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Cisplatin is widely used to treat various solid tumors. However, its toxicity to
normal tissues limits its clinical application, particularly due to its ototoxic effects,
which can result in hearing loss in patients undergoing chemotherapy. While
significant progress has been made in preclinical studies to elucidate the cellular
and molecular mechanisms underlying cisplatin-induced ototoxicity (CIO), the
precise mechanisms remain unclear. Moreover, the optimal protective agent for
preventing or mitigating cisplatin-induced ototoxicity has yet to be identified.
This review summarizes the current understanding of the roles of apoptosis,
autophagy, ferroptosis, pyroptosis, and protective agents in cisplatin-induced
ototoxicity. A deeper understanding of these cell death mechanisms in the inner
ear, along with the protective agents, could facilitate the translation of these
agents into clinical therapeutics, help identify new therapeutic targets, and
provide novel strategies for cisplatin-based cancer treatment.
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1 Introduction

Cisplatin is one of the most effective and widely used anticancer drugs. However, its use
is limited by severe side effects, including ototoxicity, nephrotoxicity, neurotoxicity, and
vascular toxicity (Ghosh, 2019). Among patients treated with cisplatin, 40%-80% of adults
and at least 40% of children experience permanent hearing loss. Cisplatin-induced
ototoxicity (CIO) typically presents as bilateral, progressive, irreversible, and dose-
dependent sensorineural hearing loss, often accompanied by tinnitus and vertigo. CIO
primarily affects the inner ear, targeting three main structures: the outer hair cells (OHCs)
of the organ of Corti, spiral ganglion neurons (SGNs), and the stria vascularis (Marnitz
et al., 2018; Waissbluth et al., 2017; Knight et al., 2017; Breglio et al., 2017; Frisina et al.,
2016; van Ruijven et al., 2005). Despite extensive research, the molecular pathogenesis of
CIO remains unclear, and effective strategies for its prevention and treatment have not yet
been established. Given that mature mammalian inner ear cells have minimal regenerative
capacity, understanding the mechanisms underlying CIO and developing effective
preventive and therapeutic approaches are crucial.

Programmed cell death (PCD) is a genetically regulated, autonomous, and orderly
process essential for maintaining cellular homeostasis. PCD involves the activation,
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expression, and regulation of specific genes and plays a significant
role in various pathophysiological conditions, making it a key focus
of recent research. The primary forms of PCD include apoptosis,
ferroptosis, and pyroptosis. Although autophagy is often discussed
in the context of cell death, it is better described as a cellular
degradation and recycling process that promotes cell survival by
eliminating damaged organelles, misfolded proteins, and other
cellular debris. Unlike apoptosis and pyroptosis, which are more
direct and structured forms of cell death, autophagy primarily
functions to maintain cellular stability (Liu et al., 2023; Galluzzi
et al., 2018). Oxidative stress is the primary mechanism of CIO and
can modulate multiple PCD pathways simultaneously. Increasing
evidence suggests that PCD plays a crucial role in CIO. In this
review, we explore recent findings on the role of PCD pathways in
CIO, particularly in the context of apoptosis, autophagy, ferroptosis,
and pyroptosis, and discuss how these insights have advanced our
understanding of the molecular mechanisms underlying CIO.
Additionally, we summarize the protective agents identified for
preventing and treating CIO to assist researchers in developing
optimal strategies against this condition.

2 Apoptosis in CIO
2.1 Overview

Apoptosis is the most extensively studied cell death pathway
associated with cisplatin-induced hearing loss and is considered the
primary mode of cisplatin-induced damage to inner ear cells.
Inhibition of apoptosis partially attenuates CIO.

Apoptosis is a form of programmed cell death that does not
trigger an inflammatory response. A key feature of apoptosis is the
activation of cysteinyl aspartate-specific proteinases (caspases). The
apoptotic signal is transmitted through various signaling pathways,
ultimately leading to caspase activation, which is responsible for cell
death. Three main apoptotic signaling pathways have been
identified: the intrinsic (mitochondrial) apoptosis pathway, the
(death
endoplasmic reticulum (ER) stress pathway. Although these

extrinsic receptor) apoptosis pathway, and the
pathways are distinct, they converge during the formation of
apoptotic bodies, which are eventually engulfed by phagocytes
(Xu et al, 2019; Green, 2019). All three apoptotic signaling
pathways have been implicated in CIO, with the mitochondrial
apoptosis pathway being the predominant pathway in cisplatin-
induced apoptosis in the inner ear (Li et al., 2016).

2.2 Mitochondrial apoptosis pathway in CIO

Research has confirmed that cisplatin initiates mitochondrial
apoptosis through three main mechanisms: 1) cisplatin induces the
overproduction and accumulation of reactive oxygen species (ROS),
which deplete glutathione and antioxidant enzymes; 2) cisplatin binds
to and alkylates DNA, halting DNA replication and causing DNA
damage; and 3) cisplatin decreases ATPase activity (Wang W. et al,
2022a). ROS accumulation is thought to be the primary mechanism by
which cisplatin induces apoptosis in inner ear cells (Wang N. et al,
2022b; Li Y. et al,, 2022a; Bu et al,, 2022; Zheng et al,, 2020).

Frontiers in Pharmacology

10.3389/fphar.2024.1430469

DNA
damage, and reduced ATPase activity in the inner ear, the

Following cisplatin-induced ROS overproduction,
expression of the proapoptotic protein Bax increases, while the
expression of the antiapoptotic protein Bcl-2 decreases, leading to
an increased Bax/Bcl-2 ratio. Bax is then translocated from the
cytoplasm to the mitochondria, where it triggers a decrease in
mitochondrial membrane potential (MMP, A¥m), increases
mitochondrial membrane permeability, promotes Ca*" influx, and
releases cytochrome C (Cytc) into the cytoplasm. Cytc forms a
multimeric complex with apoptotic protease Apaf-1, thereby
activating the Caspase-9 precursor. Active Caspase-9 directly
cleaves and activates the downstream effector Caspase-3, which
in turn cleaves substrates, such as functional proteins, in inner ear
cells, leading to apoptosis (Zhao et al., 2022; Xu et al., 2022; Lu X.
et al., 2022a; He et al., 2022). Cisplatin-induced DNA damage also
activates mitochondrial apoptosis via the p53 pathway (Wu et al.,
2021). X-linked inhibitor of apoptosis protein (XIAP), a major
member of the inhibitor of apoptosis protein (IAP) family,
directly inhibits caspase-9-mediated apoptosis. Several studies
have demonstrated that XIAP overexpression can partially
protect against CIO (Li Y. et al, 2022a; Jie et al,, 2015; Chan
et al., 2007) (Figure 1).

