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Diabetic cardiomyopathy (DCM) is a myocardial-specific microvascular disease
caused by diabetes that affects the structure and function of the heart and is
considered to be the leading cause of morbidity and death in patients with
diabetes. Currently, there is no specific treatment or preventive drug for DCM,
and there is an urgent need to develop new drugs to treat DCM. Traditional
Chinese medicine (TCM) has rich experience in the treatment of DCM, and its
characteristics of multi-target, multi-pathway, multi-component, and few side
effects can effectively deal with the complexity and long-term nature of DCM.
Growing evidence suggests that myocardial fibrosis, inflammation, oxidative
stress, apoptosis, cardiac hypertrophy, and advanced glycation end product
deposition were the main pathologic mechanisms of DCM. According to the
pathological mechanism of DCM, this study revealed the potential of metabolites
and prescriptions in TCM against DCM from the perspective of signaling
pathways. The results showed that TGF-β/Smad, NF-κB, PI3K/AKT, Nrf2,
AMPK, NLRP3, and Wnt/β-catenin signaling pathways were the key signaling
pathways for TCM treatment of DCM. The aim of this study was to summarize and
update the signaling pathways for TCM treatment of DCM, to screen potential
targets for drug candidates against DCM, and to provide new ideas and more
experimental evidence for the clinical use of TCM treatment of DCM.
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1 Introduction

The incidence of diabetes has increased exponentially over the past few decades as living
standards have improved, and the number of people worldwide with the disease is reported to
be more than 700 million by 2045. The main feature of diabetes is persistent hyperglycemia,
which over time will cause endocrine and metabolic disorders in patients with diabetes and
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lead to complications of diabetes, which is the final outcome of
diabetes and the main cause of great pain and economic loss to
patients, and has become one of the most serious global public health
problems (Li et al., 2022; Huang et al., 2023; Zhou et al., 2023).
Diabetic cardiomyopathy (DCM) refers to a complication caused by
diabetes, which cannot be explained by hypertensive heart disease,
coronary artery disease, valvular heart disease, and other heart
diseases, and is characterized by myocardial-specific microvascular
disease. It is the leading cause of morbidity and mortality in people
with diabetes (Tan et al., 2020; Zhao et al., 2022; Yan et al., 2023).

Clinically, DCM can be divided into two stages according to its
typical features. The early stage is characterized by diastolic damage and
left ventricular hypertrophy without vascular defects, and the late stage is
mainly characterized by systolic dysfunction and myocardial fibrosis
(Wang et al., 2022; Zhou et al., 2023). Although the pathogenesis of
DCM is complex, after long-term exploration, scholars generally believe
that the occurrence and development of DCM is mainly related to
glucose and lipid metabolism disorders, microvascular endothelial
dysfunction, apoptosis, advanced glycation end product (AGE)
deposition, myocardial inflammation, and oxidative stress. Under the
influence of the crosstalk of the above factors, it will lead to increased

myocardial oxygen consumption, myocardial fibrosis, increased
metabolic pressure, significantly reduced cardiac efficiency and
function, and ultimately DCM (Huo et al., 2021; Wang et al., 2022;
Wu et al., 2023; Cai et al., 2023; Zhou et al., 2023). Currently, there is no
specific treatment or preventative drug for DCM. Therefore, it is urgent
to explore drugs that are new and have fewer side effects or
complementary and alternative therapies for DCM treatment (Tan
et al., 2020; Nakamura et al., 2022; Zhou et al., 2023). Traditional
Chinese medicine (TCM) has its own unique diagnosis and treatment
system,which has been used for the prevention and treatment of diseases
for more than 2,000 years in Chinese history. TCM is characterized by
multiple targets, multiple pathways, fewer side effects, and easy access. It
is considered to be a novel therapeutic agent formany diseases, especially
for chronic metabolic diseases such as DCM. In order to better
understand the efficacy of TCM, a large number of experimental
studies have been carried out, trying to uncover the veil from the
molecular mechanism (Zheng et al., 2018; Yang et al., 2021; Li X. H.
et al., 2022a). Currently, there is a lack of review of TCM against DCM
signaling pathways. This article summarizes the related signaling
pathways of TCM against DCM in recent years in order to provide
ideas for the development of new drugs against DCM (Figure 1).

FIGURE 1
Potential signaling pathways of TCM against DCM.
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2 Signaling pathways in TCM
intervening the pathological
progression of DCM

2.1 TGF-β/Smad signaling pathway

Excessive extracellular matrix deposition in the diabetic heart is
associated with overexpression of transforming growth factor-β1
(TGF-β1) and connective tissue growth factors, which can cause
cardiac fibrosis and damage the structure and function of the
heart. When the body is exposed to persistently hyperglycemia
levels, endothelial cells take on the characteristics of fibroblasts,
leading to diabetic heart fibrosis. TGF-β is one of the key factors
in the emergence of DCM that is expressed in all human cells. TGF-β
is mainly divided into TGF-β1, TGF-β2, and TGF-β3 forms, which
play an important role in myocardial fibrosis, cardiac repair, and
cardiac remodeling, especially myocardial fibrosis. TGF-β also has
three receptors, namely, TGFBR1, TGFBR2, and TGFBR3. When one
of the TGF-β ligands binds to TGFBR2, it will produce typical TGF-β
signal transduction, and then, TGFBR2 will recruit and phosphorylate
TGFBR1. Phosphorylated TGFBR1 then phosphorylates downstream
Smad2 and Smad3 and recruits Smad4 and translocates to the nucleus
to bind to DNA and promote TGF-β transcription. Among them,
TGF-β1 has a strong anti-inflammatory function and is involved in
almost all early tissue damage and is a key cytokine. In addition,
Smad3 is pathogenic in cardiovascular diseases, and its overexpression
could lead to myocardial inflammation, myocardial fibrosis, and
insulin synthesis and secretion disorders, which is a key mediator
in the pathogenesis of DCM. Smad7 has a myocardial protective
effect, and its overexpression could reverse Smad3-mediated
myocardial fibrosis and nuclear factor kappa B (NF-κB)-driven
inflammation (Frangogiannis, 2022; Ghafouri-Fard et al., 2023; Qin
et al., 2023; Seksaria et al., 2023; Yang et al., 2023).

Syringaresinol (Syr) is a polyphenolic metabolite widely found in
various TCM formulations, and many pieces of evidence have shown
that Syr has anti-inflammatory, antioxidant, and antitumor activities (Li
et al., 2023; Wang et al., 2023; Wang et al., 2023). Li et al. (2020) found
that Syr significantly reversed the decrease of ejection fraction (EF),
fractional shortening (FS), and cardiac output (CO) in streptozotocin
(STZ)-induced diabetic mice and reversed the increase in inflammatory
factors tumor necrosis factor-α (TNF-α) and interleukin (IL-6) and the
increase in IL-1β and MCP-1 in cardiac tissues of diabetic mice, which
indicate that Syr could alleviate cardiac damage and inflammatory
response in diabetic mice. Masson trichrome staining and Sirius Red
staining showed that Syr decreased interstitial collagen accumulation
and effectively reversed myocardial fibrosis in diabetic mice, and Syr
significantly decreased the high expression of TGF-β, fibronectin, α-
SMA, and p-Smad2/3 in cardiac tissues of diabeticmice. In addition, Syr
reversed the increase in ROS and the decrease in SOD in the
myocardium of diabetic mice; upregulated the expression of Nrf2,
NQO-1, and HO-1; and downregulated the expression of Keap1. In
further studies, Li et al. established high-glucose (HG)-treated neonatal
rat ventricular myocytes (NRVMs) and verified the abovementioned
effects of Syr, and the results showed consistency. These results
suggested the potential of Syr to attenuate inflammatory response,
myocardial fibrosis, and oxidative stress for the treatment of DCM, and
its mechanism of action is related to TGF-β/Smad2/3 and Keap1/
Nrf2 signaling pathways.

