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Epidermal growth factor receptor (EGFR) gene mutations are prevalent in about
50% of lung adenocarcinoma patients. Highly effective tyrosine kinase inhibitors
(TKIs) targeting the EGFR protein have revolutionized treatment for the prevalent
and aggressive lung malignancy. However, the emergence of new EGFR
mutations and the rapid development of additional drug resistance
mechanisms pose substantial challenge to the effective treatment of NSCLC.
To investigate the underlying causes of drug resistance, we utilized next-
generation sequencing data to analyse the genetic alterations in different
tumor genomic states under the pressure of drug selection. This study
involved a comprehensive analysis of whole exome sequencing data (WES)
from NSCLC patients before and after treatment with afatinib and osimertinib
with a goal to identify drug resistance mutations from the post-treatment WES
data. We identified five EGFR single-point mutations (L718A, G724E, G724K,
K745L, V851D) and one double mutation (T790M/L858R) associated with drug
resistance. Through molecular docking, we observed that mutations, G724E,
K745L, V851D, and T790M/L858R, have negatively affected the binding affinity
with the FDA-approved drugs. Further, molecular dynamic simulations revealed
the detrimental impact of these mutations on the binding efficacy. Finally, we
conducted virtual screening against structurally similar compounds to afatinib
and osimertinib and identified three compounds (CID 71496460, 73292362, and
73292545) that showed the potential to selectively inhibit EGFR despite the drug-
resistance mutations. The WES-based study provides additional insight to
understand the drug resistance mechanisms driven by tumor mutations and
helps develop potential lead compounds to inhibit EGFR in the presence of drug
resistance mutations.
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1 Introduction

Lung cancer, ranking amongst the most prevalent and deadliest malignancies
worldwide, poses a significant threat to human health and quality of life. In
2020 alone, over 2.2 million new cases were identified and about 1.80 million people
succumbed to this disease (Sung et al., 2021). The 5-year survival rates for lung cancer are
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notably low, with 17% for men and 24% for women (Bray et al.,
2018). The increased expression of epidermal growth factor
receptor (EGFR) has been associated with the development of
various human cancers, including non-small cell lung cancer
(NSCLC) (Ohsaki et al., 2000; Inamura et al., 2010). EGFR is a
transmembrane receptor kinase that is expressed in epithelial,
mesenchymal, and neurogenic tissues. Several studies have
shown that higher EGFR expression in NSCLC is correlated
with poorer survival rates (Scagliotti et al., 2004), increased
incidence of lymph node metastasis (Fang et al., 2014), and
diminished response to chemotherapy (Ogawa et al., 1993;
Swinson et al., 2004). First-generation EGFR tyrosine kinase
inhibitors (TKIs) such as erlotinib, gefitinib, icotinib, and
lapatinib have been widely used to inhibit EGFR activity,
reversibly and ATP-competitively. These EGFR TKIs have
demonstrated enhanced cytotoxic effects on mutated forms of
EGFR (Guardiola et al., 2019).

However, despite the initial efficacy of first-generation EGFR
TKIs, nearly all NSCLC patients eventually develop resistance to
these drugs within 10–14 months, primarily due to the emergence
of the EGFR mutation, T790M (Wu and Shih, 2018). Second-
generation EGFR TKIs have been developed to overcome this
resistance with a more potent inhibitory effect on EGFR
(Guardiola et al., 2019). Second generation agents such as
afatinib, neratinib, and dacomitinib have demonstrated
superior anticancer activity compared to their first-generation
counterparts (Guardiola et al., 2019). In response to the growing
resistance challenge, FDA has also approved osimertinib, a third-
generation irreversible EGFR TKI, for treating patients who have
developed resistance to both first- and second-generation drugs.
In addition, Osimertinib was also approved as a first-line therapy
for patients with EGFR mutation-positive tumors. Despite the
substantial progress made with third-generation TKIs, patients
continue to acquire resistance and fail to respond to these
inhibitors. Over time, all patients eventually develop
resistance, indicating that acquired resistance mechanisms
diminish the efficacy of these medications. Despite the
significant therapeutic advancements and improved
understanding of the genetic foundations, developing
resistance to EGFR TKIs remains inevitable, leading to disease
progression (Westover et al., 2018; Del Re et al., 2019). This is
partly due to the genetic heterogeneity among the NSCLC
patients. Therefore, gaining insights into the unique
genetic makeup of individuals can pave the way for
precision treatment approaches tailored to a patient’s
mutational profile.

Genomic sequencing has revolutionized precision drug
discovery by offering valuable insights into the mutational
profiles of the genetically heterogeneous diseases (Strianese et al.,
2020). Recent advancements in sequencing technology have made it
feasible to sequence the entire tumor genome or specific regions of
interest, quickly and affordably, to enable the monitoring of
acquired mutations linked to drug resistance throughout the
cancer life cycle. This paradigm shift in genome sequencing
technologies has fuelled the development of personalized
medicine approaches by empowering researchers to pinpoint
genetic and drug-resistant mutations linked to a particular
disease such as cancer.