2.3 Death receptor apoptosis pathway
in CIO

Death receptors (DRs) belong to the tumor necrosis factor
receptor (TNFR) superfamily. When a death receptor binds to its
specific ligand, it receives an extracellular death signal that activates
intracellular apoptotic mechanisms. Currently, three central
apoptotic death receptor signaling pathways are recognized: Fas
cell surface death receptor/Fas ligand (FAS/FASL), tumor necrosis
factor-related apoptosis-inducing ligand receptor/tumor necrosis
factor-related apoptosis-inducing ligand (TRAILR/TRAIL), and
tumor necrosis factor receptor/tumor necrosis factor (TNFR/
TNF) (Xu et al,, 2019) (Figure 1).

Cisplatin upregulates the expression of tumor necrosis factor (TNE-
a) (Kaur et al,, 2011; Abi-Hachem et al., 2010; Jeong et al., 2007), which
initiates the extrinsic apoptosis pathway by binding to members of the
TNF receptor family. This interaction leads to the recruitment of
proteins with death domain structures, such as Fas-associated death
domain protein (FADD). The death effector domain of FADD interacts
with procaspase-8, leading to its cleavage and activation. Activated
caspase-8, in turn, activates downstream caspase-3, causing apoptosis in
inner ear cells (Jeong et al., 2007; Lee HS. et al., 2020a; Ding et al., 2020).
Additionally, at low concentrations, activated caspase-8 cleaves Bid, a
proapoptotic member of the Bcl-2 family, resulting in the formation of
truncated Bid (tBid), which increases mitochondrial membrane
permeability and activates the mitochondrial apoptosis pathway
(Abi-Hachem et al., 2010) (Figure 1).

2.4 Endoplasmic reticulum-stress pathway
in CIO

Recent studies have highlighted the pivotal role of endoplasmic
reticulum (ER) stress and the unfolded protein response (UPR) in
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Apoptosis in CIO: Cisplatin (CP) triggers apoptosis through the extrinsic death receptor pathway (green), the mitochondrial intrinsic pathway (pink),
and the endoplasmic reticulum (ER) stress pathway (purple). Cisplatin-induced DNA damage in cochlear cells can activate the mitochondrial apoptotic
pathway via the p53 signaling cascade. Within the death receptor pathway, activated caspase-8 cleaves Bid to form tBid, which increases mitochondrial
membrane permeability, linking the extrinsic and intrinsic apoptotic pathways. Cisplatin also induces ER stress by activating the caspase-12, PERK/
elF2a/CHOP, and ATF6/CHOP signaling pathways. The BCL-2 family proteins are categorized into anti-apoptotic proteins (including BCL-2, BCL-XL, and
MCL-1) and pro-apoptotic proteins (including BH3-only, BAX, BID, and tBid). XIAP, an inhibitor of apoptosis, directly regulates cisplatin-induced cell death

via caspase-9 modulation. (Created with BioRender.com).

cochlear cell apoptosis, a key event in hearing loss. Cisplatin disrupts
proper protein folding or induces mistranslation, resulting in the
accumulation of unfolded or misfolded proteins in the cochlear ER.

The ER is a crucial cellular organelle responsible for protein
folding, calcium storage, and lipid synthesis. Under stress conditions
induced by cisplatin, the ER’s capacity to properly fold proteins is
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overwhelmed, leading to the accumulation of unfolded or misfolded
proteins. This accumulation triggers the UPR, a cellular stress
response aimed at restoring ER homeostasis. However, persistent
or excessive UPR activation can lead to apoptosis, particularly
through specific signaling pathways within the UPR, such as the
PERK/ATF4/CHOP and ATF6/CHOP pathways (Liu YC. et al,
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2024a; Qu et al., 2023; Li J. et al,, 2023a). Additionally, cisplatin
upregulates the expression of active caspase-12 and caspase-9 in
cochlear cells, further contributing to apoptosis via the ER stress
pathway (Zong et al., 2017) (Figure 1).

The protein kinase RNA-like endoplasmic reticulum kinase
(PERK) pathway is a key component of the UPR. Upon
activation, PERK phosphorylates eukaryotic initiation factor 2a
(eIF2a), leading to a global reduction in protein synthesis while
selectively increasing the translation of activating transcription
factor 4 (ATF4). ATF4 induces the expression of C/EBP
homologous protein (CHOP), a transcription factor that
promotes apoptosis. The PERK/ATF4/CHOP axis is critically
with
demonstrating a time-dependent increase in CHOP expression
correlating with cochlear hair cell loss and elevated apoptosis
in vitro and in vivo (Qu et al, 2023; Li J. et al, 2023a).
Modulating the UPR to alleviate ER stress has emerged as a

involved in cisplatin-induced  ototoxicity, studies

promising therapeutic approach. For instance, ISRIB, a small
molecule that activates eIF2B and downregulates the PERK/
CHOP pathway, protects against cisplatin-induced hearing loss
without compromising the anticancer efficacy of the drug (Li
J. et al., 2023a) (Figure 1).

Another critical factor in ER stress-mediated cisplatin
ototoxicity is the activation of transcription factor 6 (ATF6).
Unlike the PERK pathway, ATF6 activation typically restores ER
function by upregulating chaperone proteins and components of the
ER-associated degradation pathway. However, in the context of
cisplatin exposure, ATF6 has been implicated in promoting
apoptosis via CHOP regulation. Pharmacological activation of
ATF6 in experimental models has been shown to mitigate hair
cell apoptosis and preserve hearing, highlighting its dual role in both
cell survival and death under stress (Liu YC. et al., 2024a) (Figure 1).

In addition to ATF6 and PERK, other UPR modulators have also
been explored for their potential protective effects against cisplatin-
induced ER stress. Salubrinal, an inhibitor of e[F2a dephosphorylation,
has been reported to protect against cisplatin-induced cochlear hair cell
death by maintaining eIF2a in its phosphorylated state, thereby reducing
global protein synthesis and the burden of misfolded proteins within the
ER (Lu W et al.). Similarly, tauroursodeoxycholic acid (TUDCA), a bile
acid derivative, mitigated cisplatin-induced ototoxicity by inhibiting the
accumulation of unfolded proteins and preventing ER stress-induced
apoptosis (Wen et al., 2021; Lee CH. et al., 2020b).