Panax notoginseng (Burk.) F.H. Chen, known as “aspirin” in
TCM, has the efficacy of reducing swelling, relieving pain, clearing
blood stasis, and stopping bleeding, and has a landmark position in
TCM. Notoginsenoside R1 (NGR1) is one of the main bioactive
metabolites of P. notoginseng (Burk.) F.H. Chen. It has a wide range
of protective and therapeutic effects in anti-diabetes, anticancer, and
vascular protection, especially cardiovascular and cerebrovascular
protection (Liu et al., 2020; Xie and Wang, 2023; Zhu and Wan,
2023). Zhang et al. (2018) found that NGR1 significantly reduced the
apoptosis and mitochondrial damage of AGE-induced H9c2 cells
in vitro; downregulated ROS, Smad2/3, p-Smad2, and collagen I; and
promoted the expression of estrogen receptor (ER)-α and Smurf2. In
vivo, NGR1 decreased LVIDd and LV mass and increased LVVd,
LVVs, EF, and FS in diabetic mice. In addition, NGR1 inhibited the
increase of LDH, AST, and CK-MB in the serum of diabetic mice. In
a further mechanism study, NGR1 upregulated the expression levels
of Nrf2, γ-GCS, NQO-1, HO-1, p-AKT, p-GSK-3β, and SnoN and
downregulated the expression levels of TGF-β, collagen I, and
Smad2/3 in cardiac tissues of diabetic mice. Furthermore,
NGR1 promoted the expression levels of ERα and SMurf2 in
cardiac tissues of diabetic mice, which was consistent with the
results of in vitro experiments. These lines of evidence suggest
that NGR1 may improve DCM through TGF-β/Smad2/3 and
AKT/Nrf2 signaling pathways. Shensong Yangxin capsule (SSYX)
is a TCM prescription widely used to treat arrhythmia and has been
used clinically for many years (Cao et al., 2021; Ma et al., 2023). Shen
et al. (2014) found that SSYX significantly reduced the heart weight/
body weight ratio of fat emulsion + STZ-induced diabetic rats and
improved the degree of cardiac dysfunction, myocardial fibrosis, and
collagen deposition. In addition, it was found in the mechanism
study that SSYX downregulated the expression levels of TGF-β1,
p-Smad2/3, col-1, col-3, MMP-2, and MMP-9 and upregulated the
expression level of Smad7 in myocardial tissues of diabetic rats.

Moreover, Soy isoflavone (Huang et al., 2023), Zicui Tongmai
Yin (Wu et al., 2021), ginkgolide B (Gao and Hou, 2022), and
echinacoside (Liao et al., 2022) have shown significant effects in
alleviating myocardial fibrosis in diabetes by a mechanism related to
the inhibition of the TGF-β/Smad signaling pathway.

2.2 NF-κB signaling pathway

The nuclear factor kappa B (NF-κB) family consists of five
members: p65 (RelA), RelB, c-Rel, p50/p105 (NF-κB1), and p52/
p100 (NF-κB2). They are involved in a variety of physiological and
pathological processes, including cellular immunity, proliferation,
inflammation, and oxidative stress. In DCM, persistently high levels
of glucose and LDL/VLDL lipoproteins stimulate NF-κB activation in
the myocardium. In addition, they can cause circulating and local cells
to release vasoactive polypeptides, TGF-β growth factor, and connective
tissue growth factor. These molecules stimulate NF-κB activity either
directly or through cytokine-mediated expression. There are two major
NF-κB activation pathways in the above process, namely, the canonical
and non-canonical signaling pathways. The canonical signaling
pathway is mainly induced by pro-inflammatory factor tumor
necrosis factor-α (TNF-α), interleukin-1 (IL-1), and
lipopolysaccharide (LPS). When cells are stimulated, the IκB kinase
(IKK) complex is activated, and signal transduction leads to IκB protein
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phosphorylation and ubiquitination. IκB is then degraded, releasing the
NF-κB dimer from the cytoplasm into the nucleus, where it binds to
DNA and promotes its transcription. Among them, IκBα can not only
bind to the most common NF-κB heterodimer P65:P50 but also the
strongest negative feedback factor in NF-κB activation, ensuring the
rapid initiation and termination of the entire process (Lorenzo et al.,
2011; Li L. J. et al., 2023; Cheng et al., 2023; Oh et al., 2023).

Andrographis paniculata Nees is distributed all over the world
and is widely used, and andrographolide (AG) is a diterpene lactone
metabolite, which is the main active metabolite of A. paniculata
Nees and can be used to treat hyperlipidemia, obesity, diabetes, and
cardiovascular diseases (Li X. H. et al., 2022b; Gou et al., 2023). Liang
et al. (2018) found that diabetes could lead to decreased LVEF, FS,
E/A, and insulin levels and increased blood glucose in mice, while
AG could reverse the above phenomenon. According to the results
of Masson’s trichrome and Sirius Red staining, diabetic mice showed
increased collagen deposition in the myocardial interstitial area, and
collagen I, collagen indigenous, TGF-β1, fibronectin (FN), ANP, and
BNP were decreased; the above phenomena could be significantly
improved after AG intervention. In a further mechanism study, the
expression levels of COX-2, p-IκBα, p65-NF-κB, intercellular cell
adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1
(VCAM-1), TNF-α, IL-1β, and IL-6 in myocardial tissues of diabetic
mice were increased, while AG could reduce their expression levels.
In addition, AG also reduced the expression of MDA, 4-HNE, 3-NT,
Nox-2, and Nox-4 and increased the expression of SOD, Nrf2, and
HO-1 in myocardial tissues of diabetic mice. In the HG-induced
H9c2 cardiomyoblast model, AG reduced the expression of p-IκBα,
nucleus-p65-NF-κB, Nox-2, and Nox-4 and promoted the
translocation of Nrf2 into the nucleus. These results suggested
that AG has the potential to treat DCM by reducing
inflammation and oxidative stress, and its mechanism may be
related to NF-κB and NOXs/Nrf2 signaling pathways.
Artemisinin and allicin (AA) have anticancer, antioxidant, and
anti-inflammatory biological activities (Zhou et al., 2022; Jin
et al., 2023) and have been proved to be used in clinical anti-
myocardial fibrosis (Kong et al., 2023a). Kong et al. (2023a) found
that the cardiac function of STZ-induced diabetic rats was damaged,
and AA could improve these damages. In addition, the myocardial
cells of diabetic rats showed pathological changes, such as increased
collagen fibers, a large number of fibrous scars, and increased
myocardial cells, and these changes were significantly reduced
after AA intervention. In the mechanism study, AA significantly
reduced the expression of NF-κB p65 and p-NF-κB p65 in the
myocardial tissues of diabetic rats, indicating that the effect of AA on
improving myocardial injury and myocardial fibrosis in diabetic rats
may be related to the inhibition of the NF-κB signaling pathway.
Furthermore, mangiferin (Hou et al., 2016) and hederagenin (Li
et al., 2019) play a beneficial role in DCM by inhibiting the NF-κB
signaling pathway to reduce the inflammatory response.