In this study, we examined two genomic cohorts of NSCLC
patients (SRA IDs PRJEB21459 and PRJNA616048/dbGaP:
phs002001) who exhibited resistance to the second and third-
generation drugs, afatinib and osimertinib, respectively. By
analyzing the whole exome sequences (WES) of NSCLC
patients before and after the development of drug resistance,
we identified EGFR mutations associated with this resistance for
each drug. Subsequently, we conducted molecular modeling and
docking studies to assess the binding affinity between the mutant
EGFR and the FDA-approved drugs (afatinib and
osimertinib) used for the treatment. Following that, we
performed virtual screening to identify promising
structurally-similar lead compounds capable of inhibiting
EGFR despite the presence of drug-resistance mutations. To
gain further insights, molecular dynamic simulations were
carried out to evaluate the binding efficacy of the screened
compounds with the drug-resistant mutant structures of
EGFR. The overall workflow of our approach is depicted
in Figure 1.

2 Methodology

2.1 Data collection

In this study, we utilized WES data obtained from the tumor
samples of two NSCLC patient cohorts. These data were
collected from the SRA (Sayers et al., 2022) and dbGAP
(Wong et al., 2017) databases. The first cohort contains
38 patients who received the initial treatment with Erlotinib/
Gefitinib (SRA ID PRJEB21459) (van der Wekken et al., 2017)
and subsequently were treated with the second-generation drug,
Afatinib. The second cohort of 34 patients were treated with the
same first and second-generation drugs as the first cohort but
also received an additional treatment with a third-generation
drug, osimertinib (PRJNA616048/dbGaP: phs002001). The
crystal structure of the EGFR protein (PDB ID: 3VJO) was
obtained from the RCSB-PDB database, and using PyMOL
software (PyMoL, 2010), water molecules and other bound
molecules were removed. Mutant models were constructed
using SPDBV 4.10 software (Guex et al., 1997).

2.2 Whole exome sequencing data analysis

We employed Nextflow-Sarek 3.1.2 to analyse whole exome
sequencing (WES) data, which is a comprehensive workflow
designed for quality control, germline and somatic variant
detection, and annotation using the recommended best
practices in the field (Garcia et al., 2020). During the pre-
processing step, sequencing reads were aligned to the human
reference genome (GRCh38/hg38) using BWA-MEM (Li et al.,
2013) and deduplication and recalibration were carried out using
GATK (McKenna et al., 2010). Since our objective was to identify
somatic variants in patients with drug resistance, we utilized
GATK4 Mutect2 (Cibulskis et al., 2013) and Strelka2 (Kim et al.,
2018) to detect somatic single-base mutations (SSM) and small
somatic insertion/deletion mutations (SIM). We employed
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Manta to detect somatic structural variants, including copy-
number variation, ploidy, and sample purity (Chen et al.,
2016). In order to evaluate the potential functional impacts of
the identified variants, we annotated them using snpEff
(Cingolani et al., 2012) and VEP (McLaren et al., 2016) The

nf-Sarek workflow generates comprehensive quality control
metrics, including FastQC (Li et al., 2009; Li, 2011;
Okonechnikov et al., 2016) and VCFtools (Danecek et al.,
2011), which are aggregated and visualized across samples
using MultiQC (Ewels et al., 2016).

FIGURE 1
Schematic showing the in silico workflow from mutation detection to drug discovery.

Frontiers in Pharmacology frontiersin.org03

Nagarajan and Guda 10.3389/fphar.2024.1428158

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1428158


2.3 Preparation of EGFR wild-type (WT) and
mutant-type structures

We employed the Schrodinger suite’s prime module and protein
preparation wizard to ensure the integrity of the EGFR wild-type
(WT) and mutant structures. This step involved the removal of
artifacts such as incorrect bond orders, missing hydrogen atoms,
misaligned groups, erroneous charge states, and the missing side
chains (Schrodinger Release 2020-1. Protein Preparation Wizard;
Schrodinger Release 2020-1. Prime). Additionally, restrained energy
minimization was performed to alleviate strained bonds, angles, and
steric hindrance, allowing heavy atoms to move within a range
of 0.3 Å.

2.4 Preparation of compounds formolecular
docking and virtual screening

The three-dimensional structures of FDA-approved EGFR
inhibitors, namely, afatinib (CID:10184653) and osimertinib
(CID:71496458), were obtained from the PubChem database
(Kim et al., 2023). Using their structure information, 3505 and
3880 compounds that are structurally similar to afatinib and
osimertinib, respectively, were retrieved from the PubChem and
DrugBank (Wishart et al., 2018) databases. The Maestro tool was
employed to prepare all the compounds for further analysis. Ligprep,
a software tool, was used to generate 2D or 3D structures and
corresponding low-energy 3D structures of both the approved EGFR
inhibitors as well as the retrieved structurally similar compounds to
make them ready for docking using the Glide program. Default
parameters were used, except for the chirality feature, for which all
combinations of chirality were considered. Subsequently, tautomer
generation, desalting, and adjustment of probable ionization states
at pH 7 ± 2 were performed (Zagaliotis et al., 2022). The S. suite’s
Epik module, an integrated tool, was utilized to predict the
ionization states of the molecules (Rajamanickam et al., 2022).