In conclusion, the ER stress response plays a central role in the
pathogenesis of cisplatin-induced ototoxicity. The PERK/ATF4/CHOP
pathway, in particular, emerges as a critical mediator of cochlear cell
apoptosis, and its modulation represents a promising therapeutic target.
Further research into the precise mechanisms by which ER stress
contributes to ototoxicity and the development of targeted therapies
may pave the way for more effective prevention and treatment strategies
for patients undergoing cisplatin chemotherapy.

3 Autophagy in CIO
3.1 Overview

Autophagy is a process through which eukaryotic cells utilize
lysosomes to degrade cytoplasmic proteins and damaged

Frontiers in Pharmacology

10.3389/fphar.2024.1430469

organelles, regulated by autophagy-related genes (Atgs). This
process prevents cellular damage, promotes cell survival during
energy or nutrient deficiency, and responds to cytotoxic stimuli
(Dikic and Elazar, 2018; Parzych and Klionsky, 2014). Autophagy
serves as an essential survival pathway that supports cell growth
and development, mitigates metabolic stress and oxidative
damage, and plays a crucial role in maintaining intracellular
homeostasis, as well as in the synthesis, degradation, and
recycling of cellular components, contributing to cell death
(Parzych and Klionsky, 2014; Murrow and Debnath, 2013).
Numerous studies have indicated that autophagy is activated
during cisplatin-induced ototoxicity. However, the precise role of
autophagy in cisplatin-induced ototoxicity remains unclear;
some studies suggest that enhanced autophagy may alleviate
cisplatin-induced ototoxicity, while others propose that
inhibiting autophagy could have a similar protective effect.
Cisplatin activates autophagy in inner ear cells via several
pathways: 1) A study has shown that cisplatin activates the
PRDX1/PTEN/AKT which
autophagy in spiral ganglion neurons (SGNs) (Liu W. et al,

signaling  pathway, stimulates
2021a). 2) Mitophagy in CIO: a) Cisplatin induces mitochondrial
damage in inner ear cells, evidenced by a decrease in the activity of
presenilin-associated rhomboid-like protease (PARL), leading to
reduced degradation of phosphatase and tensin homolog-induced
putative kinase 1 (PTEN-induced putative kinase 1, PINK1). This
reduction stabilizes and recruits the E3 ubiquitin ligase Parkin to
initiate autophagy (Cho et al,, 2021; Yang et al., 2018; Onishi et al.,
2021; Neumann et al,, 2003). b) Cisplatin-induced oxidative stress,
resulting from the inhibition of DJ-1 activity, increases the activity of
Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), a
mitochondrial protein that promotes mitophagy (Cho et al,
2021; Wang Y. et al.,, 2023a). ¢) Nucleotide-binding domain and
leucine-rich repeat containing family member X1 (NLRX1), a
cytoplasmic pattern recognition receptor, has its expression
increased by cisplatin, leading to the accumulation of LC3-II-
labeled HEI-OC1
NLRX1 overexpression enhances mitochondria-derived reactive

autophagosomes  in cells.  Furthermore,
oxygen species (ROS) generation in response to cisplatin
exposure, resulting in excessive autophagy activation (Yin et al,
2018). d) MicroRNAs (miRNAs) are a class of endogenous RNAs
that are highly expressed in various cells of the animal cochlea and
are closely associated with the development and pathological
processes of the inner ear. Among these, miR-34a is involved in
the regulation of cellular senescence, autophagy, and cell death.
Dynamin-related protein 1 (DRP1) is a GTPase that plays a key role
in initiating mitochondrial fission and mitophagy. Downregulation
of DRPI inhibits mitophagy, leading to the accumulation of
damaged mitochondria. Studies have shown that cisplatin
treatment increases the expression of miR-34a in C57BL/6 mice
and HEI-OCI cells while decreasing DRP1 levels, thereby inhibiting
mitophagy (Wang H. et al., 2023b). 3) Cisplatin damages ATPases in
inner ear cells, reducing ATP production and activating adenosine
monophosphate-activated protein kinase (AMPK), which regulates
the activity of the transcription factor forkhead box protein O3
(FOXO03) through direct phosphorylation. Additionally, AMPK
reduces the activity of mammalian target of rapamycin complex
1 (mTORCI1), leading to the dephosphorylation of mMTORCI and the
targeting of FOXK1, FOXK?2, and transcription factor EB (TFEB).
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Autophagy in CIO: 1) Cisplatin decreases intracellular ATP levels, leading to the activation of autophagy through multiple pathways: (A) AMPK/
mTOR1/ULK1 pathway: Activation of AMPK due to reduced ATP inhibits mTORCY, facilitating ULK1-mediated autophagy initiation; (B) AMPK/ACSS2/TFEB
pathway: AMPK activation promotes the phosphorylation of ACSS2, enhancing TFEB nuclear translocation, which in turn upregulates autophagy and
lysosomal biogenesis; (C) AMPK/FOXO3/CARM1 pathway: Activated AMPK phosphorylates FOXO3, promoting its activity and enhancing the
expression of its target genes, including CARML, further stimulating autophagy. 2) Cisplatin activates mitophagy through mechanisms involving oxidative
stress: (A) BNIP3 activation: Cisplatin-induced oxidative stress increases BNIP3 levels, which promotes mitophagy; (B) PARL activity attenuation:
Decreased activity of PARL leads to the stabilization of PINK1, recruiting Parkin to damaged mitochondria for degradation; (C) Increased NLRX1 activity:
Cisplatin enhances NLRX1 expression, which facilitates the accumulation of LC3-Il marked autophagosomes, promoting mitophagy in HEI-OC1 cells.

(Created with BioRender.com).

