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Sepsis-induced acute lung injury (ALI) is a major cause of death among patients
with sepsis in intensive care units. By analyzing a model of sepsis-induced ALI
using lipopolysaccharide (LPS) and cecal ligation and puncture (CLP), treatment
methods and strategies to protect against ALI were discussed, which could
provide an experimental basis for the clinical treatment of sepsis-induced ALI.
Recent studies have found that an imbalance in autophagy, ferroptosis, and
pyroptosis is a key mechanism that triggers sepsis-induced ALI, and regulating
these death mechanisms can improve lung injuries caused by LPS or CLP. This
article summarized and reviewed the mechanisms and regulatory networks of
autophagy, ferroptosis, and pyroptosis and their important roles in the process of
LPS/CLP-induced ALI in sepsis, discusses the possible targeted drugs of the above
mechanisms and their effects, describes their dilemma and prospects, and
provides new perspectives for the future treatment of sepsis-induced ALI.
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1 Introduction

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host
response to infection (Singer et al., 2016). The lung is one of the most vulnerable
organs in sepsis, and approximately 25%–50% of patients with sepsis may develop ALI
or even acute respiratory distress syndrome (ARDS) (Li W. et al., 2022). In sepsis,
pathogen-associated molecular pattern (PAMP) stimulation triggers innate immune
responses, whereas signal transduction by damage-associated molecular pattern
(DAMP) promotes innate immune responses. It is characterized by neutrophil
integration and multiple cytokines release, disrupting alveolar-capillary integrity
with non-static fluid pulmonary edema and elevated permeability (Englert et al.,
2019; Wu et al., 2023). The inflammatory cascade caused by excessive amplification
of PAMPs and DAMPs in sepsis causes cell and tissue damage. Its clinical features
include acute exacerbations, bilateral infiltrates on chest radiography, pulmonary artery
wedge pressure <18 mmHg, and refractory hypoxemia (ALI, PaO2/FiO2 <300)
(Bernard et al., 1994). Many studies have used LPS or CLP to establish a model of
sepsis-induced ALI that models the pathological features and investigates the specific
mechanisms of ALI in clinical sepsis conditions. The systemic inflammatory response
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triggers neutrophil and macrophage infiltration in lung tissue
and release of inflammatory mediators such as tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-
6) (Xu et al., 2024). These inflammatory mediators further
activate key inflammatory signaling pathways, mainly
including: nuclear factor kappa-B (NF-κB), JAK2/STAT3,
mitogen-activated protein kinase (MAPK), PI3K/Akt/mTOR,
and Notch signaling pathways (Li W. et al., 2022). In addition,
inflammatory mediators induced during sepsis can cause
increased intracellular oxygen free radicals and oxides,
exacerbating lung injury.

The treatment of sepsis-induced ALI/ARDS remains a key
challenge for reducing sepsis-related morbidity and mortality.
Most recently employed pharmacological strategies have been
ineffective in reducing the morbidity and mortality associated
with sepsis-induced ALI/ARDS.

Cell death supports morphogenesis during development and
homeostasis after birth by removing damaged and obsolete cells. It
also reduces the spread of pathogens by eliminating infected cells
(Newton et al., 2024). In recent years, the types of cell death have
been enriched: e.g., apoptosis, necrosis, autophagy, ferroptosis,
pyroptosis. The different types of cell death could view as a
single, coordinated system, in which the individual pathways are
highly interconnected and can flexibly compensate for each other
(Bedoui et al., 2020).

Autophagy was proposed by Ashford and Porter (Ashford and
Porter, 1962) in 1962 after they discovered the phenomenon of
“self-eating” in cells. It is the process of engulfing one’s cytoplasmic
proteins or organelles, encapsulating them into vesicles, and fusing
them with lysosomes to form autophagolysosomes, which degrade
the contents they contain (Zhu et al., 2022). Macroautophagy is the
most common form, the process of macroautophagy includes five
steps: initiation, nucleation, extension, maturation, and
degradation (Cao et al., 2021; Zhu et al., 2022). Mitochondrial
autophagy is a type of macroautophagy that plays important roles
in early embryonic development, cell differentiation,
inflammation, and apoptosis. Ubiquitination is a key
modification that mediates mitochondrial autophagy, including
the serine-threonine kinase PINK1 and E3 ubiquitin ligase
PARKIN. BCL2L13 and FUNDC1 may also play key roles in
mitochondrial autophagy (Onishi et al., 2021). Autophagy is
generally regarded as a protective mechanism in cells; however,
excessive levels lead to autophagic death. Reportedly, autophagy
promotes cell survival or death depending on the cell type,
environmental conditions, and specific stimuli (Xu et al., 2024).
Previous studies have demonstrated the induction of autophagy in
both septic patients and animal models with lung diseases (Newton
et al., 2024). Autophagy facilitates the removal of excess
inflammatory factors and suppresses lung inflammation
(Racanelli et al., 2018). However, excessive autophagy
exacerbates apoptosis and promotes inflammation (Chen SL.
et al., 2023). In a mouse model of septic lung injury, studies
have shown that autophagy levels increase during the initial
phase of sepsis when the damage is localized, acting as an
adaptive response to inflammation. However, as the lung injury
advances to systemic inflammation, autophagy is inhibited in lung
tissues. This suggests that autophagy malfunction is closely
associated with the pathological development of septic lung

injury (Zhao et al., 2023). However, its precise role in acute
lung injury (ALI) during sepsis remains elusive.

The term ferroptosis was initially proposed by Dixon et al., in
2012 as a specific type of programmed death of iron dependence
caused by lipid peroxidation with unique morphological,
biochemical, and genetic features (Dixon et al., 2012).
Researchers believe that ferroptotic cells often exhibit necrosis-
like morphological changes, including loss of cell membrane
integrity, cytoplasmic swelling, and moderate chromatin
condensation. Additionally, the mitochondria of ferroptotic cells
often show condensation or swelling, increased mitochondrial
membrane density, reduction or disappearance of mitochondrial
cristae, and outer membrane reputure (Gao et al., 2019). The
important mechanisms of ferroptosis (lipid peroxidation, iron
homeostasis imbalance, and antioxidant systems) have been
clearly described in previous studies and will not be repeated in
this paper. Excessive iron accumulation is believed to activate
ferroptosis, followed by lipid peroxidation reactions that directly
or indirectly lead to abnormalities in cell structure and function,
ultimately leading to cell death (Chen X. et al., 2021).

Pyroptosis was first proposed by Cookson and Brennan in
2001 (Cookson and Brennan, 2001). Similar to necrotic
apoptosis, both are accompanied by rupture of the plasma
membrane. However, before the rupture of the plasma
membrane, pyroptotic cells show less swelling and produce
multiple bubble-like projections (Chen et al., 2016). The
formation of cell membrane pores is accompanied by the
release of cellular contents through these pores during
pyroptosis. Gasdermins are a family of pore-forming effector
proteins capable of causing plasma membrane rupture (Shi et al.,
2017). Gasdermin D (GSDMD), a member of the gasdermin
family, is a key and widely studied protein involved in pyroptosis
execution. Caspases are a family of aspartate-specific cysteine
proteases that have been conserved throughout evolution
(Lamkanfi and Dixit, 2014). Caspases 1/3/4/5/8/11 and
granzyme cleave gasdermins into two structural domains:
gasdermin-N and gasdermin-C (Ding et al., 2016; Yu et al.,
2021). Meanwhile, caspases directly or indirectly cleave pro-
IL-1β and pro-IL-18 into their active forms (Rao et al., 2022).
Consequently, the gasdermin-Ns construct gasdermin
membrane pores, which release large amounts of inflammatory
factors and cytoplasmic contents, resulting in cell pyroptosis
(Wei et al., 2022; Dai et al., 2023). Specific mechanisms were
detailed in a previous review (Yu et al., 2021). Although
pyroptosis can cause some tissue damage, moderate pyroptosis
eliminates intracellular pathogens during the early stages of
infection (Yu et al., 2021). Conversely, excessive pyroptosis
leads to an uncontrolled inflammatory response that promotes
tissue and organ damage during sepsis.

Autophagy, pyroptosis, and ferroptosis have emerged as
prominent areas of research in the past decade. The development
of ALI in sepsis is frequently associated with these three forms of
programmed cell death (PCD). However, there has been a dearth of
systematic investigation and analysis regarding the role played by
different types of PCD in sepsis-induced ALI. In order to provide a
clearer overview of the advancements made in autophagy,
ferroptosis, pyroptosis, and sepsis-induced ALI, we conducted a
bibliometric analysis using publications from PubMed database
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developed by the National Center for Biotechnology Information
(NCBI) at the National Library of Medicine (NLM) spanning from
2014 to 2024. Initially, we retrieved 717 original articles; after

manual screening to exclude irrelevant articles, the final count
stood at 477 valid articles. The number of publications over time
can serve as an indicator reflecting both the pace and trends within

FIGURE 1
Annual trends in the number and total number of publications on autophagy, pyroptosis and ferroptosis.

FIGURE 2
Main cellular events/features of autophagy, ferroptosis, and pyroptosis. The main morphological manifestations of autophay: expansion of Golgi
apparatus and other organelles, nuclear contraction, formation of a large number of phagocytic vesicles, cell plasmamembrane specialization. Themain
morphological manifestations of ferroptosis: shrinkage of mitochondria, reduction of mitochondrial cristae, increase of mitochondrial density, rupture of
mitochondrial outer; lack of chromatin condensation and cell membrane rupture. Themainmorphological manifestations of pyroptosis: swelling of
the cell, bubbling of the cell membrane, formation of pores in the membrane from which cytoplasmic outflow occurs; organelles are swollen but
morphologically visible; and condensation of chromatin.
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this field. Figure 1 illustrates the overall growth trend in annual
publications along with specific counts for autophagy, ferroptosis,
and pyropyrosis across each year. The total volume of publications
has grown steadily from 2014–2021 with significant growth shown
from 2022 to the present. As it can be noticed by the number of
publications per year for each type of death, the research hotspot in
the last 5 years has expanded from autophagy to pyroptosis and
ferroptosis. Although the number of publications on autophagy
began to decrease after 22 years, the importance of autophagy should
not be overlooked. Recent studies have offered new clues to their
correlation, and the study of crosstalk mechanisms between multiple
death types is gaining momentum. Therefore, this review is of great
clinical significance as it aims to explore the mechanisms and
treatment of sepsis-induced ALI based on the regulation of
autophagy, ferroptosis, and pyroptosis (Figure 2).