2.5 Molecular docking

The Schrodinger suite’s Glide module was employed to conduct
site-specific molecular docking of FDA-approved EGFR inhibitors
and virtually screened compounds against both EGFR WT and
mutant targets. Receptor grid preparation was performed using the
Glide tool with default parameters, including a partial charge cutoff
of 0.25 and van der Waals radius scaling factor of 1.0 (Schrodinger
Release 2020-1, Glide). For the screening process, Glide was utilized
at extra precision (XP), which signifies a clear correlation between
high-quality poses and favorable scores, ensuring an accurate
evaluation of the libraries.

2.6 ADME and toxicity analysis

QikProp is a specialized tool designed to rapidly predict the
ADME (absorption, distribution, metabolism, and excretion)
properties of compounds with high accuracy (Schrodinger
Release 2020-1. QikProp). It provides predictions for key

physicochemical descriptors and pharmaceutical properties of
organic molecules, either for individual compounds or in a batch
mode. The predicted ADME properties encompass various
parameters such as molecular weight, number of H-bond
acceptors and donors, indicated octanol/water partition
coefficient (MLogP), total polar surface area (TPSA), Lipinski’s
rule of five (drug-likeness), Rat LD50, and hepatotoxicity. These
predictions are crucial for assessing the pharmacokinetic and
toxicological profiles of the compounds in the early drug
discovery and development stages.

2.7 Molecular dynamics simulation

To assess the structural stability of the docked complexes
involving WT and mutant EGFR targets with FDA-approved
EGFR inhibitors (Afatinib and Osimertinib) as well as the
virtually screened compounds, a 50 ns(nano seconds) molecular
dynamics (MD) simulation was performed using GROMACS
gromacs/2021.1 software (Abraham et al., 2015). The topological
parameters of the WT and mutant EGFR inhibitors were generated
using the PRODRG web server (Schuttelkopf and van Aalten, 2004).
The WT and mutant structures were solvated in cubic boxes using
the SPC (single point charge) water model, ensuring a minimum
distance of 1 nm from the box edges. For the structures complexed
with ligand molecules, a similar solvation procedure was followed,
with water molecules positioned at a 1 nm distance from the box
borders, and counter ions (sodium and chloride) were added to
neutralize the system. The structures underwent two rounds of
energy minimization using the steepest descent technique
followed by the conjugate gradient algorithm for 5000 steps to
relax the system. Subsequently, the minimized systems were
equilibrated under position-restrained ensemble conditions (NVT
and NPT) at 300 K for 50,000 picoseconds (ps). Berendsen’s weak
coupling was employed to maintain a constant pressure of 1 bar, and
the Parrinello-Rahman approach (Martonak et al., 2003) was used to
control the temperature at 300 K. The calculation of electrostatic
interactions utilized the Fast Particle-Mesh Ewald electrostatics
(PME) method (Hess et al., 1997) and a 50 ns long-range
production MD run was conducted for both WT and mutant
systems for each complex. To analyze the MD trajectories,
GROMACS utility tools such as g_rmsd, g_hbond, g_mindist, and
g_sasa were employed to examine the RMSD (Root Mean Square
Deviation), number of hydrogen bonds, minimum distance between
the protein and ligand, and solvent-accessible surface area of the
protein, respectively. These analyses provided insights into the
stability and dynamic behavior of the studied complexes during
the MD simulation.

3 Results

3.1 Whole exome sequencing analysis
identifies single- and double-
point mutations

WES data analysis was conducted to identify EGFR drug
resistance mutations in NSCLC patient samples. A total of
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72 patients containing pre- and post-treatment WES data with
osimertinib and afatinib were analyzed using Nextflow Sarek
3.1.2. In the post-treatment samples, five single-point mutations
and one double mutation were identified, as shown in Table 1.
Mutations L718A, G724E, T790M/L858R were found in post-
afatinib treatment samples, while mutations G724K, K745L, and
V851D were identified in post-osimertinib treated samples. All of
these mutations except V851D have been previously reported as
drug resistant on EGFR in various studies (Lu et al., 2018; Lu et al.,
2020; Du et al., 2021; He et al., 2021). Further analysis of the binding
modes of mutant EGFR variants with drug compounds will provide
insights into the mechanism of drug resistance.