2.3 PI3K/AKT signaling pathway

Phosphoinositol-3 kinase (PI3K) is an intracellular lipid kinase,
which can be divided into three types according to its molecular
structure and substrate selectivity. Class I PI3K is the focus of
current research. It is a heterodimer composed of a regulatory

domain (p85) and a catalytic domain (p110) that phosphorylate the
3′-hydroxyl group of phosphatidylinositol and phosphoinositides. The
PI3K-mediated imbalance of fatty acid metabolism and glucose
homeostasis in diabetic hearts has been reported to lead to
pathological features of DCM, such as decreased cardiac efficiency,
pathological myocardial hypertrophy, fibrosis, and apoptosis.
Dysregulation of PI3K-induced metabolic imbalances leads to the
development of DCM. AKT is also known as protein kinase B
(PKB), a serine/threonine kinase widely expressed in human tissues,
divided into AKT1 (PKB α), AKT2 (PKB β), and AKT3 (PKB γ), the
first two of which are commonly expressed in the heart, brain, and
lungs. Overexpression of AKT3 in the heart can induce myocardial
hypertrophy. AKT1 and AKT3 function similarly, and it has also been
shown that overexpression of AKT1 induces myocardial hypertrophy,
but loss of AKT1 leads to resistance to exercise-induced cardiac growth.
AKT2 is a regulator of cardiomyocyte metabolism and cardiomyocyte
death inDCM.AKT is themain downstream effectormolecule of PI3K,
which plays a key role in DCM by regulating cell size, survival,
apoptosis, angiogenesis, and inflammatory response (Li et al., 2017;
Qin et al., 2021; Ghafouri-Fard et al., 2022).

Erzhi pill (EZP) is a TCMprescription composed of the Ligustrum
lucidumW.T. Aiton and Eclipta prostrata (L.) L. in equal proportions.
It has the effects of nourishing yin and tonifying the liver and kidney
and is commonly used in clinical treatment of diabetic nephropathy
and osteoporosis (Li et al., 2020; Peng et al., 2022; Hong et al., 2024).
Peng et al. (2022) reported the intervention effect of EZP on diabetic
rats induced by high-fat diet combined with STZ. EZP increased the
level of high-density lipoprotein (HDL) and decreased the levels of
low-density lipoprotein (LDL), triglycerides (TG), total cholesterol
(TC), and fasting blood glucose (FBG) in the serum of diabetic rats. In
addition, EZP could reverse the decrease in superoxide dismutase
(SOD), catalase (CAT), and glutathione peroxidase (GPx) and the
increase in caspase-3, caspase-8, caspase-9, reactive oxygen species
(ROS), malondialdehyde (MDA), B-cell lymphoma (Bcl)-2, and Bcl-
2-associated X protein (Bax) in the serum of diabetic rats. In the study
of the mechanism of action, EZP upregulated the expression levels of
p-PI3K, p-AKT, p-AMPK, and p-FOXO3a in the heart tissues of
diabetic rats. These results suggested that EZP could reduce DCM by
inhibiting oxidative stress and apoptosis, and its mechanism is related
to PI3K/AKT/FOXO3a and AMPK signaling pathways. The Zhilong
Huoxue Tongyu capsule (ZHTC) is a TCM prescription with the
effects of tonifying qi, dredging collaterals, promoting blood
circulation, and removing blood stasis, which is commonly used in
the treatment of ischemic stroke (Wang et al., 2022). Zeng et al. (2023)
found that ZHTC could reduce serum GHb, TC, TG, and LDL-C and
increase HDL-C in STZ-induced diabetic rats. In addition, the results
of HE staining, Masson staining, and TUNEL staining suggested that
ZHTC effectively reduced myocardial fibrosis, inflammatory cell
infiltration, and apoptosis in diabetic rats. In terms of mechanism,
ZHTC upregulated the expression levels of p-PI3K, p-AKT1, and
p-FOXO3a in the heart tissues of diabetic rats. These beneficial effects
of ZHTC on DCM are related to the regulation of the PI3K/AKT1/
FOXO3a signaling pathway.

Moreover, TCM prescriptions Shengjie Tongyu decoction
(Wang et al., 2023), Zicui Tongmai decoction (Wu et al., 2023),
and Shenmai formula (Li et al., 2023) have shown significant effects
in alleviating DCM by a mechanism related to the regulation of the
PI3K/AKT signaling pathway.

Frontiers in Pharmacology frontiersin.org04

Li et al. 10.3389/fphar.2024.1416403

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1416403


2.4 Nrf2 signaling pathway

Nuclear factor erythroid 2-related factor 2 (Nrf2), a member of
the Cap’n’collar (CNC)-BZIP transcription factor family, is a key
transcription factor affecting cellular oxidative stress response.
Under normal circumstances, Kelch-like ECH-associated protein
1 (Keap1) is a negative regulator of Nrf2, which can bind to Nrf2 in
the cytoplasm and form a complex with cullin3, and mediates the
degradation of Nrf2 ubiquitination. Under oxidative stress, with the
increase in ROS expression, Nrf2 is dissociated from the complex
and translocated into the nucleus to bind to the promoter
antioxidant response element (ARE) sequence, promoting the
expression of Nrf2-related antioxidant enzymes, such as SOD,
CAT, heme oxygenase-1 (HO-1), and GPx (Zhang et al., 2021; Li
et al., 2023; Ghareghomi et al., 2023). Related studies have shown
that Nrf2 is a key regulator of cardiac resistance to ROS in both
normal and diabetic hearts. Primary adult cardiomyocytes from
mice with deletion of the Nrf2 gene showed isoproterenol-
stimulated loss of contraction. In addition, cardiac
Nrf2 expression was significantly downregulated in diabetic
animals and patients. Clearly, the downregulation of Nrf2 is one
of the important reasons for the occurrence of DCM (Chen
et al., 2014).

Schisandrin B (SchB) is the main active metabolite of the fruit of
Schisandra chinensis. It has antioxidant biological activity and
exhibits protective effects in many tissues in the body, including
the heart (Luo et al., 2022; Yang et al., 2022). Yang et al. (2022)
reported the intervention effect of SchB on myocardial injury in
STZ-induced diabetic mice. SchB could improve heart weight and
the cardiac index; reduce FBG, LVEDD, LVESD, LDH, CK-MB, and
cTnI; and increase LVEF and LVFS in the serum of diabetic mice. In
addition, HE, Masson, and TUNEL staining results showed that
SchB reduced the cardiomyocyte apoptosis rate and collagen volume
fraction (CVF). SchB reduced MDA, ROS, and Fe2+ and increased
SOD and GSH-Px in myocardial tissues of diabetic mice. In terms of
mechanism research, SchB upregulated the protein and mRNA
expression levels of Nrf2, HO-1, and GPX4 in myocardial tissues
of diabetic mice. It is suggested that SchB could improve DCM by
exerting antioxidation, anti-fibrosis, and anti-apoptosis effects, and
its molecular mechanism may be related to the inhibition of
ferroptosis mediated by Nrf2/HO-1/GPX4 signaling pathway
activation. Fucoxanthin (FX) is a carotenoid derived from natural
marine organisms with antioxidant, anti-diabetic, and anticancer
activities (Zheng et al., 2022). Zheng et al. (2022) found that
myocardial cells in STZ-induced diabetic rats were hypertrophic
and disordered, while FX could improve the above phenomenon. In
addition, FX could reduce the surface area of HG-induced H9c2 cells
and downregulate the mRNA levels of cell hypertrophy factors ANP,
BNP, and β-MHC. These results suggested the ability of FX to
reduce cardiomyocyte hypertrophy. In further mechanistic studies,
FX reduced the expression levels of ROS, FN, TGF-β1, and
Keap1 and upregulated the expression levels of SOD1, nucleus-
Nrf2, Nrf2, and HO-1 in heart tissues of diabetic rats. The results
suggested that FX has a protective effect on DCM, and its
mechanism is related to the Nrf2/Keap1 signaling pathway.

