost all
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research mentioned above, the pharmacological activities of
daphnetin are highly likely to increase with its concentration.
Furthermore, based on the literature reviewed, it has been
reported that daphnetin exhibited a remarkable pharmacological
profile. On the one hand, daphnetin can exert diverse molecular
effects and pharmacological activities via various signaling
pathways, NLRP3 inflammasome, inflammatory cells, and
cytokines (Table 1); on the other hand, the specific
pharmacological effects of daphnetin within a given signaling
pathway can be variable, which depends on the physiological or
pathological context present (Javed et al., 2022). Thus, the
pharmacological activities of daphnetin may vary with different
physiological and pathological contexts, which is due to its distinct
interactions with various cell types and the different activation stages
of signaling pathways. The diversity of interactions is crucial for
understanding and determining the pharmacological effects
of daphnetin.

As a natural product, daphnetin has been recognized as an
inhibitor of protein kinase, which can partially elucidate the
mechanisms underlying the functional diversity of daphnetin.
Of coumarin and its derivatives, including daphnetin, esculin, 2-
OH-coumarin, 4-OH-coumarin and 7-OH-coumarin, only
daphnetin was found to inhibit protein kinases potently.
Specifically, daphnetin was verified to inhibit tyrosine-specific
protein kinase EGFR (IC50 = 7.67 µM) and serine/threonine
kinases PKA (IC50 = 9.33 µM) and PKC (IC50 = 25.01 µM)
in vitro (Yang et al., 1999). Mechanically, the inhibition of
EGF receptor tyrosine kinase by daphnetin was competitive
with respect to ATP and non-competitive with respect to the
peptide substrate. Moreover, the hydroxylation at the C8 position
is likely essential for daphnetin to function as a protein kinase
inhibitor when compared to coumarin and its derivatives (Yang
et al., 1999).

In addition, the pharmacological activities of daphnetin rely on
its effects on various signaling pathways, inflammasomes,
inflammatory cells, and cytokines mentioned above. When in the
distinct physiological and pathological context, the associated
signaling cascades and molecular entities undergo different
degrees of dysregulation and disorder. Daphnetin, through its
regulatory influence on the equilibrium of these pathways,
manifests its therapeutic repertoire, including anti-inflammation,
anti-cancer, anti-autoimmune diseases, antibacterial, organic
protection, and neuroprotection properties in cell and animal
experimental models described above.

Given these underlying mechanisms reviewed, daphnetin is
likely to exert a more remarkable pharmacological profile in
future research. Hence, we expect daphnetin to be a potential
drug candidate for several aberrant disorders, including
inflammation-associated diseases, organic injury, cancers, and
multidrug-resistant infections. Inspiringly, a clinical trial in which
the therapeutic effects of daphnetin on colitis verified its ability to
promote the healing of the intestinal mucosa of UC patients and
effectively improve the patient’s condition and quality of life (Hu
et al., 2021). Moreover, the toxicology studies of daphnetin suggest
no morality and other known toxicities.

Still, it is particularly vital to verify the safe dosage range of
daphnetin, given its pharmacological activities and
pharmacokinetics. Thus, relevant pre-clinical and clinical trials
are required for daphnetin’s toxicity assessment and therapeutic
application. In addition, the functional effects of daphnetin hinge
upon the intricate and interconnected interplay of various
mechanisms working in tandem; urgently, there is a lack of
detailed mechanisms of daphnetin in epigenetic and metabolic
research. Thus, further research is warranted to comprehensively
investigate the diverse bioactivities and underlying mechanisms of
daphnetin and its derivatives. Additionally, novel combination
therapy, including daphnetin and other drugs, needs to be
further and extensively investigated.
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