Dephosphorylated FOXK1 and FOXK2 can no longer act as
transcriptional repressors of FOXO3 target genes, allowing
FOXO3 to bind to downstream autophagy genes and increase
transcription. The dephosphorylation of TFEB causes its nuclear
translocation and the activation of downstream target genes,
those
biogenesis. Moreover, the increase in CARMI protein levels
induced by FOXO3-dependent gene activation further enhances
the expression of TFEB-dependent genes, while the phosphorylation
of acetyl-coenzyme A carboxylase 2 (ACC2) by AMPK stimulates
the nuclear translocation of TFEB, increasing the expression of
TFEB target genes (Li Z. et al., 2022b; Liang et al., 2021; Franco-
Juarez et al, 2022). Furthermore, reduced mTORCI activity
weakens the inhibitory effect of the ULKI complex, promoting
autophagy. These findings underscore the intricate and multifaceted

including involved in autophagy-related lysosomal

nature of autophagy regulation in cisplatin-induced ototoxicity,
suggesting that while autophagy activation can serve as a
protective response to cellular stress, its role is context-dependent
and may lead to either cell survival or further damage, necessitating
careful consideration in therapeutic strategies (Youn et al,
2015) (Figure 2).
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3.2 Enhancing autophagy alleviates CIO

Research indicates that enhanced autophagy plays a crucial role
in mitigating cisplatin-induced ototoxicity. For instance, glycogen
synthase kinase 3 beta (GSK-3p), a serine/threonine kinase involved
in various cellular processes such as metabolism and cell survival,
negatively regulates autophagy; its inhibition promotes autophagy
activation, thereby protecting against cisplatin-induced ototoxicity
(Liu et al.,, 2019). Similarly, PINKI, a key mitochondrial quality
control protein, accumulates in damaged mitochondria in response
to cellular stress. This accumulation recruits the E3 ubiquitin ligase
Parkin, initiating mitophagy, which
mitochondria and helps maintain mitochondrial health within

removes  damaged
cells. Studies have shown that PINKI activation enhances
autophagy in HEI-OC1 cells under cisplatin-induced stress and
significantly reduces apoptosis (Yang et al.,, 2018). Furthermore,
YTHDFI, a reader of m6A modifications, protects auditory hair cells
from cisplatin-induced damage by facilitating the translation of
ATGI14 and 2022).
Pharmacological agents such as trehalose have also been shown
to safeguard cochlear hair cells from cisplatin-induced harm by

activating autophagy (Huang et al,
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activating TFEB-mediated autophagy (Li Z. et al., 2022b). Moreover,
metformin enhances autophagy through the upregulation of AMPK
and FOXO3a, offering protective effects against cisplatin-induced
ototoxicity (Liang et al., 2021). The autophagy inducer rapamycin
increases levels of LC3-II and Beclin-1, alleviating cisplatin-induced
ototoxicity in vivo and underscoring the protective role of autophagy
in cisplatin-induced cellular damage (Fang and Xiao, 2014). This
suggests that pharmacological or genetic strategies to enhance
autophagy may provide new therapeutic avenues for treating CIO.

Several studies have shown that cisplatin exacerbates ototoxicity
by inhibiting autophagy in auditory cells, further supporting the
hypothesis that enhanced autophagy alleviates cisplatin-induced
ototoxicity. For instance, Cho et al. demonstrated that inhibiting
mitophagy intensifies the damage caused by cisplatin in HEI-OC1
cells, while the autophagy activator CCP protects these cells by
accelerating mitophagy (Cho et al, 2021). Additionally, other
studies have indicated that cisplatin increases the expression of
miR-34a in C57BL/6 mice and HEI-OCI cells, which suppresses
DRP1 levels, further inhibiting mitophagy and leading to increased
cellular damage (Wang H. et al., 2023b).

In summary, these studies collectively highlight the crucial role
of autophagy in protection against cisplatin-induced ototoxicity and
suggest potential therapeutic avenues for enhancing autophagy in
clinical settings.

3.3 Inhibiting autophagy alleviates CIO

Inhibition of autophagy has shown significant potential in
reducing cisplatin-induced ototoxicity. Several studies have
demonstrated this, including the use of the autophagy inhibitor
LY294002, which effectively reduces cisplatin-induced apoptosis.
Similarly, meclofenamic acid (MA2), a non-steroidal anti-
(NSAID)
cyclooxygenase enzymes, decreases cisplatin-induced cellular

inflammatory  drug known  for  inhibiting
damage by inhibiting excessive autophagy (Li et al, 2018).
Moreover, increased expression of NLRX1 in cisplatin-treated
HEI-OC1
elevated mitochondria-derived reactive oxygen species (ROS) and
increased cell death (Yin et al.,, 2018). Collectively, these findings

suggest that autophagy inhibition may be an effective strategy for

cells enhanced autophagy activation, leading to

mitigating cisplatin-induced ototoxicity.

3.4 Autophagy is a double-edged sword

Autophagy may act as a double-edged sword in cisplatin-
induced ototoxicity. One previous study indicated that inhibiting
autophagy by upregulating the class III PI3K pathway protects HEI-
OCI cells during the early stages of cisplatin treatment. However, in
later stages, increased autophagy activation through the inhibition of
the mTOR pathway leads to cell death. Additionally, the study
demonstrated that pretreatment with hydroxychloroquine, a
inhibited
acidification and blocked autophagy, thereby protecting auditory

lysosomal  chloroquine  derivative, lysosomal
cells from cisplatin-induced cytotoxicity. This further supports the
notion that autophagy promotes cell death during the later stages of

cisplatin exposure. These findings suggest that autophagy may play
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distinct roles during different stages of cisplatin treatment (Youn
et al.,, 2015).

Previous studies have consistently shown that the number of cell
deaths increases with the duration of cisplatin-induced damage. We
hypothesized that in the early stages of cisplatin-induced damage,
upregulation of autophagy may promote cell survival by clearing
oxidative stress-induced damaged mitochondria and aberrant
proteins. Conversely, in later stages, excessive autophagy could
lead to cell death due to the accumulation of reactive oxygen
species (ROS), damaged mitochondria, and proteins. It is
important to note that differences in experimental models and
research conditions could affect the generalizability of these
results. For instance, the aforementioned study revealed that
inhibiting autophagy via the activation of the class III PI3K
pathway during the early stages of cisplatin treatment protected
auditory cells, whereas in the later stages, increased autophagy
activation through mTOR inhibition led to cell death. This
indicates that the role of autophagy depends on specific cellular
contexts, signaling pathways, and experimental conditions.

further research is elucidate the
mechanisms underlying autophagy under various conditions to
better understand its complex role in cisplatin-induced ototoxicity.