Moreover, naringenin (Li and Lai, 2022), saponins of Aralia
taibaiensis (Duan et al., 2015), Danzhi Jiangtang capsule (DJC)
(Wang et al., 2023), and asiaticoside (Jin et al., 2020) have shown

significant effects in alleviating DCM by a mechanism related to the
regulation of the Nrf2 signaling pathway.

2.5 AMPK signaling pathway

Adenosine monophosphate-activated protein kinase (AMPK) is
widely present in eukaryotes and various organs, including three
unique subunits of α, β, and γ. AMPK is considered an energy sensor
that regulates cellular metabolism, and the regulation of AMPK
signaling is crucial for the regulation of intracellular dynamic
balance, which is also known as the “total metabolic switch” of
the human body. In general, AMPK signaling is activated under low-
energy stress conditions. Calcium/calmodulin-dependent protein
kinase β (CaMKKβ), TGFβ-activated kinase 1, and liver kinase
B1 (LKB1), the upstream mediator of AMPK, can induce
T172 phosphorylation in AMPK signaling stimulation. Metabolic
stress can trigger AMPK signal transduction by regulating AMP and
ATP levels. In this process, increased AMP and adenosine
diphosphate levels bind to the γ-subunit site and induce
T172 phosphorylation, thereby causing AMPK activation.
Moreover, the activation of AMPK can be independent of the
regulation of AMP levels. Calcium accumulation in cells causes
T172 phosphorylation, resulting in CaMKKβ-dependent
upregulation of AMPK, in response to increased intracellular
calcium and DNA damage caused by glucose starvation. In
addition, AMPK can improve DCM by regulating glycolipid
metabolism, regulating protein synthesis and degradation,
affecting the transcription of proteins related to gluconeogenesis,
lipogenesis, and mitochondrial biogenesis, and regulating vascular
endothelial dysfunction. Therefore, AMPK is a potential therapeutic
target for DCM (Nellaiappan et al., 2019; Peng et al., 2022; Entezari
et al., 2022; Liu et al., 2023).

Astragalus polysaccharide (AP) is a key active ingredient
extracted from Astragalus membranaceus. Pharmacological
studies have shown that AP has anti-inflammatory, antitumor,
antioxidation, and anti-fibrosis effects, which is helpful in the
management of blood glucose and blood lipids (Zhang and Feng,
2022). Ye et al. (2022) found that LVEDD and LVESD were
significantly increased and LVEF and LVFS were significantly
decreased in diabetic rats induced by high-sugar and high-fat
diets combined with STZ, and these phenomena were
significantly reversed after AP intervention. The results of HE
staining and Masson staining showed that the myocardial cells of
diabetic rats were hypertrophic and disordered, collagen fibers were
proliferated, interstitial fibrosis was obvious, and a large number of
inflammatory cells were infiltrated. The above conditions were
improved after AP intervention. In the mechanism study, AP
reduced mTOR and p-mTOR and increased AMPK, p-AMPK
protein, and mRNA expression levels in myocardial tissues of
diabetic rats. These results indicated that AP could exert a
protective effect on DCM by regulating the AMPK/mTOR
signaling pathway.

The mulberry granule (MLD), derived from Morus alba L., is a
TCM prescription that can be used to treat diabetes (Liu et al., 2017).
Liu et al. (2017) reported the intervention effect of MLD on STZ-
induced diabetic mice. MLD reduced FBG and fasting blood insulin
and blood lipids and increased GSH, SOD, CAT, and GR in cardiac
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tissues of diabetic mice. In addition, MLD could also improve
cardiac function and reduce the area of myocardial infarction in
diabetic mice. In further mechanism studies, MLD upregulated the
expression levels of p-AMPK and Nrf2 cardiac tissues of diabetic
mice. The results suggested that MLD may have a protective effect
on DCM, and its mechanism may be related to the AMPK/
Nrf2 signaling pathway. Pueraria lobata (Willd.) Ohwi, as a
common TCM, has been made into many kinds of anti-diabetic
foods. Puerarin is the main active metabolite of P. lobata (Willd.)
Ohwi, which has good anti-inflammatory and antioxidant effects (Li
et al., 2023). Kong et al. (2023b) found that puerarin significantly
reduced the myocardial cell morphology of STZ-induced diabetic
rats with irregular and disordered arrangement and a small amount
of myocardial cell degeneration and necrosis. The above
phenomenon was improved after puerarin intervention. The
results of Masson and TUNEL staining showed that puerarin also
had a beneficial effect on myocardial fibrosis and apoptosis in
diabetic rats. In addition, diabetes resulted in a significant
increase in LVESD and LVEDD and a significant decrease in EF
and FS in the model rats, which could be reversed by puerarin.
Puerarin reduced the levels of FBG, HbA1c, CK-MB, and cTnI in the
serum of diabetic rats and upregulated the expression levels of
p-AMPK, nucleus-β-catenin, and p-GSK-3β in myocardial
tissues. It is suggested that puerarin could improve diabetic
myocardial injury by regulating the AMPK/GSK-3β/β-catenin
signaling pathway, thus playing a role in protecting DCM.
Similarly, Xu et al. (2022) reported that the improvement of
puerarin in HG-induced H9c2 cardiomyocyte hypertrophy may
be related to the AMPK/AKT/GSK-3β signaling pathway,
indicating the importance of AMPK-related signaling pathways
in the development of DCM and the great potential of puerarin
in the treatment of DCM.

Moreover, luteolin (Huang et al., 2022), Si-Miao-Yong-An
decoction (Li et al., 2020), and Erzhi pill (Peng et al., 2022) have
shown significant effects in alleviating DCM by a mechanism related
to the regulation of the AMPK signaling pathway.