3.2 Ligand binding affinity and hydrogen
bonding pattern differ between WT and
mutant EGFR variants

Comparative docking of EGFRWT andmutant structures with the
FDA-approved drugs, osimertinib and afatinib, was performed using
the Glide module of the Schrodinger suite (Schrodinger Release, Glide;
Schrodinger, 2020; Halgren et al., 2004). The binding affinity of the
ligands was evaluated based on theGlide XPGscore, which was used to
rank the poses of the ligands (Table 2). Previous studies have identified
the drug-binding residues of EGFR at VAL726, ALA743, ILE744,
LYS745, MET766, LUE789, THR790, GLN791, LEU792, MET793,
GLY796, CYS797, ASP800, LEU844, and THR854 (Kashima et al.,
2020). We observed that both afatinib and osimertinib bind to the

EGFR mutant structures in a slightly different orientation than to the
WT EGFR. For afatinib docking with the WT and mutant L718A,
G724E, and T790M/L858R structures, the binding energies
were −8.378, −8.6434, −7.8765, and −7.857 kcal/mol, respectively.
Similarly, the binding energies for osimertinib docking with the WT,
G724K, K745L, and V851D structures were −8.376, −8.314, −7.887,
and −7.378 kcal/mol, respectively. The lower the binding energy, the
higher the binding affinity, and vice versa. The binding energy between
themutant structure L718A and afatinib is almost similar to the binding
energy ofWTwith afatinib, but the othermutant structures (G724E and
T790M/L858R) obtained higher binding energy compared to the WT-
Afatinib complex. Similarly, the binding energy between the mutant
structure G724K and osimertinib is almost similar to that of the WT
with osimertinib, but the other mutant structures (K745L and V851D)
obtained higher binding energies compared to the WT-osimertinib
complex. Because G724E, T790M/L858R, K745L, and V851D mutant
structures obtained higher binding energies, that negatively affects their
binding affinity with the corresponding drugs. Hence, these mutant
structures were considered for further virtual screening studies taking
into account their drug interaction patterns and dynamics.

The interaction patterns based on hydrogen bonding between WT
EGFR and its mutant’s post-treatment with afatinib and osimertinib
were examined (Supplementary Figures S1, S2). Osimertinib formed
three hydrogen bonds with both WT and G724K mutant EGFR
structures, involving the same amino acid residues: LEU718,
MET793, and CYS797 (Supplementary Figures S1A, S1B). On the
other hand, this drug established two hydrogen bonds involving
residues LEU718 and MET793 (Supplementary Figure S1C) with

TABLE 1 Detected EGFR mutations in the samples collected after afatinib and osimertinib treatments.

EGFR mutations present in the post-afatinib treatment
samples (n = 38)

EGFR mutations present in the post-osimertinib treatment
samples (n = 34)

Identified EGFR
mutations

Number of samples with
mutation(s)

Identified EGFR
mutations

Number of samples with
mutation(s)

L718A 2 G724K 1

G724E 1 K745L 1

T790M/L858R 16 V851D 13

TABLE 2 Molecular docking analysis between WT and Mutant EGFR with FDA-approved drugs: Afatinib and osimertinib. Table showing the respective
targets, binding energy, hydrogen bonds formed between target and ligand, and the amino acids involved in the hydrogen bond formations.

FDA-approved
drugs

Drug
targets

XP gscore
(Kcal/mol)

Number of hydrogen bonds between
target and ligand

Amino acids in hydrogen
bonding

Afatinib WT EGFR −8.378 2 LEU718, MET793

L718A −8.643 2 MET793

G724E −7.876 1 ASP855

T790M/L858R −7.857 1 MET793

Osimertinib WT EGFR −8.376 3 LEU718, MET793, CYS797

G724K −8.314 3 LEU718, MET793, CYS797

K745L −7.887 2 LEU718, MET793

V851D −7.378 1 CYS797
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K745L mutant structure and only one hydrogen bond with ASP855 in
the V851D mutant structure (Supplementary Figure S1D). With
afatinib, two hydrogen bonds were established each in WT and
L718A mutant both involving MET793 ( Supplementary Figures
S2A, S2B). However, afatinib formed only one hydrogen bond each
in G724E mutant (with MET793) and T790M/L858R double mutant
(with MET793) structures (Supplementary Figures S2C, S2D). The
mutant structures K745L, V851D, G724E, and T790M/L858R exhibited
high binding energies and fewer hydrogen bonds with their
corresponding drugs compared to the wild type (WT).
Consequently, these four mutant structures G724E, T790M/L858R,
K745L, and V851D with corresponding docked drugs were selected for
further molecular dynamics simulations.