Therefore, needed to

In conclusion, autophagy in cisplatin-induced ototoxicity may
exert both protective and pro-apoptotic effects depending on the
timing and severity of cellular damage. This dual mechanism offers a
new perspective for clinical treatment, suggesting that the timing
and degree of autophagy regulation during cisplatin therapy may be
crucial for mitigating ototoxicity.

4 Ferroptosis in CIO

Recent studies have shown that ferroptosis plays a significant
role in cisplatin-induced ototoxicity. Ferroptosis is an iron-
dependent form of programmed cell death characterized by the
accumulation of lipid peroxides beyond the cell’s antioxidant
capacity (Tang D. et al, 2021a). Cisplatin can increase the iron
load and lipid peroxides in inner ear cells, leading to ferroptosis in
cochlear hair cells and subsequent hearing loss. The inhibition of
ferroptosis signaling pathways has been shown to mitigate cisplatin
ototoxicity.

Recent studies have indicated that ferroptosis in cisplatin-
induced ototoxicity primarily acts through the regulation of
erythroid 2-related factor 2 (NRF2) and
glutathione peroxidase 4 (GPX4) signaling pathways. NRF2 is a

nuclear factor
key transcription factor whose activation enhances cellular
antioxidant capacity. Activation of NRF2 can upregulate
antioxidant genes such as heme oxygenase-1 (HO-1) and inhibit
ferroptosis. For example, the NRF2-specific activator 4-octyl
itaconate significantly reduces cisplatin-induced ferroptosis by
activating the NRF2/HO-1 signaling pathway (Zhang et al,
2024). Plant components, such as nobiletin, have also been
shown to alleviate cisplatin ototoxicity
mechanisms (Song et al,, 2024). Cisplatin induces ferroptosis in

through  similar
inner ear hair cells by inhibiting GPX4 activity, leading to lipid
peroxidation. Antioxidants such as nobiletin and alpha-lipoic acid
significantly reduce cisplatin-induced ototoxicity by activating
GPX4 and reducing lipid peroxidation (Song et al, 2024; Cho
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Ferroptosis in CIO: 1) Cisplatin inhibits GSH and GPX4, resulting in lipid peroxidation and subsequent ferroptosis. 2) Cisplatin activates ferritinophagy,
leading to the release of Fe?* from ferritin and the generation of reactive oxygen species (ROS) via the Fenton reaction, contributing to lipid peroxidation;
additionally, Nrf2 inhibits this process, while cisplatin also suppresses Nrf2. 3) Ferrostain-1 can inhibit ferroptosis by reducing lipid peroxidation. 4)
Cisplatin suppresses the Nrf2/HO-1 antioxidant pathway, resulting in oxidative stress that promotes lipid peroxidation and triggers ferroptosis.

(Created with BioRender.com).

et al., 2022). Furthermore, severe outer hair cell loss and progressive
inner hair cell synapse damage were observed in GPX4 (—/-) mice,
further demonstrating the critical role of GPX4 in maintaining inner
ear hair cell function. Studies have also found that ferroptosis
(TfR1), are
upregulated in the outer hair cells of cisplatin-treated mice, and

biomarkers, such as transferrin receptor 1
changes in multiple ferroptosis-regulating genes suggest that
cisplatin-induced ototoxicity is closely related to ferroptosis (Liu
Z. et al., 2024b). Additionally, the use of ferroptosis inhibitors, such
as Ferrostatin-1, can significantly reduce cisplatin-induced

ototoxicity by inhibiting lipid peroxidation and iron
accumulation, thereby protecting cochlear cells from damage,
further supporting the critical role of ferroptosis in cisplatin
ototoxicity (Mei et al., 2020; Hu et al., 2020) (Figure 3).

Notably, ferroptosis and autophagy are closely related.

Autophagy can clear damaged cellular components and

Frontiers in Pharmacology

influence ferroptosis by regulating iron and lipid metabolism.
Ferroptosis depends on redox-active iron, which is primarily
stored in cells as ferritin. Autophagy can promote ferritin
degradation, releasing redox-active iron and ultimately
inducing ferroptosis, a process known as ferritinophagy (Gao
et al, 2016). Studies have found that autophagy-dependent
ferroptosis plays an important role in cisplatin-induced
ototoxicity, and autophagy inhibitors can significantly reduce
cisplatin-induced inner ear damage (Jian et al., 2021; Zhou et al,,
2020) (Figure 3).

Ferroptosis plays a key role in cisplatin-induced ototoxicity. By
regulating the NRF2 and GPX4 signaling pathways and the interplay
between autophagy and ferroptosis, further research into this
mechanism provides potential targets for developing new
strategies to protect cochlear cells, offering new perspectives for

clinical applications.
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Pyroptosis in CIO: Cisplatin treatment leads to elevated intracellular reactive oxygen species (ROS), which activate the NLRP3/Caspase-3/GSDME
pathway, resulting in pyroptosis. Additionally, cisplatin treatment induces an increase in tumor necrosis factor (TNF), causes mitochondrial damage, and
activates caspase-3. This activation, in turn, triggers GSDME, which mediates cytosolic pyroptosis. (Created with BioRender.com).

Frontiers in Pharmacology 08 frontiersin.org


http://BioRender.com
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1430469

Dai et al.

5 Pyroptosis in CIO

Pyroptosis is a form of cell death mediated by the gasdermin
(GSDM) family of proteins, such as GSDMD and GSDME. It is
characterized by the activation of the NOD-like receptor protein 3
(NLRP3) inflammasome, formation of cell membrane pores, and
release of interleukin (IL)-1p and IL-18 (Kuang et al., 2017; Shi et al.,
2015). The GSDMD N-terminal structural domain (GSDMD-N) is
generated by the cleavage of GSDMD proteins by pro-inflammatory
caspases through classical and non-classical inflaimmasome
signaling pathways. This cleavage leads to the rapid insertion of
GSDMD-N into the plasma membrane, forming active pores that
release cytokines, resulting in intense inflammation and cell death
2019; Xu et al, 2018). The

a prominent multiprotein complex,

(de Vasconcelos et al,
NLRP3
consists of NLRP3, apoptosis-associated speck-like protein (ASC),

inflammasome,

and pro-caspase-1 (Sun et al., 2019). Cisplatin exerts ototoxic effects
through pyroptosis, and inhibiting this process has been shown to
alleviate cisplatin-induced hearing loss (Yu W. et al., 2022a; Yu R.
et al., 2022b; Li et al., 2021).