2.6 NLRP3 signaling pathway

Nucleotide-binding oligomerization domain-like receptor
protein 3 (NLRP3) inflammasome is closely related to metabolic
disorders and cell death and is one of the important causes of DCM.
One of the important signals during NLRP3 initiation and activation
is diabetes-induced hyperglycemia and hyperlipidemia, which can
promote ROS overexpression to activate the NF-κB signaling
pathway and thus the transcription of NLRP3, pro-IL-1β, and
pro-IL-18. Thioredoxin-interacting/inhibiting protein (TXNIP)
was another signal during NLRP3 activation that directly
combined with NLRP3 to modulate its oligopolization.
Hyperglycemia leads to ROS upregulation of TXNIP and thus
activation. In addition, hyperglycemia and hyperlipidemia
directly exacerbate mitochondrial oxidative stress and
proinflammatory cytokine production, thus inducing the
formation of NLRP3 inflammasome. Nod-like receptors (NLRs)
are a family of pattern recognition receptors (PRRs) used to identify
the pathogen-associated molecular pattern (PAMP) and damage-
related molecular pattern (DAMP). NLR contains four subfamilies,

among which NLRP3 is one of the most representative members.
NLRP3 inflammasome consists of NLRP3, pro-caspase-1, and
apoptosis-associated speck-like protein containing a CARD
domain (ASC). NLRP3 inflammasome activation generally
includes two processes. First, when PAMP or DAMP is
recognized by the corresponding PRRs, it promotes the
transcriptional activation of the NLRP3 inflammasome gene.
Then, NLRP3 inflammasome is assembled, caspase-1 is activated,
pro-IL-1β and pro-IL-18 shear processing is conducted, and finally,
mature forms of IL-1β and IL-18 are produced and secreted
extracellularly to trigger the inflammatory response (Luo et al.,
2014; Sun and Ding, 2021; Zheng et al., 2022; Jiang et al., 2024).

Taohuajing (THJ) is a TCM prescription consisting of Semen
Persicae, Polygonatum sibiricum, and Carthami flos, which has a
good clinical effect in the treatment of DCM (Yao et al., 2021). Yao
et al. (2021) observed the intervention effect of THJ on DCM by
establishing a high-fat diet combined with an STZ-induced diabetic
mouse model. THJ reduced the blood glucose and blood lipid of
DCM model mice and improved their insulin sensitivity in a dose-
dependent manner. In the study of myocardial function, THJ
increased LVEF and LVFS and decreased LVEDV and LVESV in
DCM model mice, indicating that THJ could improve myocardial
function in DCM model mice. Masson and HE staining showed a
significant increase in collagen, myocardial cells and mast cells were
destroyed, myofibrils were broken and irregular, and mitochondria
were swollen in the heart of DCM model mice, while THJ could
reverse these diabetes-induced cardiac function damage. In addition,
THJ also reduced the inflammatory factors TNF-α, IL-6, and IL-1β
in the serum of DCM model mice, reduced the levels of ROS and
MDA, and increased the levels of SOD and GSHPx in heart tissues of
DCMmodel mice, reflecting its ability to inhibit oxidative stress and
inflammatory response in DCM model mice. In a further
mechanism study, THJ reduced the protein and mRNA
expression levels of NLRP3, caspase-1, TXNIP, ASC, and IL-1β
in the left ventricular tissues of DCM model mice. In addition, THJ
downregulated the expression levels of Ac-SOD2 and AcFOXO3a
and upregulated the expression level of SIRT1 in heart tissues of
DCM model mice. These experimental results indicated that THJ
can protect myocardial injury through antioxidative stress and anti-
inflammatory effects, and the molecular mechanism of these effects
may be related to the Sirtuin1/NLRP3 signaling pathway. Taohe
Chengqitang (TCT), a TCM prescription derived from Shanghan
Zabing Lun, has the effects of tonifying qi and nourishing yin,
promoting blood circulation, and removing blood stasis and could
be used clinically to treat diabetic complications (Zhang et al., 2022).
Zhang et al. (2022) observed the intervention effect of TCT on
diabetic rats. TCT increased EF and FS in STZ-induced diabetic rats
and decreased FBG, TC, and TG in the serum of diabetic rats. The
inflammatory factors IL-1β and IL-18 in the serum of diabetic rats
were significantly increased, and the expression of these
inflammatory factors could be significantly reversed after TCT
intervention. In the examination of the pathological morphology
of myocardial tissues in diabetic rats, it was found that diabetes
could lead to hypertrophy of myocardial fibers in rats, disordered
arrangement, a small amount of necrotic and apoptotic myocardial
fibers, and a small amount of inflammatory cell infiltration, and
these symptoms were significantly improved after TCT treatment. In
further studies, TCT significantly reduced the expression levels of
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ASC, caspase-1, NLRP3, and p-NF-κB p65 in myocardial tissues of
diabetic rats. It is suggested that TCT could reduce myocardial
inflammation and myocardial fibrosis by inhibiting the activation of
the NLRP3 inflammasome signaling pathway and improve the
cardiac function of DCM rats, thus playing a role in the
treatment of DCM.

Moreover, formononetin (Zhang et al., 2023),
protocatechualdehyde (Ding et al., 2024), and mulberry leaves
flavonoids (Yang and Cao, 2022) have shown significant effects
in alleviating DCM by a mechanism related to the inhibition of the
NLRP3 signaling pathway.

2.7 Wnt/β-catenin signaling pathway

The Wnt/β-catenin signaling pathway is an important regulator
of cardiac development and growth. Although its activity is low in
the normal heart, it is indispensable for maintaining normal cardiac
function, and its long-term high activity can lead to cardiac fibrosis
and cardiac hypertrophy. In DCM, hyperglycemia causes an
overproduction of ROS through the mitochondrial electron
transport chain, causing oxidative stress. Oxidative stress can
activate the Wnt/β-catenin signaling pathway and nuclear β-
catenin/c-Myc axis and aggravate oxidative stress damage under
their cascading influence, thus exacerbating DCM. The Wnt
signaling pathway is divided into classical and non-classical
pathways; the former mainly controls cell proliferation, while the
latter regulates cell polarity and migration, and the two main
pathways form a mutual regulatory network. In the canonical
Wnt pathway, it activates the Wnt/β-catenin signaling pathway
by regulating the downstream key transcription factor β-catenin,
and then, theWnt ligand proteinWnt3α binds to frizzled (Fzd), low-
density lipoprotein receptor-related protein receptors 5/6 (LRP5/6)
to activate Casein kinase 1 and promote the release of GSK3β-related
regulatory proteins. PDZ and DvL are recruited to form a protein
complex, which inhibits the activation of GSK3β, thereby inhibiting
the degradation of β-catenin. β-catenin can stabilize aggregation and
transfer to the nucleus to interact with the T-cell factor/lymphoid
enhancer factor, initiating Wnt/β-catenin downstream target gene
and protein transcription (Liu et al., 2022; Ma et al., 2023; Ni
et al., 2023).

FXST is a TCM prescription composed of P. notoginseng (Burk.)
F. H. Chen, Salvia miltiorrhiza Bunge, Astragalus membranaceus
(Fisch.) Bunge, and Scrophularia ningpoensis Hemsl. It has the
function of promoting blood circulation, removing blood stasis,
tonifying qi, and nourishing yin and could be used clinically for the
treatment of stable angina pectoris and cerebrovascular diseases
(Peng et al., 2022; Wang et al., 2022). Peng et al. (2022) observed the
intervention effect of FXST on DCM by establishing a STZ-induced
diabetic rat model. FXST reduced LVEDP and significantly
increased the heart rate, CI, LVSP, dp/dt min, EF, and FS in
diabetic rats. Diabetic rats showed myocardial cell disorder,
inflammatory cell infiltration, uneven staining of the nucleus and
cytoplasm, and a high deposition area of myocardial collagen fibers,
which were reversed by FXST intervention. In addition, FXST could
reduce the expression levels of collagen I, collagen III, and TGF-β1
in heart tissues of diabetic rats and downregulate the protein
expression levels of Wnt2, β-catenin, WISP1, c-Myc, and p-GSK-

3β and the mRNA expression levels of β-catenin and c-Myc in
myocardial tissues of diabetic rats. These results suggested that FXST
could enhance cardiac function and reduce myocardial fibrosis
induced by diabetes, thereby improving the role of DCM, which
may be related to the downregulation of theWnt/β-catenin signaling
pathway. The work of Song et al. (2023) revealed the intervention of
Yam polysaccharide (YP) on HG-induced H9c2 cardiomyocytes. YP
decreased the levels of IL-1β, IL-6, ROS, and MDA and increased
SOD activity and cell viability in HG-induced H9c2 cardiomyocytes,
indicating the anti-inflammatory and antioxidant properties of YP.
In terms of mechanism, YP downregulated the expression of Wnt3α
and β-catenin and upregulated the expression of GSK3β. These
results indicated that YP could improve DCM through anti-
inflammatory and antioxidant effects, and its mechanism may be
related to the Wnt/β-catenin signaling pathway.