3.3 Comparison of binding efficacy, stability,
and conformational dynamics between WT
and mutant complexes with drugs using MD
simulations

The primary objective of the extended molecular dynamics (MD)
simulations was to investigate the comparative binding efficacy between
the docked mutant complexes and WT complexes. A 50 ns MD
simulation was performed for the following six protein-ligand
complexes that include three for each drug: WT EGFR-Osimertinib,
K745L-Osimertinib, V851D-Osimertinib,WTEGFR-Afatinib, T790M/
L858R-Afatinib, andG724E-Afatinib. TheGROMOS 53a6 force field in
GROMACS was employed for energy minimization. Our analysis was
focused on the backbone root-mean-square deviation (RMSD),

hydrogen bonds, minimum distance, and the solvent-accessible
surface area. For the complexes of WT EGFR, K745L, and V851D
with osimertinib, the backbone RMSD analysis (Supplementary Figure
S3A) revealed that WT EGFR exhibited a lower deviation pattern
(~0.25 nm) compared to the mutant structures, K745L (~0.3 nm), and
V851D (~0.35 nm). Similarly, for the complexes of afatinib
(Supplementary Figure S3B), WT EGFR displayed a lower deviation
pattern (~0.25 nm) compared to the mutant structure, G724E
(~0.35 nm), and double mutant, T790M/L858R (~0.35 nm). Higher
deviations in RMSD may impact the structural stability of the protein
and subsequently lower the binding efficacy of the drugs.

Hydrogen bond formation between EGFR WT and mutant
structures with osimertinib and afatinib was also analysed. The
number of hydrogen bonds formed between osimertinib and WT
EGFR, K745L, and V851D structures during the last 10 ns of the
simulation was examined (Figure 2). WT EGFR in complex with
osimertinib formed 1–3 hydrogen bonds, whereas the mutant
complexes, K745L-osimertinib and V851D-osimertinib, formed
fewer hydrogen bonds ranging from 0–1 and 0–2, respectively.
Likewise, the number of hydrogen bonds between afatinib and
WT EGFR or G724E complexes ranged from 1–3, while those
between afatinib and T790M/L858R complex were fewer (0–2),
as shown in Figure 2B. A lower number of hydrogen bonds may
impact the stability of the protein-drug complex.

The minimum distance between WT EGFR, K745L, and V851D
with osimertinib was analysed during the last 10 ns of the simulation
period (Figure 3A). In the WT EGFR-Osimertinib complex, this
distance was maintained at approximately 0.15–0.20 nm. However,
the mutant complexes, K745L-Osimertinib and V851D-

FIGURE 2
Number of hydrogen bonds formed between protein and ligand. (A) Number of hydrogen bonds formed between WT and mutant EGFR with drug
osimertinib. (B) Number of hydrogen bonds formed between WT and mutant EGFR with drug afatinib.
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Osimertinib, exhibited higher distances of around 0.15–0.27 and
0.15–0.30 nm, respectively. Similar measurements in the afatinib
associated complexes with WT EGFR, G724E, and T790M/L858R
structures recorded these distances around 0.15–0.22, 0.15–0.25, and
0.15–0.27 nm, respectively. A higher distance between the
components may impact the formation of non-bonded
interactions within the complexes.

Further, SASA analysis was performed to compare the solvent
accessible surface area in response to the overall protein conformational
changes in the complex structures of EGFR WT and mutants with the
two drugs. In the osimertinib-associated complexes, WT EGFR had a
higher accessible area of approximately 170 nm2 than the mutants,
K745L (~155 nm2) and V851D (~150 nm2) (Supplementary Figure
S4A). Similarly, with afatinib complexes, the WT EGFR had a higher
accessible area of approximately 160 nm2 than the mutants, G724E
(~152 nm2) and T790M/L858R (~155 nm2) (Supplementary Figure
S4B). A lower accessible surface area suggests fewer possibilities for
interactions with other molecules.

3.4 Virtual screening identifies potential
inhibitors of mutant EGFR structures

Virtual screening plays a pivotal role in identifying potential
small molecules by systematically screening chemical libraries for
compounds that can bind to a target protein (Cuccioloni et al.,
2020). In this study, we screened a total of 7385 chemical
compounds obtained from the PubChem and DrugBank
databases against the mutant EGFR structures (G724E, K745L,

V851D, and T790M/L858R) using the Schrodinger Glide virtual
screening workflow. The top ten compounds were selected for each
mutant structure based on their binding energies and the number of
hydrogen bond interactions with the mutant EGFR structures.
Subsequently, independent docking analyses were performed for
each compound against each mutant structure to identify three
compounds (CID 71496460, 73292362, and 73292545) that show
the potential to selectively inhibit EGFR despite drug-resistance
mutations (Supplementary Figure S5). These compounds were
selected based on their favorable binding energies and ability to
form higher number of hydrogen bonds with the mutant proteins as
shown in Table 3. For instance, compound CID 71496460 exhibited
a favorable binding energy of −8.376 kcal/mol and formed three
hydrogen bonds with the mutant G724E structure at residues
PHE795, MET793, and ASP855 (Figure 4A). This compound also
demonstrated a promising binding energy of −8.002 kcal/mol and
formed four hydrogen bonds with the EGFR mutant, K745L, at
residues MET793, GLU804, and ASP855 (Figure 4B). Similarly, CID
73292362 displayed an intense binding energy of −9.110 kcal/mol
with the double mutant, T790M/L858R (Figure 4C) and CID
73292545 exhibited a considerable binding energy (−7.649 kcal/
mol) with V851D (Figure 4D).