Thioredoxin-interacting protein (TXNIP) is an a-inhibitory
protein essential for redox homeostasis, primarily inducing
apoptosis or pyroptosis under oxidative stress conditions (Pan
et al.,, 2022). Studies indicate that inhibiting TXNIP expression or
the dissociation of thioredoxin (Trx) from TXNIP can reduce
NLRP3 activation and inhibit pyroptosis onset (Jia et al., 2020;
An et al., 2020; Heo et al., 2019). A recent study demonstrated that
NLRP3 inflammasome-mediated cell death is one mechanism by
which cisplatin induces cochlear marginal cell (MC) injury.
Cisplatin increases the expression of NLRP3 inflaimmasome
components in MCs, and downregulating TXNIP inhibits
cisplatin-induced NLRP3 inflammasome-mediated MC death.
Furthermore, mutations in the Pou4f3 gene promote autophagy
and apoptosis in cochlear hair cells from cisplatin-induced deaf
mice, with recent findings showing that these mutations also activate
the NLRP3/Caspase-3/GSDME pathway, leading to pyroptosis (Yu
R. et al, 2022b). Notably, compounds such as naringin and
N-acetylcysteine can inhibit cisplatin-induced hair cell pyroptosis,
providing partial alleviation of cisplatin-induced hearing loss (Wang
W. et al,, 2022a; Li et al,, 2021) (Figure 4).

6 Protective agents against CIO

Substantial evidence supports the protective effects of various
compounds against cisplatin-induced loss of cochlear cells in
experimental models. These models, including mice, hair cell
lines, and zebrafish, are crucial for elucidating the mechanisms of
ototoxicity and exploring the pathways involved in cisplatin-
induced hearing loss. Each model has unique advantages: the
mouse model allows for in-depth analysis of genetic and
physiological factors, whereas zebrafish provide a transparent
system for real-time observation of cellular responses (Li KH.
et al,, 2024a; Lyu et al,, 2023). By combining insights from these
models, researchers can gain a comprehensive understanding of the
effects of cisplatin on cochlear cells. When investigating the
mechanisms of cell death, the choice of administration route and
dosage is critical. Different administration methods, such as
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intravenous injection or direct addition to culture media, can
significantly influence the drug concentration within cells or
tissues. This, in turn, affects cell survival and death, enabling
researchers to define thresholds for drug-induced apoptosis or
necrosis. For example, in mouse models, the dose and frequency
of intraperitoneal cisplatin injections significantly affect cell death
(Ingersoll et al., 2023; PerSe, 2021), whereas zebrafish models
highlight early cellular damage due to varying exposure times
and concentrations (Li KH. et al., 2024a; Domarecka et al., 2020).
Such insights not only clarify the underlying mechanisms of
cisplatin-induced ototoxicity but also lay the groundwork for
developing protective strategies (Tang Q. et al.,, 2021b; Yu et al,
2020). In summary, the selection of appropriate experimental
models is essential for understanding cisplatin-induced cell death.
These models not only aid in uncovering the mechanisms of
ototoxicity but also provide valuable experimental evidence for
identifying effective intervention measures.

In September 2022, sodium thiosulfate received its first approval
in the USA for reducing the risk of ototoxicity associated with
cisplatin in pediatric patients aged 1 month and older with localized,
non-metastatic solid tumors (Dhillon, 2023). Other agents, such as
amifostine, a thiol-reducing agent and potent free-radical scavenger
with demonstrated otoprotective properties against cisplatin in
experiments using hamsters and guinea pigs, and atorvastatin, a
hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitor, have
been assessed in clinical trials (Gurney et al., 2014; Fernandez et al.,
2021). However, some studies reported contradictory results or
unsatisfactory protection. In this review, we summarize the
compounds that have been shown to protect against CIO in
current preclinical studies, within the context of cell death and
the mechanisms regulating cell death, to provide a reference for
researchers. As shown in the tables, most of the related studies have
focused on attenuating cisplatin-induced apoptosis and developing
compounds that protect against CIO. Few studies have evaluated
autophagy and ferroptosis, and no protective compounds have been
developed based on other forms of cell death (Tables 1-3).

7 Discussion and conclusion

The early detection of cancer and improved treatments have led
to an increase in the number of cancer survivors. Therefore, the
medical community is becoming increasingly concerned about the
quality of life of patients who survive oncological treatments.
Cisplatin is widely used to treat various solid tumors. However,
ototoxicity induced by cisplatin chemotherapy seriously affects the
quality of life of chemotherapy patients, especially children,
impacting their speech development and overall physical and
mental health. Understanding the molecular basis of cisplatin-
induced ototoxicity can help improve hearing loss in
chemotherapy patients. Programmed cell death is a critical area
of research in biology and medicine. Cisplatin induces ototoxicity
through various programmed cell death pathways, including
apoptosis, autophagy, ferroptosis, and pyroptosis. Each of these
pathways has unique mechanisms and implications for patient
management: 1) Apoptosis is a form of programmed cell death
characterized by cell shrinkage and DNA fragmentation. It plays a

primary role in CIO, and targeting apoptosis may provide
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TABLE 1 CIO protective agents associated with apoptosis.