2.8 Other signaling pathways

Centella asiatica (L.) Urban mainly grows in China and
Southeast Asia. It is one of the main TCMs to restore the vitality
of nerves and brain cells. Asiaticoside (ASI) is its iconic metabolite,
which has anti-inflammatory, antioxidant, and cardioprotective
effects (Bandopadhyay et al., 2023). Wei et al. (2022) observed
the intervention effect of ASI on myocardial injury in DCM mice.
According to the results of Masson staining, it was found that the
myocardial fibers of DCM mice were significantly broken and CVF
increased, while ASI intervention significantly improved these
phenomena. ASI could increase the levels of LVEF, FS, LVEDV,
and LVESV and decrease the levels of LVAWd, LDH, and CTGF in
DCM mice, which indicated that ASI could reduce cardiac injury
and improve cardiac function in DCM mice. In addition, ASI
increased the ratio of Beclin1, Atg5, and LC3II/I and
downregulated the expression levels of Notch1 and Hes1 in
myocardial tissues of DCM mice. These results indicated that
ASI can improve DCM by reducing cardiomyocyte autophagy,
and its mechanism may be related to the Notch1/Hes1 signaling
pathway. Similarly, Yang et al. published their study of ASI against
DCM (Yang Z. M. et al., 2021). ASI could improve myocardial
structural disorder, myocardial fibrosis, and cardiomyocyte
apoptosis in DCM mice by regulating the Notch1/Hes1 signaling
pathway, thus protecting DCM. These two studies demonstrated the
potential of ASI in the treatment of DCM. DJC is a TCM
prescription with the effects of nourishing qi and yin and
promoting blood circulation. It has a beneficial effect in the
treatment of DCM, cardiovascular diseases, and diabetic
nephropathy (Shi et al., 2021; Wang et al., 2023). Shi et al.
(2021) found that DJC increased EF and FS levels in DCM rats.
DCM rats showed cardiomyocyte dissolution, inflammatory cell
infiltration, and an increased apoptosis rate, which could be reversed
by DJC intervention. DJC reduced the expression levels of
inflammatory factors TNF-α, IL-1β, and IL-6 in the serum of
DCM rats and downregulated the expression levels of TLR4,
MyD88, and NF-κB p65 in myocardial tissues of DCM rats. In
addition, in the in vitro study of HG-induced H9c2, DJC could also
downregulate the expression levels of TLR4, MyD88, and NF-κB
p65, which is consistent with the in vivo results. DJC decreased the
expression of Bax and caspase-3 and increased the expression of
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TABLE 1 In vivo and in vitro experimental evidence of TCM in the treatment of DCM.

Type of
signaling
pathways

Signaling
pathways

Agents Plants Experiment model Molecular
mechanisms

Pathological
progressions

References

In
Vivo

In Vitro

TGF-β/Smad TGF-β/
Smad2/3 and
Keap1/Nrf2

Syringaresinol
(Syr)

- C57BL/
6 mice

NRVMs ↓: TGF-β,
fibronectin, MCP-
1, α-SMA,
p-Smad2/3, ROS,
and Keap1
↑: Nrf2, NQO-1,
HO-1, SOD, and
nucleus-Nrf2

Myocardial fibrosis,
inflammation, and
oxidative stress

Li et al. (2020a)

TGF-β/
Smad2/3,
AKT/Nrf2

Notoginsenoside
R1 (NGR1)

Panax
notoginseng
(Burk.) F.H.
Chen

db/db
mice

H9c2 cardiomyocytes ↓: ROS, TGF-β,
Smad2/3, p-Smad2,
Collagen I, cleaved
caspase-3, cleaved
caspase-9, and Bax/
Bcl-2
↑: nucleus-Nrf2,
NQO-1, HO-1, γ-
GCS, ER-α,
Smurf2, Nrf2,
p-AKT, p-GSK-3β,
and SnoN

Oxidative stress,
apoptosis, and
myocardial fibrosis

Zhang et al.
(2018)

TGF-β1/Smad Shensong
Yangxin capsule
(SSYX)

Panax ginseng
C.A. Mey.,
Salvia
miltiorrhiza
Bge.,
Nardostachys
jatamansi Dc.,
Cornus
officinalis
Sieb.et Zucc.,
Taxillus
chinensis (DC.)
Danser, Paeonia
lactiflora Pall.,
Schisandra
sphenanthera
Rehd. et, Coptis
chinensis
Franch.,
Ophiopogon
japonicas
(Thunb.) Ker-
Gawl.,
Polypodiodes
chinensis,
Eupolyphaga
sinensis Walker,
and Ziziphus
jujuba Mill. var.
spinosa (Bunge)
Hu ex H. F.
Chou

Wistar
rats

- ↓: TGF-β1,
p-Smad2/3, col-1,
col-3, MMP-2, and
MMP-9
↑: Smad7

Myocardial fibrosis Shen et al.
(2014)

NF-κB NF-κB, NOXs/
Nrf2

Andrographolide
(AG)

Andrographis
paniculata
Nees

C57/
BL6J
mice

H9c2 cardiomyoblasts ↓: Collagen I,
collagen Ш, TGF-
β1, COX-2, p-IκBα,
p65-NF-κB,
ICAM-1, VCAM-1,
TNF-α, IL-1β, IL-6,
MDA, 4-HNE, 3-
NT, Nox-2, Nox-4,
and nucleus-p65-
NF-κB
↑: SOD, Nrf2, HO-
1, and nucleus-
Nrf2

Inflammation,
oxidative stress

Liang et al.
(2018)

(Continued on following page)
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TABLE 1 (Continued) In vivo and in vitro experimental evidence of TCM in the treatment of DCM.