3.5 ADME assessment highlights the promise
of the screened drug candidates

QikProp, a computational tool, provides valuable predictions on
important molecular descriptors and pharmaceutical properties of

FIGURE 3
Minimum distance formed between protein and ligand. (A) Minimum distance formed between WT and mutant EGFR with drug osimertinib. (B)
Minimum distance formed between WT and mutant EGFR with drug afatinib.
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organic compounds. The ADME (Absorption, Distribution,
Metabolism, and Excretion) profile, which assesses the drug-like
behavior of a chemical agent, was evaluated for the three compounds
and the results were presented in Table 4. Notably, none of the
screened compounds violated the Lipinski rule criteria, as indicated
by a star value of zero. The star rating system, ranging from 0 to 5,
suggests that compounds with fewer stars possess more
extraordinary drug-like characteristics. Additionally, the
molecular weight, number of H-bond donors and acceptors, and
logP values of the screened compounds fall within the acceptable
ranges defined by the Lipinski rule. Based on these favorable
properties, these three compounds merit consideration for further
investigation.

3.6 MD simulation reveals higher binding
efficacies between the screened
compounds and mutant EGFR structures

Binding efficacies were evaluated based on both the distance
between the compound and protein structure and the number
hydrogen bonds between them using a 50 ns MD simulation
(Figure 5). In the last 10 ns of the simulation, G724E-71496460,
K745L-71496460, T790M/L858R-732992362, and V851D-73292545
have maintained approximately 0–4, 0–6, 0–4, and 0–4 hydrogen
bonds, respectively. Notably, compared to the FDA-approved drugs,
osimertinib and afatinib, all the screened compounds exhibited
higher number of hydrogen bonds during the MD simulation
period. Similarly, in the last 10 ns of the simulation period,
G724E-71496460, K745L-71496460, T790M/L858R-732992362,
and V851D-73292545 maintained minimum distance ranges of
approximately 0–0.25 nm, 0.15–0.27 nm, 0.15–0.22 nm, and
0.15–0.25 nm, respectively (Figure 6). Again, compared to the
FDA-approved drugs, all the screened compounds exhibited
shorter distances with corresponding mutant structures,
indicating their potential to inhibit the EGFR mutant proteins
more effectively.

4 Discussion

EGFR plays a critical role in the development and progression of
various cancers (Inamura et al., 2010). It is a cell surface receptor
belonging to the receptor tyrosine kinase (RTK) family, involved in
regulating cell growth, proliferation, and survival (Ohsaki et al.,
2000). Dysregulation of EGFR signaling has been implicated in

multiple cancer types, making it an attractive target for cancer
therapy (Guardiola et al., 2019). EGFR overexpression is
observed in a significant subset of colorectal cancers and elevated
EGFR signaling is associated with enhanced tumor growth and
metastasis (Oh et al., 2011). Anti-EGFR monoclonal antibodies like
cetuximab and panitumumab have been developed to target EGFR
in colorectal cancer, particularly in patients with wild-type RAS
status (Karapetis et al., 2008). These therapies have shown clinical
benefit in patients with EGFR overexpressing tumors. EGFR
amplification and mutations are frequent events in Glioblastoma
Multiforme (GBM) (Marvalim et al., 2023). EGFRvIII, a
constitutively active EGFR variant, is commonly observed in
GBM and associated with a more aggressive phenotype.
Targeting EGFR signaling in GBM has been challenging, but
various approaches, including EGFR-specific TKIs and
monoclonal antibodies, are being investigated in clinical trials
(Marvalim et al., 2023). EGFR is frequently overexpressed and
activated in Head and Neck Squamous Cell Carcinoma (HNSCC)
(Vermorken et al., 2008). This overexpression is associated with
poor prognosis and resistance to conventional therapies. EGFR-
targeted therapies, such as cetuximab, have been approved for the
treatment of recurrent or metastatic HNSCC, improving patient
outcomes (Bonner et al., 2006). EGFR mutations are prevalent in
NSCLC, particularly in adenocarcinoma. These mutations lead to
constitutive activation of the EGFR pathway, promoting
uncontrolled cell growth and cancer development. EGFR TKIs
like gefitinib, erlotinib, and osimertinib have been developed to
target these mutations in NSCLC (Paez et al., 2004). Osimertinib, a
third-line drug, is specifically designed to overcome EGFR resistance
that arises after treatment with second-like TKIs like afatinib.
Nevertheless, despite the remarkable clinical efficacy of
osimertinib, patients inevitably develop acquired resistance,
posing a significant challenge due to the limited availability of
post-osimertinib pharmacological options.