2 Possible mechanisms of programmed
cell death and treatment of sepsis-
induced ALI

2.1 The role and mechanism of autophagy in
sepsis-induced ALI

2.1.1 Common signaling pathways regulating
autophagy in sepsis-induced ALI
2.1.1.1 AMPK/mTOR signaling pathway

Autophagy is usually induced by cellular or environmental
stimuli such as nutrient deprivation, metabolic and energetic
stress, pathogen invasion, and oxidative stress (Shu et al., 2023).
Mammalian target of rapamycin (mTOR) is a hotspot for negative
autophagy regulators. mTOR is an evolutionarily conserved serine/

FIGURE 3
AMPK and mTOR signaling pathway through autophagy in sepsis-induced acute lung injury. mTOR serves as a pivotal negative regulator of
autophagy initiation, with TORC1 being one of its crucial constituents. Upon activation of AMPK, mTOR is suppressed, leading to the phosphorylation of
ULK1 and subsequent induction of autophagy. Ketamine, A-769662, and kireol can enhance autophagy while inhibiting apoptosis through the AMPK/
mTOR pathway. BF promotes autophagy by upregulating AMPK expression, facilitating the degradation of NLRP3 inflammasome and mitigating
LPS-induced lung inflammation. Sevoflurane-triggered activation of AMPK results in ULK1 phosphorylation, which subsequently promotes PIKFYVE
phosphorylation, accelerates LC3II-to-LC3I conversion, enhances autophagosome formation, and reduces pulmonary inflammatory factors.
Abbreviations: AMPK, AMP-activation protein kinase; mTORC1, mechanistic target of rapamycin complex 1; ULK1, Unc-51-like autophagy protein 1;
PIKFYVE, FYVE domain-containing phosphatidylinositol 3-phosphate5-kinase.
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TABLE 1 Mechanisms of autophagy in sepsis-induced acute lung injury (ALI).

Cell
death

Pathway Compound/
Target

Model Effect Mechanism Ref

Autophagy AMPK A769662 CLP-induced septic ALI mice Induction A769662 inhibits mTOR signaling
pathway by activating AMPK,
increasing the expression of the LC3B-
I and LC3B-II proteins and alleviating
sepsis-induced ALI.

Kitzmiller et al. (2019)

Buformin LPS-induced septic ALI mice Induction BF inhibites NLRP3-mediated
pyroptosis in sepsis-induced ALI by
upregulating autophagy and
Nrf2 protein levels via an AMPK-
dependent pathway

Liu et al. (2022)

Ketamine LPS-induced septic ALI mice Induction AMPK expression is activated after
ketamine treatment, inhibiting mTOR
pathway and promoting autophagy,
and alleviating the apoptosis of AEC II
cells

Cao et al. (2022)

Sevoflurane CLP-induced septic ALI rats;
MPVECs

Induction Sevoflurane reduces inflammation,
recoveres cell division to suppress cell
apoptosis and maintain cell survival,
and activates LPS-induced
autophagic flux

Fu et al. (2022a)

PI3K/Akt/
mTOR

PICK1 CLP-induced septic ALI mice;
BMDM

Induction PICK1 has a protective effect on
sepsis-induced ALI. PICK1 deficiency
can inhibit the PI3K/Akt/mTOR
pathway. The inhibition of Akt and
mTOR pathway may affect the
reformation of autolysosome disrupt
the autophagic flux in PICK1−/− mice,
and aggravate ALI.

Mo et al. (2018), Qian
et al. (2018)

Liensinine LPS-induced septic ALI mice;
Beas-2B

Inhibition Liensinine blocks late autophagy of
LPS-induced ALI cells and attenuates
LPS-induced lung injury and
Inflammation

Wang et al. (2023a)

MitoQ CLP-induced septic ALI rats Inhibition MitoQ increases the expression of
p-Akt, p-GSK-3β and p-mTOR, but
decreases LC-3II/LC-3L levels. MitoQ
inhibits autophagy to protect sepsis-
induced ALI.

Li et al. (2019b)

H2S CLP-induced septic ALI mice;
MLE-12 cells

Inhibition Hydrogen sulfide ameliorats
lipopolysaccharide-induced ALI by
inhibiting autophagy via the PI3K/
Akt/mTOR pathway

Zhai et al. (2015), Xu
et al. (2018), Li et al.
(2022b)

PLSCR-3 Resveratrol CLP-induced septic ALI mice;
MH-S cells

Induction Resveratrol may alleviate ALI via
activating the VEGF-B signaling
pathway or regulating PLSCR-3-
mediated mitochondrial dysfunction
and mitophagy

Yang et al. (2018), Wang
et al. (2021)

PINK1
/Parkin

Hydrogen CLP-induced septic ALI mice;
RAW 264.7 cells

Induction Hydrogen inhibits ALI in CLP mice
via activation of PINK1-mediated
mitophagy

Chen et al. (2021b)

PINK1
/Parkin

Resveratrol LPS-induced septic ALI mice;
AM cells

Induction Resveratrol alleviates mitochondrial
damage by promoting mitophagy,
subsequently inhibiting
NLRP3 inflammasome activation and
reducing the release of pro-
inflammatory mediators. Resveratrol-
induced mitophagy is associated with
the Pink/Parkin signaling pathway
and found that mitophagy is halted in
the absence of Pink1

Wu et al. (2024)

(Continued on following page)
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threonine protein kinase that forms two complexes: TORC1 and
TORC2 (Kim and Guan, 2015). AMP-activation protein kinase
(AMPK) is an evolutionarily conserved serine/threonine protein
kinase that plays key roles in energy metabolism and synthesis. It has
been shown to directly promote autophagy by phosphorylating
autophagy-associated proteins in the ULK1 and PIK3C3/
VPS34 complex or indirectly by regulating the expression of
autophagy-associated genes downstream of transcription factors
[e.g., FOXO3, TFEB and BRD4] (Li and Chen, 2019). Therefore,
we do not discuss these details here.

AMPK is inhibited in inflammatory diseases (Jeon, 2016). As an
important molecule involved in autophagy activation, AMPK
protects against autophagy in sepsis-induced ALI (Figure 3). For
example, A769662 is a member of the thienopyridone family, and
Sanders et al. showed that A-769662 activates AMPK by inhibiting
its dephosphorylation at Thr-172 (Sanders et al., 2007). Further
studies found that A769662 ameliorated the release of inflammatory
factors in sepsis-induced ALI by activating AMPK, promoting
autophagy (Kitzmiller et al., 2019). The expression of AMPK was
upregulated following ketamine treatment, leading to the inhibition
of the mTOR pathway and subsequent promotion of autophagy,
thereby enhancing apoptosis in AEC II cell (Cao et al., 2022). In the
same year, Liu et al. found that buformin upregulated autophagy
through an AMPK-dependent pathway, promoted
NLRP3 inflammasome degradation, and inhibited NLRP3-
mediated focal death in sepsis-induced ALI, which played a
protective role (Liu et al., 2022). Studies have demonstrated that
kirenol exerts inhibitory effects on LPS-induced inflammation
through the AMPK-mTOR-ULK1 autophagy pathway (Kitzmiller
et al., 2019). Additionally, there are alternative autophagy pathways
independent of mTOR that can also mitigate lung injury by
modulating AMPK activity. For instance, Sevoflurane attenuated
inflammation, restored cellular proliferation to suppress apoptosis
and sustain cell viability (Cao et al., 2022).

From these studies, various drugs and compounds can promote
protective autophagy by activating AMPK, reducing inflammation,
and thus protecting the ALI in sepsis. Additionally, inflammation
caused by insufficient AMPK-activated autophagy may be involved
in the development of sepsis-induced ALI. Meanwhile, the use of
drugs to activate AMPK may be an effective way to treat sepsis-
induced ALI (Table 1).

2.1.1.2 PI3K/Akt/mTOR signaling pathway
In sepsis, bacteria or viruses often activate PI3K/Akt, promoting

the infiltration of inflammatory cells in the lung by regulating
endothelial cell injury (Margaria et al., 2022).
Phosphatidylinositol 3-kinase (PI3K) is an intracellular
phosphatidylinositol kinase with phosphatidylinositol and serine/

threonine kinase activities. PI3K is divided into three classes, and I
PI3K is the most widely studied. PI3K activation catalyzes the
production of PIP3 (Geering et al., 2007), acting as a secondary
messenger. PIP3 can recruit PDK1 and Akt proteins to the plasma
membrane through its pleckstrin homology structural domain,
causing PDK1 to phosphorylate threonine at position 308 of
AKT, leading to AKT activation (Alessi et al., 1997; Stokoe et al.,
1997). AKT is a class of serine/threonine kinases in the AGC family
that plays a key role as a proto-oncogene in various cellular
regulations (Revathidevi and Munirajan, 2019). PI3K/Akt
signaling pathway is key in mediating cellular responses to
inflammatory reactions (Tian et al., 2023). As a negative
autophagy regulator, AKT indirectly enhances mTOR activation
by Rheb through inhibition of TSC2 (Yang et al., 2006; Huang and
Manning, 2009). mTORC1 is a substrate of AKT. Activated
TORC1 inhibits autophagy-related proteins, such as the
downstream substrate ULK1, by phosphorylating it to inhibit
autophagy (Wang et al., 2012; Noda, 2017). P62 is an important
bridging protein that binds to substrates to facilitate their entry into
autophagosomes and plays an important role in autophagic
lysosomal degradation (Liu et al., 2016). LC3 II/I and P62 are
widely used to measure autophagy fluxes (Klionsky et al., 2008).