Compound Target Mechanism Model Apoptosis = Effect Reference Year
FPS-ZM1 (a RAGE inhibitor) IkBal,p-IxBa/, HMGBI1/RAGE C57BL/6 mice Decrease Protection Qiao et al. (2024) 2024
p-NF-kB (in the nucleus) |,COX-2[,IL-1f],TNF-a|,Cleaved-caspase
3|,ROS|,Bax|,Bcl-27,p-p38,p-JNK|,p-ERK|,p-c-jun|, Serum MDA |,
Serum SOD T
Hesperidin Cleaved-caspase 3],cleaved-PARP [,ROS|,Nrf2T,NQOI1T Nrf2/NQO1 C57BL/6j mice,HEI-OCI cell Decrease Protection Lou et al. (2024) 2024
Schisandrin B ROS|,Cleaved-caspase 3] / C57BL/6j mice,HEI-OC1 cell Decrease Protection = Li et al. (2024b) 2024
AdipoRon (AR) Cleaved-caspase 3|,Bcl-2T,ROS|, AdipoR 17,SIRT1 T,TFAMT AdipoR 1 HEI- OC1 cell, C57BL/6mice Decrease Protection Nong et al. (2023) 2023
LLY-283 PRMT5|,ROS|,Bax|,Bcl- 2T,Bax/Bcl- 2 |,Cleaved -PARP |,Cleaved PI3K/AKT HEI- OC1 cell, C57BL/6mice Decrease Protection Zhao et al. (2022), 2023 2022
-caspase-3 |,H4R3me2s|,H3R8me2s|,Trp53|,Bad|,PI3KT,p- Zheng et al. (2023)
PI3KT,p-AKTT
RG108 Bax|, BCL2T, Caspase-3|,p-PI3KT, p-AKTT, Nrf2T,HO-1T, NQO17T Nrf2/HO-1/NQO1, HEI-OCI cell Decrease Protection Zhang et al. (2023) 2023
PI3K/Akt
Apelin-13 ROS|,Cleaved-caspase 3],Bcl-21,TNF-a],IL-6|,p-STAT17,p-STAT3| STAT1 STAT3 C57BL/6mice Decrease Protection Yin et al. (2023) 2023
Cinchonine (CN) and Cleaved-caspase 3|,ROS|,p-PI3KT,p-AKTT PI3K/AKT HEI- OC1 cell, C57BL/6mice Decrease Protection Tang et al. (2023) 2023
cinchonidine (CD)
20(S)-Ginsenoside Rh1 ROS|,Cleaved- caspase 3],p-p38],p-JNK| MAPK HEI- OC1 cell, C57BL/6 mice Decrease Protection Qiao et al. (2023) 2023
ISRIB elF2aT,ATF4],Chop|,DR5 | PERK/CHOP Balb/c] mice,C57BL/6] mice Decrease Protection Li et al. (2023a) 2023
Puerarin Bax|,Cleaved -caspase-3|,ROS|,pAKTT,TRPV1|,IP3R1|,p65] Akt,TRPV1/ HEI- OCI cell, C57BL/6 mice Decrease Protection = Xu et al. (2022), Lin = 2022 2023
IP3R1/p65 et al. (2023)
5,7-Dihydroxy-4- ROS|,Cleaved -caspase-3|,p-JNK|,p-FoxO1/FoxO1T JNK/FoxO1 HEI- OCI cell, C57BL/6 mice Decrease Protection Li et al. (2023b) 2023
methylcoumarin (D4M)
Aucubin ROS|,Cleaved-caspase-3|,Bcl- 27T,p-STAT3T,p-AKTT,PI3KT PI3K/AKT/STAT3 HEI- OCI cell Decrease Protection Jiang et al. (2023) 2023
C57BL/6] mice
Esomeprazole OCT2|,TUNEL-positive cells| OCT2 HEI- OC1 cell Decrease Protection Jeon et al. (2023) 2023
Fucoidan ROS|,Bcl- 27,Bax],Cleaved-caspase-3 |,Nrf27,Cleaved-caspase-9|,HO- Nrf2/HO-1 UB/OC-2 cell Decrease Protection | Hsieh et al. (2023) 2023
17,Cleaved-PARP | ,NQO17,SOD17,SOD2T1,GPxT
N-acetylcysteine (NAC) ROS|,GSHT,NO| / Sprague-Dawley rat, zebrafish Decrease Protection = Wang et al. (2022a), 2022
Somdas et al. (2020)
Melatonin Bax|,Caspase-3|,Bcl- 27,Caspase-9 | / HEI-OCI cell, C57BL/6 mice Decrease Protection | Wang et al. (2022b), | 2022 2015
Fernandez et al.
(2015)
Astaxanthine ROS|,Cleaved-caspase-3 | ,Caspase-8 | ,Fadd | ,Bax|,Caspase-3 | ,Caspase- NRF2 FVB breeding mice, C57BL/ Decrease Protection Nan et al. (2022) 2022

9|,Bcl-2T

6 mice, HEI-OC1 cell

(Continued on following page)
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TABLE 1 (Continued) CIO protective agents associated with apoptosis.