This study utilizes a combination of sequence data analysis,
molecular docking, virtual screening, and molecular dynamics
simulation to detect drug resistance mutations in NSCLC
patients and identify three compounds that show promise to
inhibit EGFR mutant proteins. We identified five EGFR-specific
somatic mutations within the WES dataset that include five single-
point (L718A, G724E, G724K, K745L, V851D) and one double
(T790M/L858R) mutations associated with drug resistance. All these
mutations are activating, causing the EGFR protein to become
hyperactive, leading to uncontrolled cell growth and division in
NSCLC patients (Lv et al., 2020). L718A, the most common EGFR
mutation found in approximately 40% of NSCLC patients,

TABLE 3 Molecular docking between virtually screened best compounds with their respective mutant structures shows binding energy, hydrogen bond
number, and the amino acids involved in hydrogen bond formation.

Mutant
EGFR’s

PubChem
ID

XP gscore
(Kcal/mol)

Number of hydrogen bonds between
the target & compound

Amino acids involved in
hydrogen bond formations

G724E 71496460 −8.376 3 PHE795, MET793, ASP855

K745L 71496460 −8.002 4 MET793, GLU804, ASP855

T790M/L858R 73292362 −9.110 3 LEU718, MET793, ASP804

V851D 73292545 −7.649 3 MET793, ASP800, ASP855
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FIGURE 4
Interaction analysis betweenmutant type EGFRs with virtually screened compounds. (A) Interaction analysis betweenG724Ewith CID:71496460. (B)
Interaction analysis between K745L with CID:71496460. (C) Interaction analysis between mutant T790M/L858R with CID 73292362. (D) Interaction
analysis between mutant V851D with CID 73292545.

TABLE 4 ADME analysis for the screened lead compounds displayed along with the screened compound molecular properties.

Screened lead
molecules

Stars Molecular weight
(Dalton)

Hydrogen bond
donor

Hydrogen bond
acceptor

Log-p-
value

71496460 0 485.588 3 8 4

73292362 0 484.56 2 9 3

73292545 0 483.572 3 8 4
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substitutes leucine with alanine at position 718 (Zhang et al., 2019).
This change alters the way the EGFR protein interacts with drugs.
Leucine is a hydrophobic amino acid located in the extracellular
domain of the EGFR protein, anchoring it to the cell membrane. In
contrast, alanine is also hydrophobic but smaller, potentially
affecting interactions with other molecules due to its smaller size.

The less common mutations, G724E, G724K, K745L, and V851D,
were found in 1%–10%ofNSCLCpatients (Tu et al., 2017; Brindel et al.,
2020). Both G724E and G724K mutations replace glycine at position
724 with glutamic acid and lysine, respectively, the G724 mutations
leading to increased EGFR activity and responsiveness to Epidermal
Growth Factor (EGF) (Oztan et al., 2017). These mutations are in the

FIGURE 5
Total number of hydrogen bonds formed between mutant EGFRs with its respectively screened compounds. (A) The number of hydrogen bonds
formed between G724E-71496460. (B) The number of hydrogen bonds formed between K745L-71496460. (C) The number of hydrogen bonds formed
between T790M/L858R-732992362. (D) The number of hydrogen bonds formed between V851D-73292545.
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EGFR protein’s extracellular domain that is responsible for drug
molecule binding (Brindel et al., 2020). The K745L mutation alters
the amino acid at position 745, where lysine plays a role in anchoring
the EGFR protein to the cell membrane and activating it when bound to
EGF (Bean et al., 2008). Lysine is a larger than leucine and a positively
charged amino acid and this substitution can change the shape and
solvent accessibility of the EGFR protein, which can affect its ability to

interact with other molecules. The double mutation, T790M/L858R,
occurs in exon 20 of the EGFR gene (Fujiwara et al., 2020). T790M
mutation replaces threonine with methionine, while L858R replaces
lysine with arginine. Both these mutations have the potential to alter
EGFR’s drug interactions as the substituting amino acids could affect
the polarity and charge properties of the protein potentially obstructing
drug binding.

FIGURE 6
Minimumdistance betweenmutant EGFRwith its respectively screened compounds. (A) Theminimum distance between G724E-71496460. (B) The
minimum distance between K745L-71496460. (C) The minimum distance between T790M/L858R-732992362. (D) The minimum distance between
V851D-73292545.
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To the best of our knowledge, this study is the first to report the
V851D mutation in EGFR as drug resistant in NSCLC cases.
Substitution of aspartic acid for valine at position 851 in the
V851D mutant imparts additional negative charge potentially
altering its folding as well as function. Moreover, position
851 falls in the tyrosine kinase domain of EGFR, which is
responsible for binding to other molecules, and this mutation
could negatively affect its binding to other proteins or drugs due
to altered electrostatic interactions within the protein.