Autophagy regulation via the PI3K/Akt/mTOR si PI3K/Akt/
mTOR gnaling pathway is beneficial in sepsis-induced ALI.
PICK1 is a peripheral membrane protein conserved from
Cryptobacterium hydradii to humans that is expressed in many
tissues and plays important roles in cellular localization, lipid
regulation, and protein trafficking (Xu and Xia, 2006). A
previous study reported that PICK1 knockout mice receiving
CLP exacerbated ALI (Qian et al., 2018). Another study revealed
that PICK1 knockout mice exhibited increased levels of
phosphorylated p-Akt and p-mTOR, indicating the suppression
of early-stage autophagy. Moreover, deficiency in PICK1 disrupts
lysosome structure and leads to dysfunction in late-stage autophagy
as well as accumulation of autophagosomes, thereby exacerbating
sepsis-induced ALI (Xu and Xia, 2006). This study suggests that
PICK1 regulates the generation of autophagosomes by inhibiting the
PI3K/Akt/mTOR signaling pathway, thus exerting a protective effect
against sepsis-induced lung injury. Therefore, autophagy
dysfunction caused by insufficient PICK1 protein expression may
be involved in sepsis-induced ALI.

Previous studies have shown that excessive autophagy activation
of alveolar type II epithelial cells was a key feature of aggravated ALI
(Song L. et al., 2017). Another study demonstrated the beneficial
effects of inhibiting late-stage autophagy. Through the PI3K/Akt/
mTOR pathway, liensinine blocks the binding of autophagosomes to
lysosomes, induces the accumulation of autophagosomes. This
change may be responsible for the increased viability of alveolar

TABLE 1 (Continued) Mechanisms of autophagy in sepsis-induced acute lung injury (ALI).

Cell
death

Pathway Compound/
Target

Model Effect Mechanism Ref

TRAF3/ULK1/
NLRP3

— LPS-induced septic ALI mice;
THP-1 cells and mouse bone
marrow macrophages

Inhibition This research highlights the TRAF3-
ULK1-NLRP3 regulatory axis as a
pivotal pathway in ALI development
and suggests that targeting this axis
could be an effective therapeutic
strategy for ALI treatment

Jiang et al. (2024)
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epithelial cells and the decreased release of inflammatory factors
(Wang C. et al., 2023).

In addition to the inhibition of advanced autophagy by the
above-mentioned liensinine to reduce lung injury, Hydrogen is
currently a common research object in regulating autophagy to
reduce lung injury through the PI3K/Akt/mTOR signaling pathway.
Moreover, as early as 2015, treatment with hydrogen-rich saline
could effectively improve inflammation in sepsis-induced ALI (Zhai
et al., 2015). In 2018, it was discovered that hydrogen sulfide can
activate the PI3K/Akt/mTOR pathway to suppress excessive
autophagy activation, thereby mitigating LPS-induced reduction
in cell viability and LDH release, ultimately ameliorating lung
injury (Xu et al., 2018). Further, GYY4137 (a novel H2S donor)
inhibited the activation of autophagy and attenuated ferroptosis,
which reduced lung injury (Li J. et al., 2022).

2.1.2 miRNAs are involved in sepsis-induced ALI by
regulating autophagy

According to genome-wide expression analyses, approximately
80% of genetic elements are aberrantly expressed in patients with
sepsis. Non-coding RNAs, including micro RNAs (miRNAs), long
non-coding RNAs, and cyclic RNAs, are key regulators of sepsis
pathogenesis (Zhang et al., 2017). miRNAs, approximately
21 nucleotides in length, are a large family of post-transcriptional
regulators of gene expression that control many developmental and
cellular processes in eukaryotes (Krol et al., 2010). New therapeutic
approaches focusing on miRNA intervention have received
considerable attention (Chen et al., 2020). The role of miRNAs
in regulating autophagy and sepsis-induced ALI is complex. They
can either play a protective role or aggravate disease progression.
These effects may be related to various factors, such as cell type and
drug dosage, the mechanisms of which remain unclear. Since
autophagy regulated by miRNAs plays an important role in
sepsis-induced ALI, it is important to study the mechanism of
miRNA-mediated autophagy regulation for treating sepsis-
induced ALI. This study reviews the mechanisms of autophagy
regulation from the protective and harmful aspects of miRNAs to
provide new ideas for treating diseases.

2.1.2.1 Protection of miRNA overexpression
Different miRNAs may have different effects on autophagy in

the same type of cell. Beclin 1 and β-activated kinase 1-binding
proteins 2 (TAB2) are important autophagy mediators.
Overexpression of TAB2 C-terminal domains and Beclin 1 CCD
structural domain competitively destroyed endogenous Beclin 1 and
inhibited autophagy, whereas TAB2’s absence triggered autophagy
(Criollo et al., 2011). IL-1β and TNF-α directly cause lung injury in
sepsis-induced ALI by damaging the capillary endothelium and
alveolar epithelium. Inactivation of Caspase-1 reduces IL-1
synthesis. miR-155 induces autophagy by inhibiting TAB2,
resulting in reduced TNF-α and IL-1 levels, as well as decreased
Caspase-1 expression in lung macrophage cells, thereby
ameliorating lung injury (Liu F. et al., 2017). Another study
found that, BMSC-derived exosomes can reduce lung tissue
damage by transferring miR-384-5p into alveolar macrophages.
miR-384-5p Directly binds to Beclin-1, inhibiting LPS-induced
macrophage autophagy. This helps in attenuating extensive
leukocyte infiltrates, interstitial and alveolar edema, and lung

hemorrhage (Liu X. et al., 2021). The two studies appear to have
conflicting findings. Although they both observed an increase in
macrophage autophagy, the increase in miR-155 attenuated lung
injury while the decrease in miR-384-5p aggravated it. Since cellular
injury involves multiple mechanisms and the human body is highly
complex, further in-depth research is necessary to understand how
to effectively regulate autophagy in order to alleviate sepsis-
induced ALI.

The same miRNA can either promote or inhibit autophagy,
thereby exerting varying effects on the progression of sepsis-induced
ALI. This dual role may be influenced by factors such as cell type and
disease progression, requiring further investigation. For example,
MiR-223-3p-loaded exosomes from the bronchoalveolar lavage fluid
promote alveolar macrophage autophagy, increase cell viability and
reduces the release of inflammation, thereby attenuating ALI by
inhibiting the expression of Recombinant Serine/Threonine Kinase
39(STK39) (He N. et al., 2022). Alveolar type II epithelial cells help
maintain alveoli structure and function and assist in repair after
injury. Research shows that LPS-treated alveolar type II epithelial
cells had decreased miR-223-3p and increased Foxo3a, affecting
autophagy. Downregulation of lncRNA-SNHG14 or upregulation of
miR-223-3p can reduce IL-6, IL-1β, and TNF-α levels by inhibiting
autophagy (Hong et al., 2021). In addition, upstream regulation of
FOXO3 is not limited to miR-223-3p. miR-34a might suppress the
excessive autophagic activity in AT-II cells by targeting FOXO3 to
reduce the damage caused by LPS-induced ALI (Song L. et al., 2017).
Similarly, the overexpression of miR-216a and miR-150 inhibited
autophagy and alleviated LPS-induced ALI (Li P. et al., 2019; Kong
et al., 2020). miR-377-3p released by hucMSC exosomes ameliorates
Lipopolysaccharide-induced ALI by targeting RPTOR to induce
autophagy in vivo and in vitro (Wei et al., 2020). From these
studies, it can be concluded that the overexpression of miRNAs
can reduce LPS-induced ALI by promoting or inhibiting autophagy
(Figure 4A), and most of the miRNAs in these studies had low or
lower expressions than normal people in LPS-treated cells or
patients with sepsis. This suggests that these miRNAs participate
in the progression of sepsis-induced ALI by regulating autophagy
and promoting protective miRNAs to provide a new direction for
disease treatment.

2.1.2.2 Harmfulness of miRNA overexpression
miR-210-3p is highly enriched during sepsis and is released into

the bloodstream to promote leukocyte migration. miR-210-3p
overexpression decreases autophagy associated genes 7 (ATG 7)
and LC3II/LC3I expression and increases P62 expression.
Treatment of septic mice with adenovirus-anti-miR-7-3p
improved the impaired autophagosome formation caused by
miR-210-3p overexpression (Li G. et al., 2021). HOX transcript
antisense intergenic RNA(HOTAIR) regulated apoptosis, cell cycle,
proliferation and autophagy through the miR-17-5p/ATG2/ATG7/
ATG16 axis, thereby driving LPS-induced ALI. HOTAIR
knockdown (si-HOTAIR) suppressed protein expression of the
autophagy markers light chain 3B and Beclin-1, and alleviated
LPS-induced lung injury in vivo (Li Y. et al., 2021). MSCs may
alleviate LPS-ALI through downregulating miR-142a-5p, which
allows PECs to increase Beclin-1-mediated cell autophagy (Zhou
and You, 2016). Negatively mediated by Protein kinase C-alpha
(PPKCA), miR-15a-5p was highly expressed in LPS/IFN-γ-treated
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macrophages. miR-15a-5p overexpression inhibits mitochondrial
autophagy by directly targeting PDK4. PPKCA overexpression can
negatively regulate the miR-15a-5p/PDK4 pathway to promote
mitochondrial autophagy and alleviate sepsis-induced ALI (Zhu
et al., 2023). The above studies show that miRNAs can also promote
sepsis-induced ALI in some cases (Figure 4B). Inhibition or

downregulation of the expression of harmful miRNAs can
significantly reduce lung injury and provide new targets for
treating sepsis-induced ALI. Therefore, more effective drugs and
targets need to be identified. In addition, ATGmay be the key center
of miRNA regulation of autophagy, thereby aggravating or
alleviating lung injury in sepsis.