Type of
signaling
pathways

Signaling
pathways

Agents Plants Experiment model Molecular
mechanisms

Pathological
progressions

References

In
Vivo

In Vitro

TLR4/MyD88/
NF-κB

Danzhi Jiangtang
capsule (DJC)

- SD rats H9c2 cells ↓: TLR4, MyD88,
NF-κB p65, TNF-
α, IL-1β, IL-6, Bax,
and caspase-3
↑: BCL2

Apoptosis Shi et al. (2021)

PI3K/AKT and
AMPK

PI3K/AKT/
FOXO3a and
AMPK

Erzhi pills (EZP) Ligustrum
lucidum W.T.
Aiton and
Eclipta
prostrata (L.) L

SD rats - ↓: ROS, MDA,
caspase-3, caspase-
8, caspase-9, LDL,
TG, TC, and FBG
↑: p-PI3K, p-AKT,
p-FOXO3a,
p-AMPK, HDL,
SOD, CAT,
and GPx

Oxidative stress and
apoptosis

Peng et al.
(2022b)

AMPK AMPK/GSK-
3β/β-catenin
and AMPK/
AKT/GSK-3β

Puerarin Pueraria lobata
(Willd.) Ohwi

SD rats H9c2 cardiomyocytes ↓: CK-MB, cTnI,
β-MHC, and
IP3R2
↑: p-AMPK,
p-GSK-3β,
nucleus-β-catenin,
p-AMPKα, and
p-AKT

Myocardial fibrosis,
apoptosis, and
cardiac
hypertrophy

Kong et al.
(2023b), Xu
et al. (2022)

Nrf2 Nrf2/HO-1/
GPX4

Schisandrin B
(SchB)

Schisandra
chinensis

C57BL/
6 mice

- ↓: MDA, ROS, and
Fe2+
↑: Nrf2, HO-1,
GPX4, SOD, and
GSH-Px

Oxidative stress,
myocardial fibrosis,
and apoptosis

Yang et al.
(2022)

Nrf2/Keap1 Fucoxanthin (FX) - SD rats H9c2 cardiomyocytes ↓: TGF-β1, Keap1,
ROS, ANP, BNP,
β-MHC, and FN
↑: SOD1, nucleus-
Nrf2, Nrf2, and
HO-1

Myocardial fibrosis
and cardiac
hypertrophy

Zheng et al.
(2022b)

NLRP3 Sirtuin1/
NLRP3

Taohuajing (THJ) Semen
Persicae,
Polygonatum
sibiricum, and
Carthami flos

C57BL/
6 mice

- ↓: NLRP3, caspase-
1, TXNIP, ASC,
Ac-SOD2,
AcFOXO3a, ROS,
MDA, TNF-α, IL-
6, and IL-1β
↑: SIRT1, SOD,
and GSHPx

Oxidative stress and
inflammation

Yao et al. (2021)

Wnt/β-catenin Wnt/β-catenin Fufang
Xueshuantong
(FXST)

Panax
notoginseng
(Burk.) F. H.
Chen, Salvia
miltiorrhiza
Bunge,
Astragalus
membranaceus
(Fisch.) Bunge,
and
Scrophularia
ningpoensis
Hemsl

SD rats - ↓: Collagen I,
collagen III, TGF-
β1, Wnt2, β-
catenin, WISP1,
c-Myc, and
p-GSK-3β

Myocardial fibrosis Peng et al.
(2022c)

Wnt/β-catenin Yam
polysaccharide
(YP)

Dioscorea
opposita Thunb

- H9c2 cardiomyocytes ↓: IL-1β, IL-6,
ROS, MDA,
Wnt3α, and β-
catenin
↑: GSK-3β
and SOD

Oxidative stress and
inflammation

Song et al.
(2023)

↑, upgrade; ↓, downgrade.
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BCL2, reflecting the anti-apoptotic potential of DJC. These results
suggested that DJC could treat DCM by inhibiting cardiomyocyte
apoptosis in vitro and in vivo, and its mechanism may be related to
the inhibition of the TLR4/MyD88/NF-κB signaling pathway.
Furthermore, galangin (Lyu et al., 2022) regulated the IRAK-1/
MAPK/NF-κB signaling pathway, gardenoside (Zhang et al., 2021)
regulated the VPO1/ERK1/2 signaling pathway, and salvianolic acid
B (Zhang and Fu, 2022) regulated the RhoA/ROCK1 signaling
pathway to improve DCM.

3 Discussion

TCM is a great crystallization of the wisdom generated by
ancient Chinese people through clinical practice over a long
history and has made an indelible contribution to the
prevention and treatment of human diseases. Although TCM
has been treating diseases for thousands of years, its focus has
always been on the therapeutic effect of diseases, and the
mechanism through which TCM exerts its curative effect has
not been paid much attention, which is mainly related to the
backward cognition and detection methods of people at that time.
Modern medicine and TCM have completely different theoretical
systems. With the rapid development of modern medicine and the
growing popularity of TCM in the world, researchers have begun
to explore the mechanisms of TCM and have completed a large
number of mechanism studies of TCM against DCM in the
past decade.

This review describes the mechanism and potential of TCM
against DCM from the perspective of signaling pathways (Table 1).
It is noteworthy that TGF-β/Smad, NF-κB, PI3K/AKT, Nrf2,
AMPK, NLRP3, and Wnt/β-catenin signaling pathways are
prominent in the above studies of TCM against DCM. TCM
alleviates DCM mainly by improving pathological processes such
as myocardial fibrosis, inflammation, oxidative stress, apoptosis, and
cardiac hypertrophy. The above conclusions are also consistent with
the current state of research. For example, the TGF-β/Smad
signaling pathway is a key signaling pathway associated with
cardiovascular disease, especially an important factor in the
development of myocardial fibrosis. In this study, Syr, NGR1,
SSYX, Soy isoflavone, Zicuitongmai Yin, ginkgolide B, and
echinacoside could reduce myocardial fibrosis and improve DCM
by regulating the TGF-β/Smad signaling pathway, which proves the
great prospect of the TGF-β/Smad signaling pathway in TCM
against myocardial fibrosis of DCM. It is well-known that
inflammation is one of the main causes of DCM in the initial
stage. NF-κB and NLRP3 signaling pathways are two of the most
classical inflammatory signaling pathways. In this study, AG,
mangiferin, and hederagenin inhibited the NF-κB signaling
pathway, and THJ, TCT, and formononetin inhibited the
NLRP3 signaling pathway to reduce the inflammatory response
of DCM. In addition, oxidative stress is another risk factor for the
development of DCM and often occurs in tandem with
inflammatory reactions, thus accelerating the development of
DCM under the influence of the crosstalk between the two. The
Nrf2 signaling pathway is one of the classical signaling pathways for
antioxidative stress, and it is also prominent in TCM against
oxidative stress of DCM. Syr, NGR1, AG, and SchB have been