Among the six mutant structures considered for molecular
docking analysis, K745L and V851D exhibited high binding
energies and a slightly modified binding orientation when
interacting with osimertinib. Similarly, G724E and T790M/L858R
also showed high binding energy and a slightly modified orientation
when interacting with afatinib. The higher the binding energy, the
lower the binding affinity, and vice versa. Molecular docking analysis
also elucidated mutations that impact the drug-binding abilities of
EGFR as indicated by the elevated RMSD values due to significant
conformational changes in the mutant EGFR proteins. Hydrogen
bond analysis revealed fewer hydrogen bonds formed between the
mutant structures with corresponding drugs compared to WT
EGFR. Similarly, in the minimum distance analysis, it was
observed that the mutant structures exhibited greater distances
compared to WT EGFR when interacting with afatinib or
osimertinib. The hydrogen bond and minimum distance analyses
confirmed that all drug resistance mutations affected the
conformation of the drug-binding pocket, consequently
disrupting the usual non-bonded interactions with afatinib and
osimertinib. The SASA measurement, reflecting the overall
surface area of the protein structure, indicated the potential
interaction areas with other molecules. WT EGFR exhibited a
larger surface area than the mutant structures, indicating that
drug-resistant mutations rendered the EGFR structures more
compact. Collectively, these findings contribute to a
comprehensive characterization of the WT and mutant
complexes and their implications for drug binding.

Our next goal is to identify new drug compounds that could
potentially inhibit the mutant EGFR activity. Using virtual screening,
we screened for compounds that have structural similarity to FDA-
approved afatinib and osimertinib to determine the most effective
compound to block the mutant EGFR structures. A total of
7385 chemical compounds were screened against four mutant EGFR
structures (G724E, K745L, V851D, and T790M/L858R) resulting in the
identification of three compounds (CID 71496460, 73292362, and
73292545) that exhibited strong binding affinity with the EGFR
mutant structures. CID 71496460 was identified to target both
G724E and K745L mutants, while CID 73292362 and CID
73292545 were found to be good candidates for T790M/L858R and
V851D mutants, respectively. These compounds demonstrated similar
characteristics to osimertinib and established more hydrogen bonds
with the mutant EGFR than afatinib and osimertinib. In this context,
the drug resistance mutations within the binding site induced subtle
conformational changes that affected the binding of afatinib and
osimertinib. Conversely, compounds similar to these drugs might
possess slight conformational variations that enable them to fit the
newly acquired conformation of EGFR resulting from the mutations.
Molecular dynamic simulations were performed to delve deeper into
the efficacy of the screened compounds, analyzing crucial parameters

such as hydrogen bond formation andminimum distance analysis. The
analysis of hydrogen bonds revealed that the screened compounds
formed more hydrogen bonds than the original drugs, while the
minimum distance analysis demonstrated that the identified
compounds exhibited reduced distances relative to the approved
drugs. These analyses further confirm the suitability of using the
three screened compounds as effective inhibitors of the mutant
EGFR proteins, which should be further evaluated by
experimental studies.

5 Conclusion

EGFR inhibitors have revolutionized cancer treatment, offering
substantial benefits in managing various malignancies. However, the
intricate nature of tumor biology, marked by heterogeneity and
genomic instability, poses a significant challenge in the form of
anticancer drug resistance, particularly with EGFR inhibitors. Our
research has identified specific drug resistance mutations using WES
data that hyperactivate the EGFR protein, leading to uncontrolled cell
proliferation in NSCLC patients. This resistance to anti-cancer drugs
highlights the urgent need for alternative approaches to effectively
combat drug resistance in the EGFR-driven tumors. Through virtual
screening, we have successfully identified lead compounds with the
potential to inhibit EGFR activity in the presence of identified drug
resistance mutations. This promising avenue offers hope for developing
effective and personalized treatment options for patients with
heterogeneous genetic backgrounds. By targeting drug-resistant
EGFR mutations and leveraging the potential of NGS technologies,
we aim to pave the way for more personalized and effective treatments,
ultimately improving outcomes and quality of life for those affected by
EGFR-driven NSCLC cancers.
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SUPPLEMENTARY FIGURE S1
Interaction analysis between WT and mutant type with drug osimertinib. (A)
Interaction analysis between wild-type EGFR with osimertinib. (B)
Interaction analysis between G724K with osimertinib. (C). Interaction
analysis between mutant K745L with osimertinib. (D) Interaction analysis
between mutant V851D with osimertinib.

SUPPLEMENTARY FIGURE S2
Interaction analysis between WT and mutant type with drug afatinib. (A)
Interaction analysis between wild-type EGFR with afatinib. (B). Interaction
analysis between L718A with afatinib. (C) Interaction analysis between
mutant G724E with afatinib. (D) Interaction analysis between mutant T790M/
L858R with afatinib.

SUPPLEMENTARY FIGURE S3
Root mean square deviation analysis for WT and mutant EGFR structures
interacts with (A) Osimertinib and (B) Afatinib.

SUPPLEMENTARY FIGURE S4
Solvent accessible surface analysis for WT and mutant EGFR structures
interacts with (A) Osimertinib and (B) Afatinib.

SUPPLEMENTARY FIGURE S5
Virtually screened compounds against EGFR mutant structures: (A) CID:
71496460, (B) CID:73292362, and (C) CID: 73292545.
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