FIGURE 4
The role of miRNA-modified autophagy in sepsis-induced acute lung injury (ALI). miRNAs are involved in sepsis-induced ALI by regulating
autophagy, to inhibite or promote disease progression. (A) Overexpression of miRNA alleviates lung injury by promoting or inhibiting autophagy. (B)
Overexpression of miRNA exacerbates sepsis-induced ALI by promoting or inhibiting autophagy. → indicates a promoting effect and ⊥ indicates an
inhibitory effect. Abbreviations: TAB2, β-activated kinase 1-binding proteins 2; STK39, Recombinant Serine/Threonine Kinase 39; PDK4, pyruvate
dehydrogenase kinase isozyme 4; ATG7, autophagy associated genes 7; LC3II, Human microtubule-associated protein light chain 3II.
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2.1.3 mtDNA is involved in sepsis-induced ALI by
regulating autophagy

Mitochondria are central to the cellular energy supply. The
regulation of mitochondrial autophagy plays an important role in
the progression of sepsis-induced ALI (Table 1). RUNX1-
dependent activation of mitophagy in AT2 protects the lungs
from LPS injury. This also supports the conclusion that
dysregulation of RUNX1-dependent mitophagy in AT2 cells
contributes to the pathogenesis of ARDS (Tang et al., 2023). In
a CLP-induced mouse model, resveratrol alleviated ALI by
modulating PLSCR-3-mediated mitochondrial dysfunction and
autophagy (Wang et al., 2021). The PINK1/Parkin pathway, a key
regulator of mitochondrial autophagy, is activated to promote
mitochondrial autophagy in response to H, which, in turn,
inhibits ALI in CLP (Chen H. et al., 2021). Resveratrol has
been found to mitigate mitochondrial damage by promoting
mitophagy, thereby facilitating the timely elimination of
damaged mitochondria and inhibiting inflammasome
activation and the release of proinflammatory factors. This
mechanism aids in maintaining intracellular homeostasis and
alleviating inflammatory cell infiltration, hemorrhage, and
alveolar septal thickening (Chen H. et al., 2021). Another
experiment validated the interaction between autophagy and
NLRP3. Upregulation of ULK1 was shown to contribute to
enhanced LPS-induced autophagy. NLRP3 was identified as a
pivotal pyroptosis gene implicated in ALI development. The
TRAF3 protein was discovered to inhibit ULK1 through
ubiquitination, leading to increased activation of the
NLRP3 inflammasome. Their activation can trigger initiation,

amplification, and injury associated with inflammation in ALI
(Taanman, 1999).

Human mtDNA is a 16,569 bp double-stranded circular
molecule containing 37 genes encoding two rRNAs, 22 tRNAs,
and 13 polypeptides. mtDNA-encoded polypeptides are subunits
of the enzyme complex of the oxidative phosphorylation system
(Taanman, 1999). Damage to mtDNA and loss of mitochondrial
genome integrity play roles in the development of severe early onset
and chronic age-related diseases (Sharma and Sampath, 2019)
(Figure 5.). It has been found that mtDNA can escape from
autophagy and cause inflammation. mtDNA, an inflammatory
factor, cannot escape autophagy or DNase II degradation.
However, atherosclerotic plasma and plaques have elevated levels
of the LL37-mtDNA complex, which prevents the degradation of
mtDNA by DNase II and allows it to escape autophagy (Zhang et al.,
2015). Reportedly, serum human antimicrobial peptide LL-37 levels
were higher in patients with severe sepsis than in those with mild
sepsis. Exogenous delivery of LL-37-mtDNA complex significantly
exacerbated lung inflammation. Anti-cramp-mtDNA antibodies
attenuate the hyperinflammatory response in LPS-induced acute
lung injury. Treatment with LL-37 may effectively reduce mtDNA
degradation to inhibit mitochondrial autophagy, thereby
exacerbating septic ALI (Zuo et al., 2019). This reveals a novel
mechanism of autophagy in septic lung injury. Additionally,
infection and stress promote the release of mtDNA from injured
cells into circulation. Excess mtDNA activates the STING pathway,
which induces lysosomal acidification disorders in an interferon-
dependent manner via the TBK1 signaling pathway. This results in
abnormal autophagy and exacerbation of sepsis. Induced autophagy

FIGURE 5
mtDNA is involved in sepsis-induced acute lung injury by regulating autophagy. mtDNA can escape autophagy and cause inflammation. Serum
human antimicrobial peptide LL-37 levels are higher in patients with severe sepsis than in those with mild sepsis. LL37-mtDNA complex avoids the
degradation of mtDNA by DNase II, allowing it to escape autophagy. The excess of mtDNA activates the STING/TBKI pathway, which results in abnormal
autophagy and exacerbating sepsis-induced acute lung injury.
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and lack of STING could attenuate lung injury, revealing the
involvement of autophagy disorder in the sepsis-ALI Pathway
(Liu Q. et al., 2021). Thus, it is clear that inhibition of
mitochondrial autophagy generally aggravates ALI in sepsis. The
autophagic escape observed in patients with severe sepsis may be the
key to aggravation.

Based on these studies, the mechanisms associated with
autophagy and ALI in sepsis are complex. In different cases,
insufficient or excessive autophagy can cause lung injury.
Promoting or inhibiting autophagy may serve as mechanisms to
protect against lung injury in sepsis. Autophagy, as a conservative
mechanism for maintaining cellular homeostasis, is responsible for
degrading misfolded proteins, damaged organelles, and intracellular
pathogens (Glick et al., 2010). We propose that activation of
autophagy at an early stage could restore cell vitality by
phagocytosing damaged organelles and inflammatory factors,
thereby reducing lung injury. However, during the later stages of
the disease, autophagy alone is insufficient to counteract the
extensive inflammatory damage; excessive activation of autophagy
in alveolar epithelium accelerates cell death (Song L. et al., 2017). At
this stage, autophagy may inadvertently degrade normal proteins
and organelles, exacerbating cell damage and hastening the
progression of lung injury in sepsis. Various signaling pathways
that regulate autophagy, such as miRNAs andmtDNAs, are involved
in disease progression. Therapies targeting each molecule or gene
open up a new market for treating lung injury in sepsis.

2.2 Role and mechanisms of ferroptosis in
sepsis-induced acute lung injury

2.2.1 P53 signaling pathway
Tumor protein p53 (P53) is a human tumor suppressor gene

that mediates cell cycle arrest, apoptosis, and metabolic changes
(Riley et al., 2008). It involves many other physiological and
pathological processes (e.g., immune response, tissue ischemia/
reperfusion, neurodegeneration). In 2015, Le Jiang et al. linked
P53 to ferroptosis for the first time, claiming that P53 and
mutant P53 were involved in regulating ferroptosis (Jiang et al.,
2015a). Studies since then have demonstrated the dual role of P53 in
regulating ferroptosis. It can enhance ferroptosis by inhibiting solute
carrier family 7 member 11 (SLC7A11) expression or promoting
SAT1 and GLS2 expression. In contrast, P53 can inhibit ferroptosis
by suppressing DPP4 activity or inducing CDKN1A/p21 expression
(Jiang et al., 2015a; Jiang et al., 2015b; Kang et al., 2019). SLC7A11,
an important component of the Xc-GSH-GPX4 antioxidant
pathway, promotes the exchange of cysteine and glutamate in the
plasma membrane. In this antioxidant pathway, the system Xc,
which helps glutathione peroxidase 4 (GPX4) reduce peroxides,
counteracts ferroptosis by transporting cysteine to synthesize
glutathione (Dixon et al., 2012; Dixon et al., 2014).

Meteorin-like/Meteorin-β (Metrnβ), also known as interleukin
(IL)-41, is a newly discovered secreted protein. Researchers have
experimentally demonstrated that it protects against LPS-induced
ALI by inhibiting ferroptosis by activating of the SIRT1-P53-
SLC7A11 signaling pathway (Chen Z. et al., 2023). A study by
Youjing Yang et al. claimed that STAT6 deficiency in the lung
epithelium promotes ferroptosis and exacerbates lung injury: more

inflammatory cell infiltration and thickened alveolar septum. They
demonstrated that signal transducer and activator of transcription 6
(STAT6) attenuates ALI by inhibiting ferroptosis while increasing
the cellular antioxidant capacity, which inhibits the expression of
SLC7A11, the binding of P53 and CREB-binding protein, and
decreases the acetylaEEEtion of P53 by competitively binding to
CREB-binding protein (Yang et al., 2022). It was claimed that
MLK3 knockdown attenuated LPS-induced cellular injury by
blocking the p53 pathway (Chen et al., 2022). Notably, P53 has a
complex and extensive control of ferroptosis and is important for
treating the disease. Currently, research on the P53 signaling
pathway and ferroptosis is more related to cancer and less on
sepsis-induced ALI; further exploration is needed to understand
how to utilize this regulatory mechanism to inaugurate an emerging
therapeutic area for sepsis-induced ALI in the future.

2.2.2 ACSL4 signaling pathway
Acyl-CoA synthetase long-chain family member 4 (ACSL4) is

mainly located in the endoplasmic reticulum, mitochondria, plasma
membrane, and peroxisomes, abundant in adrenal glands, ovaries,
testes, and brain tissues (Quan et al., 2021). ACSL4 affects
ferroptosis by altering cellular lipid composition, catalyzed by
ACSL4 and lysophosphatidylcholine acyltransferase 3.
Polyunsaturated fatty acid (PUFA), such as arachidonic acid and
epinephrine, synthesize lipids sequentially and are inserted into
membrane phospholipids to form the PUFA-PL complex (Yuan
et al., 2016; Doll et al., 2017). Subsequently, they are oxidized to lipid
hydroperoxides in the presence of peroxidases, activating ferroptosis
(Kagan et al., 2017). Activation of iron-dependent lipid peroxidation
produces lipid peroxides (malondialdehyde and 4-hydroxynonenal),
which can lead to the formation of holes in the lipid bilayer,
ultimately leading to cell death (Tang and Kroemer, 2020).

Reportedly, LPS stimulation upregulates ACSL4 expression,
which is blocked by uridine supplementation. Uridine treatment
attenuated sepsis-induced ALI pathological changes, as manifested
by pulmonary hemorrhage, interstitial edema and thickening of the
alveolar wall in HE staining. This maybe because uridine promotes
excess cellular energy and lipolysis and inhibits lipid synthesis,
indicating that uridine exerts a protective effect against
ferroptosis through the ACSL4 signaling pathway (Lai et al.,
2023). CircEXOC5 enhances the stability of its target gene
ACSL4 by binding to the RNA-binding protein PTBP4 and up-
regulating its expression, thereby promoting ferroptosis and
exacerbating sepsis-induced ALI. The results of the study showed
that the CLP group showed vascular congestion, hemorrhage,
alveolar sac collapse, alveolar wall and alveolar septum thickening
(Wang W. et al., 2022). The knockdown of SHP2 downregulated
ACSL4 expression to attenuate ferroptosis in LPS-induced ALI 2 (Li
et al., 2023). These studies clearly show that ferroptosis can be
controlled through the ACSL4 signaling pathway for cell protection;
however, more of these mechanisms need further investigation to
provide ideas for the clinical treatment of sepsis-induced ALI.