shown to improve the oxidative stress of DCM by regulating the
Nrf2 signaling pathway. Compared to the aforementioned predictive
processes, there are no signaling pathways with high relevance in
improving TCM regulation of DCM by intervening apoptosis and
cardiac hypertrophy, which may be related to the difference in the
number of references in the current study of different pathological
processes of DCM. Due to the popularity of autophagy research in
recent years, there has been a gradual emergence of research on
TCM regulation of autophagy to improve DCM, but little research
has been done on the signaling pathways involved in autophagy.
How TCM interferes with autophagy to improve DCM is a
promising research direction and may also be one of the focuses
of future research work. In addition, many TCMs improve DCM not
only by intervening with one signaling pathway but multiple; for
example, AG could reduce the inflammatory response of DCM by
inhibiting the activation of the NF-κB signaling pathway and could
also improve the oxidative stress of DCM by regulating the
Nrf2 signaling pathway; Syr could improve myocardial fibrosis,
inflammation, and oxidative stress of DCM by regulating TGF-β/
Smad2/3 and Keap1/Nrf2 signaling pathways; NGR1 could improve
oxidative stress, apoptosis, and myocardial fibrosis of DCM by
regulating TGF-β/Smad2/3 and Akt/Nrf2 signaling pathways; and
EZP could improve oxidative stress and apoptosis of DCM by
regulating PI3K/Akt/FOXO3a and AMPK signaling pathways.
There are many such examples in this study, which reflect the
multi-target and multi-pathway characteristics of TCM.
Considering the multiple-organ damage caused by hyperglycemia
and the complexity and long-term nature of DCM pathogenesis,
TCM with multi-target and multi-pathway characteristics and few
side effects has broad prospects as a drug candidate for the treatment
of DCM. Although TCM has shown great potential in the treatment
of DCM, there are still some shortcomings. First, the same TCM in
different regions may have different components due to differences
in climate, which may lead to differences in the efficacy and toxicity
of TCM in application. Second, the complexity of TCM components
determines its multi-target and multi-pathway characteristics,
which is an advantage of TCM but also a disadvantage, making
it more difficult to study the specific mechanism of TCM against
DCM. Third, there is a lack of large clinical trials of TCM in the
treatment of DCM. Fourth, some TCM prescriptions are hospital
preparations whose production process standards are not clear and
uniform. Finally, it is worth noting that the scientific quality of the
references needed to be assessed, and based on the available
information, we defined (A) experiments containing animal and
cellular experiments with positive or negative control groups; (B)
experiments containing animal and cellular experiments without
positive or negative control groups; (C) experiments containing only
animal experiments; and (D) experiments containing only cellular
experiments. Obviously, the evidence of type A not only obtains
relevant results from in vivo experiments but can also be further
verified by in vitro experiments and positive or negative control
groups to confirm the reliability of the results, which is a higher level
of experimental evidence. The level of the evidence of type B is only
second to that of type A, which also belongs to a higher level of
experimental evidence. The evidence of type C and type D belongs to
a slightly lower level of evidence relative to A and B, especially type
D. Due to the singularity of the cell itself and its growth
environment, which is far less complex than that of animals,
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often evidence that appears in cell experiments is not necessarily
validated in animal experiments, and thus, type D belongs to a lower
level of evidence among these. In short, all the evidence needs to be
viewed dialectically. In addition, dose is a very important event in
pharmacological studies, and for in vivo studies, as a general rule, the

dose tested should not exceed 1 g/kg and day. However, a small
number of TCM prescriptions included in this review have doses
exceeding 1 g/kg and day, and the maximum dose even reaches
4 g/kg and day, which is worth considering. If an excessive dose is
required to achieve the relevant pharmacological activity, can it be

TABLE 2 Basic pharmacological data from in vivo and in vitro experiments on TCM treatment of DCM.

Agent Type of
agents

Experiment model Dose range
tested/
administration

Duration Positive and
negative
controls

References

In Vivo In Vitro

Syringaresinol (Syr) Metabolite Male C57BL/
6 mice, 18–22 g,
6–8 w, STZ-
induced model

NRVMs, HG-induced
model

In vivo: 25 mg/kg (gavage
every other day)
In vitro: 50 and 100 µM

In vivo: 8 w - Li et al. (2020a)

Notoginsenoside
R1 (NGR1)

Metabolite Female db/db
mice, 6–8 w

H9c2 cardiomyocytes,
AGE-induced model

In vivo: 7.5, 15, and
30 mg/kg (gavage)
In vitro: 25 µM

In vivo: 20 w
In vitro: 24 h

Positive control:
metformin
200 mg/kg (in
vivo)

Zhang et al. (2018)

Shensong Yangxin
capsule (SSYX)

TCM
prescription

Male Wistar
rats, 180–220 g,
fat emulsion +
STZ-induced
model

- In vivo: 50, 100, and
200 mg/kg

- - Shen et al. (2014)

Andrographolide
(AG)

Metabolite C57/BL6J mice,
25–30 g, 8 w,
STZ-induced
model

H9c2 cardiomyoblasts,
HG-induced model

In vivo: 1, 10, and
20 mg/kg (gavage)
In vitro: 0.1, 1, 5,
and 10 µM

In vivo: 12 w - Liang et al. (2018)

Danzhi Jiangtang
capsule (DJC)

TCM
prescription

Male SD rats,
200 ± 20 g,
8–9 w, high-
energy diet +
STZ-induced
model

H9c2 cells, HG-induced
model

In vivo: 270, 540, and
1,080 mg/kg (gavage)
In vitro: 15% DJC-
containing serum

In vivo: 8 w
In vitro: 48 h

Positive control:
TAK242 1.0 µM
(in vitro)

Shi et al. (2021)

Erzhi pills (EZP) TCM
prescription

Male SD rats,
190 ± 10 g, 6 w,
high-fat diet +
STZ-induced
model

- In vivo: 1, 2, and 4 g/kg
(gavage)

In vivo: 8 w - Peng et al. (2022b)

Puerarin Metabolite Male SD rats,
170 ± 10 g, STZ-
induced model

H9c2 cardiomyocytes,
HG-induced model

In vivo: 20 and 40 mg/kg
(intraperitoneal
injection)
In vitro: 5 and 20 µM

In vivo:
5 days
In vitro: 48 h

Negative control:
puerarin 40 mg/kg
+ compound C
1 mg/kg (in vivo)

Kong et al.
(2023b), Xu et al.
(2022)

Schisandrin B
(SchB)

Metabolite Male C57BL/
6 mice, 18–20 g,
STZ-induced
model

- In vivo: 50 and
100 mg/kg (gavage)

In vivo: 4 w Negative control:
SchB 100 mg/kg +
ML385 30 mg/kg
(in vivo)

Yang et al. (2022)

Fucoxanthin (FX) Metabolite Male SD rats,
200 ± 10 g, STZ-
induced model

H9c2 cardiomyocytes,
HG-induced

In vivo: 200 mg/kg
(gavage)
In vitro: 1 µM

In vivo: 12 w
In vitro: 48 h

Positive control:
metformin
230 mg/kg (in
vivo)

Zheng et al.
(2022a)

Taohuajing (THJ) TCM
prescription

C57BL/6 mice,
23–25 g, 8–10 w,
high-fat diet +
STZ-induced
model

- In vivo: 125, 250, and
500 mg/kg (gavage)

In vivo: 12 w - Yao et al. (2021)

Fufang
Xueshuantong
(FXST)

TCM
prescription

Male SD rats,
180–200 g, STZ-
induced model

- In vivo: 1,050 mg/kg
(gavage)

In vivo: 12 w - Peng et al. (2022c)

Yam
polysaccharide
(YP)

Metabolite - H9c2 cardiomyocytes,
HG-induced

In vitro: 0.2 mg/mL In vitro: 48 h Negative control:
SchB 0.2 mg/mL +
LiCl 40 µM
(in vitro)

Song et al. (2023)
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reasonably assumed that it has no activity at lower doses and, thus,
that they are not pharmacologically relevant? Even in excessive
doses, the toxicity of TCM should be evaluated. Therefore, this
review suggests that future pharmacological studies should be
evaluated at more relevant dose levels to make the conclusions
more convincing. The relevant basic pharmacological data are
shown in Table 2.

In summary, in the future, more in-depth studies should be
conducted to explore the pathogenesis of DCM and screen potential
targets for drug candidates against DCM, thus providing new ideas
and more experimental evidence for the clinical use of TCM in the
treatment of DCM.
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