2.2.3 Nrf2 signaling pathway
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a

transcription factor with seven functional structural domains
responsible for maintaining the stability of Nrf2 and regulating
its transcriptional activity (Bellezza et al., 2018). Nrf2 is at low levels
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under normal conditions. Once oxidative stress occurs, it rapidly
moves from the cytoplasm to the nucleus, where it binds to
antioxidant/electrophilic response elements (AREs/EpREs) to
regulate the redox state of cells (Itoh et al., 1997). As an essential
cofactor, iron participates in various physiological and biochemical
reactions, simultaneously iron may increase oxidative damage by
directly generating excess reactive oxygen species (ROS) through the
Fenton reaction. Therefore, maintaining iron homeostasis is
fundamental for various physiological and biochemical reactions,
and when iron overload is predisposed to ferroptosis (Dixon et al.,
2012; Doll and Conrad, 2017). Nrf2 maintains iron homeostasis by
participating in several reactions that regulate haem synthesis,
hemoglobin catabolism, iron storage, and iron transfer.
Therefore, Nrf2 is very important in regulating ferroptosis
(Kerins and Ooi, 2018).

Itaconate is produced by diverting aconitate away from the
tricarboxylic acid cycle during macrophage activation. 4-octyl
itaconate (4-OI), a cell-permeable derivative of endogenous
itaconate, has the potential to activate Nrf2 pathways. HE R et al.
found that pre-treatment of 4-OI significantly attenuated LPS-
induced ALI, as reflected by pulmonary hemorrhage, interstitial
edema, thickening of the alveolar wall, and tissue damage. Their
findings suggest that itaconate promoted the transcription of target
genes (GPX4, GCLM, and SLC7A11) and inhibited macrophage
ferroptosis in an Nrf2-dependent manner (He R. et al., 2022).
Moreover, uridine promotes the expression of Nrf2 in cells,
animals, and patients with sepsis, leading to an increase in Nrf2-
dependent antioxidant targeting genes (SLC7A11, GPX4, and HO1),
indicating that it activates the antioxidant system and inhibits
ferroptosis (Lai et al., 2023). Although studies have shown that
Nrf2 inhibits ferroptosis by up regulating GPX4, there are
differences in the specific, ways in which AUF1 upregulates
Nrf2 through mRNA levels, and MUC1 enhances the inhibitory
effect of vitamin E on Keap1 and stimulates the phosphorylation
level of GSK3β to promote Nrf2 entry into the nucleus (Wang YM.
et al., 2022; Wang Y. et al., 2022). ADSCs exosomes inhibited sepsis-
induced ALI caused by ferroptosis in PMVECs by inhibiting
Keap1 to upregulate GPX4 expression and facilitate
Nrf2 expression and translocation into the nucleus (Shen et al.,
2023). The specific pathological manifestations of ALI: alveolar
capillary swelling and congestion, alveolar cavity bleeding,
inflammatory cell infiltration, have been improved (Shen et al.,
2023). Prior research has revealed that Urolithin A (UA) has
different pharmacological properties, including antioxidation,
anti-inflammation, neuroprotection, and improved muscle
function. The results of the study by LOU L et al., in 2023 show
that UA inhibits LPS-mediated inflammation and ferroptosis
through activation of the Keap1-Nrf2/HO-1 pathway and is
effective in the treatment of ALI (Lou et al., 2023). Avic acid
inhibited ferroptosis and attenuated alveolar epithelial barrier
dysfunction in sepsis-induced ALI by activating the Nrf2/HO-
1 pathway (Tang et al., 2022). BACH1 is a novel LPS-induced
injury regulator that modulates inflammatory responses, oxidative
stress, and ferroptosis by activating Nrf2/HO-1 signaling, suggesting
that BACH1 may be a promising therapeutic candidate for ALI
treatment (Wang RX. et al., 2023). In summary, Nrf2 inhibited
ferroptosis by inhibiting peroxidation and maintaining iron
homeostasis, alleviating sepsis-induced ALI. Consequently,

Nrf2 may be a future target for treating sepsis-induced ALI,
which requires further investigation (Figure 6).

2.2.4 Other signaling pathways
In addition to the mechanisms described above, other signaling

pathways can regulate ferroptosis to achieve a protective effect
against sepsis-induced ALI. For example, nuclear receptor
coactivator 4 (NCOA4) is a selective cargo receptor for ferritin.
NCOA4-dependent autophagy, also known as ferritin phagocytosis,
causes an increase in intracellular iron levels and the Fenton
reaction, which promotes the onset of ferroptosis (Hou et al.,
2016). YAP1 disrupted the NCOA4-FTH1 response and inhibited
NCOA4-mediated ferritin phagocytosis, preventing ferroptosis and
subsequent mitochondrial ROS-related dysfunction in sepsis-
induced ALI (Zhang et al., 2022). Protectin conjugates in tissue
regeneration 1 (PCTR1) in tissue regeneration is an endogenous
lipid mediator that inhibits LPS-induced ferroptosis through the
ALX/PKA/CREB signaling pathway (Lv et al., 2023). Additionally,
pretreatment with rmMANF attenuates sepsis-associated lung
injury by inhibiting the GRP78-dependent PERK/ATF4 pathway
and ferroptosis in mice (Zeng et al., 2023). STING promotes
ferroptosis through STAT3 signaling, promoting LPS-induced
ALI (Gu et al., 2024). A large number of extracellular neutrophil
extracellular traps (NETs) are produced during the development in
sepsis patients and experimental models. Excessive NETs can
damage the endothelial glycocalyx, leading to disruption of the
integrity of the SDC-1/HS/HGF complex, thereby obstructing the
downstream cMET signaling pathway conduction and inducing
endothelial ferroptosis, which further exacerbates tissue injury
(Fei et al., 2024). Therefore, these approaches could provide new
ideas and targets for the treatment of sepsis-induced ALI(Table 2).

2.3 Role and mechanisms of pyroptosis in
sepsis-induced ALI

2.3.1 NF-κB pathway
NF-κB is a dimeric transcription factor in B lymphocytes

regarded as a major regulator of inflammation (Li W. et al.,
2022). In the classical pathway of pyroptosis, activation of the
NLRP3 inflammasome, consisting of NLRP3, ASC, and caspase-
1, requires two steps: (I) an initiation step: activation of NF-κB after
recognition of PAMPs and DAMPs by pattern recognition receptor,
which enhances NLRP3 expression and synthesis; and (II) an
activation step: recognition of NLRP3 agonists and
inflammasome assembly (Lamkanfi and Dixit, 2014; Huang
et al., 2021).

NF-κB pathway-mediated “cytokine storm” is one of the major
mechanisms of sepsis-induced ALI/ARDS onset and progression (Li
W. et al., 2022; Millar et al., 2022). In sepsis, infiltration of the lungs
by inflammatory cells such as neutrophils and macrophages is an
important part of the worsening of lung injury. Pyropyosis is an
influential way for neutrophils to exert their damaging effects.
Mouse-specific pyropyosis protein caspase-11 knockout was
shown to reduce sepsis-induced neutrophil aggregation,
pulmonary edema, and death in mice (Cheng et al., 2017).
Macrophage pyropyosis may partially explain uncontrolled lung
inflammation in ALI/ARDS (Li et al., 2018; Luo et al., 2021a). LPS in
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sepsis acts as a PAMP that activates the NK-κB signaling pathway in
neutrophils and macrophages via TLR4/MyD88 (Fan and Fan, 2018;
Liu and Sun, 2019). The activated NK-κB stimulates the activation of
NLRP3 inflammasome, causing pyropyosis of macrophages and
neutrophils (Fan and Fan, 2018; Liu and Sun, 2019; Huang et al.,
2023). They subsequently release excessive pro-inflammatory
cytokines such as IL-1β and IL-18 involved in the development
and progression of ALI. In addition, in sepsis, LPS can also activate
endothelial cell pyropyosis through the TLR4/MyD88/NF-κB
pathway resulting in impaired pulmonary vascular permeability,
thereby increasing pulmonary edema (Huang et al., 2023). In sepsis,
the endogenous substances cold-inducible RNA-binding protein
and angiopoietin-like 4 also activated NF-κB, causing endothelial
cell and macrophage pyroptosis, respectively, resulting in ALI (Yang
et al., 2016; Sun et al., 2024). Exosomal Tenascin-C binding to
TLR4 on macrophages promotes mitochondrial damage through
increased ROS production, which activates inflammatory P38/NF-
κB pathway, and the DNA damage response triggering macrophage
pyroptosis (Gong et al., 2024). However, the expression of some
endogenous substances increased. They inhibited pyroptosis by
blocking the NF-κB pathway and then attenuated sepsis-induced
ALI (Figure 7). For example, heat shock factor 1 can upregulate
TRAF3 expression to inhibit the NF-κB pathway and increase
SGT1 expression to promote NLRP3 ubiquitination, significantly

reducing neutrophil pyropyosis and improving survival in sepsis-
induced ALI mice (Shi et al., 2022). The cold shock protein RNA-
binding motif protein 3 was elevated in patients with sepsis and
mice. It has been demonstrated that RNA-binding motif protein
3 gene deficiency aggravates sepsis-induced ALI through the NF-κB/
NLRP3 pathway (Long et al., 2023). Besides erythropoietin would
repress NLRP3 inflammasome by deregulating NF-κB
p65 phosphorylation and nuclear translocation via the EPOR/
JAK2/STAT3/NF-κB axis, which attenuates pulmonary edema
and microvascular permeability in mice in sepsis (Cao et al.,
2020). In conclusion, Pyroptosis of various lung cells may be one
of the mechanisms that induce ALI in sepsis.

For sepsis-induced ALI/ARDS, new pharmacological studies
related to the NF-κB pathway in pyroptosis have shown some
results. For example, a novel proteolysis-resistant cyclic helix B
peptide prevents macrophage pyropyosis by inhibiting NF-κB
nuclear translocation to attenuate interstitial stromal edema,
intra-alveolar and interstitial hemorrhage in sepsis (Zhang et al.,
2020). Loganin significantly regulated macrophage polarization and
NLRP3 inflammasome activation, which alleviated alveolar
structural damage and inflammatory cell infiltration in a CLP-
induced ALI model (Zhang et al., 2021). SYG regulated the
TLR4/NF-κB/MAPK signaling pathway to downregulate the
expression of pyro-related proteins (including NLRP3, ASC,

FIGURE 6
Mainmechanism and regulation of ferroptosis in sepsis-induced acute lung injury. It can be roughly divided into three categories. I: ironmetabolism
pathways. The extracellular ferric iron is oxidized to ferrous iron and transported into the cell, and the excess iron ions undergo the Fenton reaction to
generate a large amount of reactive oxygen species (ROS). II: lipid peroxidation. PUFA generate a large amount of lipid peroxides under the action of a
series of enzymes. Accumulation of lipid ROS leads to ferroptosis. III: antioxidant system. Cystine is transported into cells by the system Xc and then
reduced to cysteine, which together with glutamate and glycine synthesize glutathione, promote the synthesis of GPX4, remove intracellular lipid ROS,
and inhibit ferroptosis. The solid line indicates the promotion and the dotted line indicates the inhibition. Dotted arrows show inhibition, solid arrows show
promotion. Abbreviations: GSH, glutathione; GPX4, glutathione peroxidase 4; NOCOA4, nuclear receptor coactivator 4; SAT1, spermidine/spermine N1-
acetyltransferase 1; PUFA, polyunsaturated fatty acids; PL-OOH, phospholipid hydroperoxides.
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TABLE 2 Mechanisms of ferroptosis in sepsis-induced acute lung injury (ALI).

Cell
death

Pathway Compound/
Target

Model Effect Mechanism Ref

Ferroptosis P53 Meteorin-like/Meteorin-β
(Metrnβ)

LPS induced-septic ALI mice;
MLE-12 cells

Inhibition Metrnβ regulates ferroptosis in ALI by
modulating the SIRT1-P53-
SLC7A11 pathway lung tissue

Chen et al.
(2023b)

STAT6 LPS induced-septic ALI mice; HBE
cells/THP-1 cells

Inhibition STAT6 negatively regulated ferroptosis
via regulating the P53/
SLC7A11 pathway

Yang et al.
(2022)

MLK3 MLE-12 cells Inhibition Silence of MLK3 alleviated LPS-induced
lung epithelial cell injury by inhibiting
p53-mediated ferroptosis

Chen et al.
(2022)

ACSL4 CircEXOC5 CLP induced-septic ALI mice;
MPVECs

Induction CircEXOC5 can enhance the stability of
the target gene ACSL4 by binding to the
RNA binding protein PTBP1 and
upregulate its expression, thereby
promoting ferroptosis and exacerbating
sepsis-induced ALI

Wang et al.
(2022a)

Uridine LPS induced-septic ALI mice;
THP-1/A549/HUVEC cells

Inhibition Uridine supplementation prevents
upregulated ACSL4 expression by
promoting cell energy excess, boosting
lipolysis, and inhibiting lipid synthesis

Lai et al.
(2023)

SHP2 LPS induced-septic ALI mice;
MLE-12 cells

inhibition Knockdown of SHP2 reduced the
ACSL4 expression, subsequently
decreasing the accumulation of ROS
and the susceptibility to ferroptosis,
thereby leading to the alleviation of
ferroptosis and LPS-induced ALI

Li et al.
(2023)

Nrf2 Itaconate LPS induced-septic ALI mice;
THP-1 cells

Inhibition The function of itaconate 4-OI to inhibit
macrophage ferroptosis was dependent
on the blockage of the degradation of
Nrf2, the resultant increase of
Nrf2 promoted the transcription of
target genes, including GPX4, GCLM,
SLC7A11

He et al.
(2022b)

Uridine LPS induced-septic ALI mice;
THP-1/A549/HUVEC cells

Inhibition Uridine supplementation prevents
upregulated ACSL4 expression by
promoting cell energy excess, boosting
lipolysis, and inhibiting lipid synthesis

Lai et al.
(2023)

AUF1 CLP induced-septic ALI mice;
AECS cells

Inhibition AUF1 stabilized the stability of
Nrf2 mRNA and at the same time
promoted the degradation of
ATF3 mRNA, and both were
functionally important for resistance to
ferroptosis

Wang et al.
(2022c)

MUC1 CLP induced-septic ALI mice;
MLE-12 cells

Inhibition MUC1 can inhibit Keap1, increase the
phosphorylation level of GSK3β, and
promote Nrf2 entry into the nucleus,
thus improving the expression level of
GPX4, sensitizing vitamin E, inhibiting
ferroptosis, and alleviating acute lung
injury in sepsis

Wang et al.
(2022b)

ADSCs exosome CLP induced-septic ALI mice;
orimary PMVECS

Inhibition ADSCs exosomes relieved
inflammation-induced PMVECs
ferroptosis and protected lung injury
from sepsis via specific delivery of miR-
125b-5p and regulation of Keap1

Shen et al.
(2023)

Urolithin A LPS induced-septic ALI mice;
BEAS-2B cells

Inhibition UA increased the level of antioxidants
in lung tissues while reducing LPS-
mediated ferroptosis by activating
Keap1-Nrf2/HO-1 pathway

Lou et al.
(2023)

(Continued on following page)
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GSDMD, and caspase 1), thereby reducing the levels of TNF-α, IL-6,
and IL-1β (Zhuo et al., 2022).

In summary, pyropyosis of various histiocytes and inflammatory
cells in the lungs may be one of the mechanisms that induce ALI in
the presence of sepsis. The NF-κB pathway, as a key step in the
activation of pyropyotic NLRP3 inflammasome, may be an effective
therapeutic target to curb the sepsis-induced cytokine storms
that induc ALI.

2.3.2 Nrf2 pathway
In sepsis, large amounts of inflammatory factors can stimulate

the release of ROS such as oxygen radicals and hydrogen peroxide
from lung-infiltrating macrophages and neutrophils (Guo and
Ward, 2007). Oxidative stress in turn exacerbates the release of
inflammatory factors in the lungs. These can directly damage
alveolar epithelial cells and vascular endothelial cells, affecting
alveolar gas exchange and ultimately leading to severe lung
dysfunction and structural damage (Guo and Ward, 2007; Sun
et al., 2023). Inhibition of pyropyosis may Nrf2 is now found to
be an important pathway for exerting a protective effect. Because
pyropyosis itself releases massive amounts of inflammatory factors.
For example, circVAPA overexpression promotes the Sirt/Nrf2 axis

by targeting miR-212-3p, thereby decreasing NLRP3 expression and
attenuating sepsis-induced inflammatory damage in ALI (Huang
et al., 2024).

ROS upregulates the expression of key substances in pyroptosis
(NLRP3, cysteinyl asparaginase-1, IL-1β, and IL-18, etc.) during the
initiation step and acts as a second messenger to drive the
NLRP3 inflammasome assembly in the activation step (Yu et al.,
2017; Zheng et al., 2022). In sepsis, alveolar macrophage pyropyosis
can be partially attributed to oxidative stress. An assay indicated that
Nrf2-deficient macrophages exhibit elevated levels of cleaved
caspase-1, which was attributed to an increase in
NLRP3 transcription induced by excessive ROS (Liu X. et al.,
2017). IRG1 is a mitochondrial gene. Nrf2/HO-1 expression and
anti-inflammatory capacity significantly reduced in IRG1−/− mice
receiving CPL, whereas GSDMD-N and serum IL-1β levels
significantly increased (Wu et al., 2020; Yang et al., 2023). This
phenomenon was alleviated by 4-OI (a derivative of itaconate),
which promoted the Nrf2/HO-1 pathway. It manifests as a
reduction in pyroptosis of cells and an attenuation of structural
damage of lung tissue (Yang et al., 2023). This suggests that the
mitochondrial gene IRG1 is a target for Nrf2 to inhibit ALI
aggravated by pyropyosis. Endothelial cell pyropyosis under

TABLE 2 (Continued) Mechanisms of ferroptosis in sepsis-induced acute lung injury (ALI).

Cell
death

Pathway Compound/
Target

Model Effect Mechanism Ref

Ferulic acid CLP induced-septic ALI mice;
MLE-12 cells

Inhibition FA treatment inhibited ferroptosis-
mediated alveolar epithelial barrier
dysfunction in sepsis-ALI via activation
of the Nrf2/HO-1 pathway

Tang et al.
(2022)

BACH1 BEAS-2B cells Inhibition BACH1 was a novel regulator of LPS-
evoked injury through regulation of
inflammation response, oxidative stress
and ferroptosis via activation Nrf2/HO-
1 signaling

Wang et al.
(2023b)

GRP78/PERK/
ATF4

RmMANF CLP induced-septic ALI mice Inhibition RmMANF pretreatment attenuates
sepsis-associated lung injury by
inhibiting the GRP78-dependent
PERK/ATF4 pathway and ferroptosis in
mice

Zeng et al.
(2023)

ALX/PKA/
CREB

PCTR1 LPS induced-septic ALI mice;
H1299 cells

Inhibition PCTR1 potently protects against acute
lung injury by inhibiting ferroptosis,
which is mediated by ALX/PKA/CREB
activation

Lv et al.
(2023)

NCOA4 YAP1 CLP induced-septic ALI mice;
MLE-12 cells

Inhibition YAP1 disrupted the
NCOA4–FTH1 reaction and inhibited
NCOA4-mediated ferritinophagy to
prevent ferroptosis and subsequent
mitochondrial ROS-related dysfunction
in sepsis-induced ALI.

Zhang et al.
(2022)

STAT3 STING LPS induced-septic ALI mice;
BEAS2B cells

Induction STING promotes ferroptosis through
STAT3 signaling, promoting LPS-
induced ALI.

Gu et al.
(2024)

SDC-1/HS NETs Patients with sepsis; LPS induced-
septic ALI mice; EA.hy926 cells;
HULEC-5a cells

Induction Excessive NETs can damage the
endothelial glycocalyx, leading to
disruption of the integrity of the SDC-1/
HS/HGF complex, thereby obstructing
the downstream cMET signaling
pathway conduction and inducing
endothelial ferroptosis, which further
exacerbates tissue injury

Fei et al.
(2024)
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oxidative stress also contributes to the lung structural damage in
sepsis. CircEXOC5 is the latest molecule analyzed by gene
sequencing to be highly expressed in sepsis-induced ALI (Wang
W. et al., 2023). CircEXOC5 can epigenetically inhibit the Nrf2/HO-
1 pathway to promote LPS-induced macrophage pyropyosis by
recruiting EZH2, which results in interstitial lung edema and
alveolar lumen collapse (Wang W. et al., 2023). In contrast,
Dihydromyricetin in endothelial cells activated Nrf2 to suppress
mtROS-mediated NLRP3 inflammasome activation and subsequent
pyroptosis (Hu et al., 2018). In CLP-induced ALI mouse models,
citrulline protects lung endothelial cells by activating the Nrf2/ROS/
NLRP3 pathway (Xue et al., 2022).

High-mobility group box 1 protein (HMGB1) is a late mediator
of endotoxin-induced lethality, resulting in the accumulation
of143 inflammatory cells, production of proinflammatory
mediators, and pulmonary edema (Yang et al., 2004; Takamiya
et al., 2009). Experiments have shown that the Nrf2/HO-1 pathway
decreased in HMGB1 release and improves the survival of sepsis-
induced ALI mouse models (Tsoyi et al., 2011; Jun et al., 2012; Park
et al., 2013). In sepsis, it is released by hepatocytes to deliver
extracellular LPS to macrophages and endothelial cells, which
directly mediates caspase11 and indirectly mediates caspase1-
dependent pyroptosis (Deng et al., 2018). Additionally, the
presence HMGB1 in neutrophils, leads neutrophil extracellular
traps formation (Xie et al., 2021). Neutrophil extracellular traps

act as secondary signals for macrophage activation, stimulating ROS
bursts in macrophages and NLRP3 protein deubiquitination (Cui
et al., 2023). This promotes the pytoptosis of pulmonary
macrophage and exacerbates lung injury.

In general, the Nrf2 pathway in sepsis attenuates pyropyosis-
induced massive inflammatory factors and damage to alveolar-
capillary structure. The Nrf2 pathway inhibits pyropyosis in
sepsis mainly by decreasing the expression or delivery of cell
damage factors such as HMGB1 and ROS to alleviate a high
amount of inflammatory factors and alveolar-capillary structural
damage in sepsis (Table 3).

2.3.3 miRNAs are involved in sepsis-induced ALI by
regulating pyroptosis

miRNAs have emerged as key players in sepsis. Previously, we
mentioned that miRNAs can regulate sepsis-induced ALI via cellular
autophagy. Song et al. reported for the first time that miR-34a
enhances lung tissue injury by promoting pyroptosis in mice with
sepsis-induced ALI (Chen et al., 2020). In sepsis, TNF-α stimulated
neutrophils to produce exosomes carrying miR-30d-5p, targeting
and stimulating M1 macrophage activation and pyroptosis (Jiao
et al., 2021) (Figure 8A). ADAR1, which is significantly reduced in
polymorphonuclear neutrophils from patients with sepsis, reduced
the expression levels of NLRP3, caspase1, GSDMD, and Il-1β via the
miR-21/A20/NLRP3 axis and suggested that miR-21 is a facilitator

FIGURE 7
NF-κB pathway through pyroptosis in sepsis-induced acute lung injury. LPS activates nuclear factor kappa-B (NF-κB) through the TRL4/
MY88 pathway. NF-κB subsequently activates NLPR3-mediated pyroptosis. Meanwhile, LPS promotes mtROS-induced deubiquitination of
NLPR3 proteins to accelerate pyroptosis. Angiopoietin-like 4 enhances NF-κB. In contrast, RNA-binding motif protein 3, erythropoietin and HSF inhibit
NF-κB activation. HSF respectively inhibits NF-κB activation and deubiquitination of NLPR3 proteins through TRAF3 and SGT1. Abbreviations:
ANGPTL4, Angiopoietin-like 4; RBM3, RNA-bindingmotif protein 3; EPO, erythropoietin; HSF, heat shock factor; TRAF3, an important class of intracellular
signal transduction factors; SGT1, a ubiquitin ligase-associated protein.
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of ALI in sepsis (Zhao et al., 2024) (Figure 8A). These results
indicated that miRNAs may be responsible for ALI via pyroptosis
in sepsis. However, miR-135b-5p inhibits cell pyroptosis by
downregulating GSDMD, alleviating sepsis-induced ALI (Zang
et al., 2022). This suggests that miRNAs involved in sepsis may
also protect against ALI by inhibiting pyroptosis. In patients with
severe sepsis, downregulation of miR-223 may induce
M1 polarization, whereas in mice with LPS-induced sepsis,
administration of miR-223 can attenuate sepsis by promoting
M2 polarization (Dang and Leelahavanichkul, 2020). During
pulmonary inflammation, neutrophil activation increases miR-
223 release via microvesicles, which subsequently targets PARP-1
in alveolar epithelial cells to exert a protective effect (Neudecker
et al., 2017) (Figure 8B). Intracellular miR-223/142 suppresses the
lung inflammasome by synergistically inhibiting NLRP3 and ASC to
inhibit the activation of the NLRP3 inflammasome in macrophages
(Xiong et al., 2023) (Figure 8B). The lncRNA OIP5-AS1 aggravated
LPS-induced ALI/ARDS by causing lung capillary endothelial cell
injury via the miR-223/NLRP3 axis (Ji et al., 2022) (Figure 8B). Fu
et al. demonstrated both in vivo and in vitro that sevoflurane
improved improves pulmonary endothelial cell pyropyosis and

alveolar septal edema thickening in sepsis-induced ALI via a
novel lncRNA (LINC00839)/miR-223/NLRP3 axis (Fu et al.,
2022b) (Figure 8B). Therefore, miR-223 may serve as a new
therapeutic target for sepsis-induced ALI. However, further
in vitro and in vivo experiments are needed for validation.

Additionally, lncRNAs act as “molecular sponges” for miRNAs,
competitively binding to miRNA response elements and affecting
miRNA-induced gene silencing, thereby upregulating the mRNA
expression of target genes (Huang, 2018; Tang et al., 2021). The
lncRNA-miRNA-mRNA axis regulates sepsis-induced ALI by
modulating the levels of inflammatory factors and apoptosis
(Tang et al., 2021). NEAT1 (lncRNA) is known to be
upregulated in sepsis. It exacerbates sepsis-induced ALI by
enhancing pyroptosis through the repression of the miR-26a-5p/
ROCK1 axis (Fan et al., 2023) (Figure 8A). Similarly, lncRNA4
344 promoted pyroptosis in the inflammatory response to intense
LPS-induced ALI by inhibiting miRNA-138-5p/mRNA NLRP3
(Luo et al., 2021b). miR-233 also exerted a role in sepsis-induced
ALI through the lncRNA-miRNA-mRNA axis. Thus, the lncRNA-
miRNA-mRNA axis modulates sepsis-induced ALI by regulating
pyroptosis. miRNA-mediated pyroptosis has a dual role in sepsis-

TABLE 3 Mechanisms of pyroptosis in sepsis-induced acute lung injury (ALI).

cell
death

Access Target/
compound

Model Effect Mechanism Ref

pyroptosis Nrf2 Citrulline LPS-induced ALI mice and
MLVECs

Induction Cit protects pulmonary endothelial cells via
activation of the Nrf2 signaling pathway, thereby
inhibiting NLRP3 inflammasome activation due
to increased levels of intracellular ROS.

Xue et al.
(2022)

gly-pro-ala peptide CLP-induced ALI mice and
J774 cells

Inhibition Gly-pro-ala peptide inhibited IL-1β secretion,
caspase-1 activation, and GSDMD expression in
CLP-induced sepsis mice by inhibiting ROS, and
alleviated acute lung injury in CLP-induced
sepsis mice

Liu et al.
(2021c)

IRG1−/− and 4-OI IRG1−/− mice and RAW264.7 cells Induction The expression of Nrf2/HO-1 significantly in the
IRG1−/− mice group increased when receiving
4-OI treatment, and 4-OI significantly inhibited
the release of LDH and IL-1β and reduced the
expression of GSDMD-N

Yang et al.
(2023)

circVAPA LPS-induced ALI mice and
RAW264.7 cells

Induction CircVAPA/miR—212—3p/Sirt1 axis also
regulates Nrf2 and NLRP3 expression upon LPS
challenge. By tar-getting miR—212—3p,
circVAPA over—expression negatively regulates
the expression of Sirt1 and pyroptosis—related
factors (Nrf2 and NLRP3), which alleviates the
inflammatory damages in sepsissinduced ALI

Huang et al.
(2024)

MAPK p38 MAPK LPS-induced ALI mice, RAW264.7,
and NR8383 cells

Inhibition Inhibiting the p38 MAPK signaling pathway
may promote a shift in macrophage cell death
from proinflammatory pyroptosis towards a
noninflammatory apoptosis process and
attenuates acute lung injury

Li et al.
(2018)

CoQ10 and AES LPS-induced ALI mice Inhibition CoQ10 and AES pretreatment prevented LPS-
induced ALI via reducing the activation of TLR4/
MyD88 signaling to downregulate p38 MAPK
and ERK1/2 and then inhibit the
NLRP3 inflammasome to protect sepsis-
induced ALI

Ali et al.
(2021)

Matrine CLP-induced ALI mice Inhibition Matrine effectively alleviates the symptoms of
CLP-induced sepsis in mice, and restrains
NLRP3 inflammasome activation by regulating
PTPN2/JNK/SREBP2 signaling pathway

Wang et al.
(2023d)
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induced ALI. Further studies are required to determine the role of
the lncRNA-miRNA-mRNA axis in pyroptosis and the
inflammatory cascade response.

2.3.4 MAPK pathway
MAPK is a serine/threonine protein kinase widely abundant in

eukaryotic cells that phosphorylates target proteins through a three-
tiered kinase cascade pathway to transactivate cells and their nuclei
(Li W. et al., 2022). MAPK consists of four subgroups: extracellular
signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal
kinases 1–3 (JNK1-3), p38, and ERK5 (Cargnello and Roux, 2011).
In sepsis, the activated MAPK pathway increases the release of IL-6,
IL-2, TNF-α, and other factors from inflammatory cells, such as
macrophages, causing histopathologic changes in lung tissue and
increased pulmonary vascular permeability (Li W. et al., 2022).
Studies have demonstrated that the inhibition of theMAPK pathway
is protective in sepsis-induced ALI (Liao et al., 2023). The
p38MAPK-specific inhibitor SB203580 blocked the secretion of

key substances for pyroptosis (NLRP3, caspase-1, and IL-1β,
among others) and other inflammatory factors in macrophages in
ALI models (Li et al., 2018). Notably, hyperphosphorylation of
MAPK molecules could activate the transcription factor NF-κB
and the ensuing inflammatory response (Liu et al., 2020).
SB203580 pre-administration inhibits LPS-induced NF-κB
phosphorylation and attenuates inflammatory responses such as
neutrophil infiltration and lung damage (Kim et al., 2006).
Moreover, if TLR4/MyD88 signaling, which causes NF-κB
activation, is downregulated, it may also suppress
NLRP3 inflammasome activation via the p38 MAPK and ERK1/
2 pathways (Ali et al., 2021). ERK1/2 and p38 are involved in cell
pyroptosis during sepsis. They may also interact with the NF-κB
pathway, leading to the development of ALI. JNK is an essential
kinase activated during pyroptosis. This kinase triggers
NLRP3 phosphorylation. Notably, phosphorylation of NLRP3 at
S194 is an integral initiating event in inflammasome activation
(Song N. et al., 2017). Deubiquitination of NLRP3 is required for

FIGURE 8
miRNA pathway through pyroptosis in sepsis-induced acute lung injury. (A) The microRNA (miR-30Dd-5p/miR-21/miR-26A-5p) pathways play
harmful roles in sepsis-induced acute lung injury by promoting pyroptosis. (B). ThemicroRNA (mi142-3p/miR-233-3p) pathways play therapeutic roles in
sepsis-induced acute lung injury by inhibiting pyroptosis. Abbreviations: SOCS-1, suppressor of cytokine signaling; ADAR1, poly (adenosine diphosphate-
ribose) polymerase–1; A20, an anti-inflammatory protein; NAT10, N-acetyltransferase; MPVECs, mouse pulmonary microvascular endothelial cells;
3′UTR, 3′untranslated regions of mRNA.
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its activation, and S194 phosphorylation of NLRP3 is a crucial
regulator of NLRP3 activation upstream of deubiquitination
(Juliana et al., 2012; Song N. et al., 2017). In addition, matrine
inhibited macrophage pyroptosis via the PTPN2/JNK/
SREBP2 pathway by inhibiting ASC phosphorylation and
negatively regulating NLRP3 inflammasome activation (Wang X.
et al., 2023). These results suggest that the MAPK pathway promotes
ALI by activating pyroptosis in sepsis and could be a therapeutic
target for research on acute lung injury in sepsis (Table 3).

Previous studies have shown that pyroptosis is closely associated
with the development, severity, and prognosis of ALI by sepsis.
Although pyroptosis has a two-sided nature in sepsis-related organ
injury, this study mainly focused on the role of pyroptosis in sepsis-
related lung tissue injury. The indirect or direct inhibition of
pyroptosis-associated proteins through various pathways has been
shown to exert protective effects against sepsis-induced acute
lung injury.

2.4 The crosstalk between various
programmed deaths in sepsis induced ALI

Increasing evidence suggests that there is extensive crosstalk
between various types of programmed cell death, key triggers,
effectors, and effective drugs for the progression of ALI in sepsis.
mTOR, a hotspot for negative autophagy regulators (Saxton and
Sabatini, 2017), plays a role in ferroptosis and apoptosis. It has been
demonstrated that mTOR can influence the onset of iron death by
mediating the accumulation of polyunsaturated fatty acids and can
also increase cellular resistance to ferroptosis via monounsaturated
fatty acids (Xl et al., 2022). Ketamine inhibits the mTOR pathway by
promoting AMPK overexpression, thus promoting autophagy,
reducing apoptosis, and attenuating sepsis-induced lung injury in
mice (Cao et al., 2022). These studies suggest that mTOR plays a
protective role in sepsis-induced ALI by regulating multiple cell
death mechanisms. However, the role of mTOR in sepsis-induced
ALI requires further investigations. As previously mentioned, JNK
plays a key role in pyroptosis activation. However, inhibition of JNK
activity can promote autophagy and alleviate lung injury (Zheng
et al., 2020). Different miRNAs may play different roles in sepsis-
induced ALI; in many cases, one miRNA regulates multiple modes
of death. For example,: microRNA-34a can inhibit autophagosome
formation by binding to the untranslated region of ATG4B, and
while inhibiting autophagy, it increases oxidative stress and
pyroptosis to aggravate septic ALI (Chen et al., 2020). Luo et al.
demonstrated in their experiments that the inhibition of miRNA-
138-5p overexpression attenuated NLRP3-mediated pyroptosis in
the inflammatory response to ALI (Luo et al., 2021b). The
autophagy-induced reduction of cytoplasmic mtDNA levels via
methylation of the miR-138-5p promoter increased miR-138-5p
expression levels, which subsequently attenuated the activation of
the NLRP3 inflammasome and focal death of AMs during sepsis-
induced ALI (Liu et al., 2023).

Several drugs can improve sepsis-induced ALI by simultaneously
modulating different types of cell death. GYY4137(H2S) inhibits the
NLRP3 inflammasome by decreasing xanthine oxidase activity and
mitochondrial ROS production (Castelblanco et al., 2018). Li et al.
later pointed out that GYY4137 can significantly inhibit CLP-induced

ALI, and the regulation of PDGFRβ/Akt/NF-κB/NLRP3 signaling
pathway is the central mechanism of its anti-inflammatory effect (Li
J. et al., 2021). Reportedly, it is proposed that H2S alleviates iron death
by blocking mTOR signaling and inhibiting autophagy to alleviate
sepsis-induced ALI (Li J. et al., 2022). Resveratrol can reduce LPS-
induced apoptosis in MH-S cells by activating the VEGF-B signaling
pathway to alter Bax/Bcl-2 imbalance and inhibit LPS-induced
autophagy, thereby attenuating ALI in sepsis (Yang et al., 2018).
Vitamin K2 reduces lung apoptosis by inhibiting LPS-induced
activation of P38 MAPK and LPS-induced elevation of HO-1 to
inhibit iron death and achieve a protective effect against lung injury
(Wang Y. et al., 2023). The progression of sepsis-induced ALI results
from interactions between various types of programmed cell deaths.
Different types of programmed cell death can either synergistically
promote or constrain each other. The existence of common key
initiators and effectors in various types of programmed cell death
provides insights for future drug research and improvement of
therapeutic efficacy.

3 Limitation

Most current experiments are based on animal and cellular
models, yet whether sepsis-induced acute lung injury in humans
exhibits pathophysiologic processes that are essentially similar to
those in cells alone or in mice cannot be guaranteed. For example,
the hallmark proteins of pyropyosis are not identical in humans and
mice, and the pathways of pyropyosis they mediate are not entirely
the same. Moreover, for some substances that are released in mice
with sepsis-induced acute lung injury may not be present in humans.
Therefore, the applicability and effectiveness of the above signaling
pathways and related drugs in humans remains to be investigated. In
terms of autophagy, does simply targeting autophagy offer more
advantages than disadvantages when treating patients with sepsis?
Additionally, identifying the optimal timing for promoting or
inhibiting autophagy as a protective measure requires further
investigation since incorrect timing of treatment may accelerate
disease progression.

In some signaling pathways, although it can be demonstrated
that an upstream factor can influence the production of a
downstream factor, more complex or critical signaling processes
may be involved, which have not been studied in great detail.

Although articles on the role of autophagy, ferroptosis, and
pyropyosis in sepsis induced-ALI mice through multiple signaling
pathways, respectively, have been included, there are still other
articles on signaling pathways, as well as other types of cell death
that have not been covered in this review. As a result, the literature
covered in this review is not comprehensive enough.

4 Future perspectives

Based on the above signaling pathways, future articles can make
more detailed supplementary studies to clarify the key links of signal
transduction and the mechanism of interactions between
substances. The more detailed preclinical studies will provide a
reliable pharmacological basis for the development of safer and
more effective new drugs.
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It is important to note that human function is a complex and
integrated system. More clinical studies are needed to confirm whether
the appeal signaling pathways still play the same role in sepsis-induced
acute lung injury in humans, whether there are differences in the
intermediate steps, and whether they still play an important role. There
is an even greater need to determine the toxicity, safety, side effects, and
effective dose of various drugs and substances in humans.

The mutual crosstalk between the various deaths should serve as
an important research direction for the occurrence, development
and prognosis of acute lung injury in sepsis. Various types of deaths
can both promote and inhibit each other, and maintaining a balance
between them may play a positive role. However, preclinical and
clinical studies in these areas are currently lacking.

In addition, how to control the timing nodes between the early
protective and subsequent destructive effects of various cell death
types requires further research. These could prevent both
suppressing their protective effects too early and delaying the
time to actively target therapy.

5 Conclusion

Many studies have suggested that sepsis-induced ALI can be
attenuated by regulating autophagy, ferroptosis, and pyroptosis,
mainly by focusing on the pathways and targets related to sepsis-
induced ALI. Based on existing articles, this review summarizes the
main pathways in the current study: AMPK, PI3K/Akt/mTOR,
mtDNA, miRNA, Xc–GSH-GPX4, Nrf2, P53, ACSL4, NF-κB,
MAPK and other signaling pathways. Recent studies have mainly
focused on the theoretical aspects of the regulatory mechanisms of
these pathways. However, clinical research on targeted therapies is
still in the early stages of development. In addition, sepsis-induced
ALI may be associated with multiple cell death processes, including
other modes of cell death not mentioned in this review, such as
apoptosis, cuproptosis, and cell necrosis. Therefore, more animal
experiments and clinically relevant studies are required to
understand better the roles of different types of cell death in
sepsis-induced ALI. Future studies should focus on the role of
crosstalk between cell death and sepsis-induced ALI to provide
new clinical treatments for sepsis-induced ALI.
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