Compound Target Mechanism Model Apoptosis  Effect Reference Year
Euppatilin ROS|,Bax|,Bax/Bcl-2 ] caspase-3|,PARP|,p- p38 |,JNK| p38/JNK HEI-OCI cell,The trans-genic Decrease Protection Lu et al. (2022a) 2022
zebrafish lineTg (Brn3C:EGFP),
C57BL/6 mice
Salubrinal Cleaved-caspase 3|,CHOP|,Cleaved- PARP|,BIPT,p-elF2al elF2a C57BL/6 mice, HEI-OCI1 cell Decrease Protection Lu et al. (2022b) 2022
CPI-455 KDMS5A |,ROS |,p-p38,p-JNK|,BAX|,Cleaved- caspase-3|,H3K4 Tri- KDM5A, MAPK P2 wild-type mice, C57BL/ Decrease Protection Liu et al. (2022) 2022
methylationT and PI3K/AKT 6 mice
ATX-PPS-NP ROS|,IL-6|,GSHT,4-HNE |,Cytochrome-C|,Cleaved-caspase 3| / HEI-OCI cell, C57BL/6 mice Decrease Protection Gu et al. (2022) 2022
Tauroursodeoxycholic acid Cleaved-caspase-12|,CHOP |, UGGT1],089],HO1|,SOD2 | ,Cleaved- HO1,CHOP Sprague-Dawley rat, HEI-OC1 Decrease Protection = Wen et al. (2021), Lee 2021
(TUDCA) caspase 3|,ROS |, iNOS |,Cleaved-caspase 3| cell et al. (2020b), Shah 2020 2020
et al. (2020)
U0126 Cleaved -caspase-3|,ROS|,MMPT,p-ERK1/2 |,yH2AX| ERK wild-type C57BL/6 mice, HEI- Decrease Protection Wang et al. (2021) 2021
OC1 cell
Resveratrol ROS|,CAT activityT,PTEN |,miR-455-5pT,p-AKTT,p-PI3KT PTEN-PI3K-Akt HEI-OCI cell, C57BL/6] mice Decrease Protection Liu et al. (2021b) 2021
Naringin (Nar) ROS|,p53|,Bax],Caspase-3| / zebrafish Decrease Protection Li et al. (2021) 2021
salvianolic acid B(Sal B) Cleaved-caspase 3 |,ROS|,Bcl-27,Bax|,p-PI3KT,p-AktT PI3K-Akt HEI-OCI cell, Zebrafish Decrease Protection Zheng et al. (2020) 2020
Hydroxytyrosol (HT) p-JNKT,Cleaved-caspase 3T,AIFT JNK,AIF C57BL/6 mice, HEI-OC1 cell Increase Injury Zhang et al. (2020) 2020
Apelin ROS|,Cleaved-caspase3 | ,p-JNK|,Cleaved caspase-9|,Bax| JNK C57BL/6 mice , HEI-OC1 cell Decrease Protection Yin et al. (2020) 2020
CYM-5478 ROS|,Bax|,P-Stat37,S1P27,Bcl-xLT,Caspase- 3|,Caspase-7] S1P2 Zebrafish, S1P2 Knockout Mice; Decrease Protection | Wang et al. (2020), | 2020 2016
Slpr2™~ mice, C6 rat glioma Herr et al. (2016)
cell, MDA-MB-231 cell
2-Isopropyl-3H-naphtho (1,2-d) ROS|,Caspase-3| / Institute for Cancer Research Decrease Protection Lee et al. (2020a) 2020
imidazole-4,5-dione (KL1333) (ICR) mice
EPZ020411 (a selective small Cleaved-caspase-3 |,ROS|,Cytochrome-translocation | PRMT6 C57BL/6 mice, HEI-OCI cell Decrease Protection He et al. (2020) 2020
molecule PRMT6 inhibitor)
Tetramethylpyrazine (Tet) FoXo3|,Bcl-2 binding |,component 3 (BBC3)],iGF17,TCF7L11,FZD67 Wnt,IGF1, FoXo3 HEI-OCI cell Decrease Protection Guan et al. (2020) 2020
Panax notoginseng ROS|,Nrf2T,NQo1T7,Ho-17,GclcT,p-AKTT AKT/Nrf2/HO-1 HEI-OCI cell Decrease Protection Fei et al. (2020) 2020
Saponins (PnS)
paconiflorin (PF) ROS|,PINK1T,BAD |,Bax|,Cleaved caspase-3 | PINK1 C57BL/6 mice Decrease Protection Yu et al. (2019) 2019
C-phycocyanin (C-PC) ROS|,Bax|,Bcl-2T,ATPT,Caspase-9 | ,Caspase-3 | / HEI-OCI cell Decrease Protection Kim et al. (2019) 2019
Ferulic acid ROS|,Cleaved-caspase-3 |,Cleaved-PARP | Nrf2T Nrf2 HEI-OCI cell, C57BL/6 mice Decrease Protection Jo et al. (2019) 2019
Allicin Cleaved caspase-3|,PARP-1],AIF |,Bax|,Cleaved-caspase-9|,Cleaved- AIF,p53 C57 mice Decrease Protection = Cai et al. (2019), Wu = 2019 2017

caspase-3 | ,cytochrome c|,Bcl-27,p53|,MDA[,SODT

et al. (2017)
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TABLE 1 (Continued) CIO protective agents associated with apoptosis.

Compound Target Mechanism Model Apoptosis  Effect Reference Year
Forskolin (FSK) cAMPT,ROS|,Bax|,Caspase-3|,Bcl-2T PKA/MAPK HEI-OCI cell, C57BL/6] mice Decrease Protection Guo et al. (2018) 2018
2-methyl-1-propyl-1H-indol-3-yl)- | ROS],Caspase-3|,Caspase-8 |,Caspase-9 |, TNF-a| CB2R Mice expressing the CB2R Decrease Protection Jeong et al. (2007), 2018 2007
1-45naphthalenylmethanone tagged with green fluorescent Ghosh et al. (2018)
(JWHO15) protein (GFP), Wistar rat, UB/
OC-1 celLHEI-OC1 cell
Peanut sprout extract (PSE) Cleaved-PARP|,Cleaved-caspase 3|,Bcl-2T,Caspase-3 Akt/Nrf2 HEI-OCI1 cell Decrease Protection Youn et al. (2017) 2017
|,PARP|,ROS|,NQO11,HO-11,GPx2T,GclcT,CatalaseT,Nrf2],P-Akt]
EpigallocatechiN-3-gallate (EGCG) | p53|,Cleaved-caspase-3|,Bax|,Bcl-xLT,ROS|,p-ERK1/2|,p- ERK1/2, STAT1, p53 Wistar rat, UB/OC-1 cell Decrease Protection Borse et al. (2017) 2017
STAT1|,COX2|,TNF-a|
Tempol ROS|,Cleaved-PARP | ,Cleaved-caspase 3|, iNOS| / HEI-OCI cell Decrease Protection Youn et al. (2016) 2016
Dexamethasone (DXM) Caspase-3, 8, 9|,NOX-3|,ROS| NOX-3 Wistar rat, Sprague Dawley rat Decrease Protection Ozel et al. (2016), 2016 2015
Dinh et al. (2015)
Methylprednisolone Caspase-3|,Caspase-8 |,Caspase-9 | / Adult female Wistar rat Decrease Protection Ozel et al. (2016) 2016
Ceramide-1-phosphate (C1P) p-AktT,p-MAPKT PI3-K/Akt, MAPK C57BL/6] mice Decrease Protection Le et al. (2016) 2016
NVP-231 CERK| CERK C57BL/6] mice Increase Injury Le et al. (2016) 2016
D-a-tocopherol succinate ROS|,Caspase-3 |,Cleaved-PARP | / HEI-OCI cell Decrease Protection Kim et al. (2016) 2016
R-phenylisopropyladenosine A1ART,ROS|,NOX3|,Ser727 p-STAT1|,iNOS|,COX-2|,Cleaved- NOX3/STAT1 Wistar rat, UB/OC-1 cell Decrease Protection Kaur et al. (2016) 2016
(R-PIA) caspase-3|.Bcl2|,p53],ERK1/2 |,p38|,JNK|
Hesperetin MPO|,MDA |,TOS|,081|,TACT, ,TUNEL-positive cells| / Wistar rat Decrease Protection Kara et al. (2016) 2016
Ginkgolide B (GB) NOX2|,Nrf21,HO-1T,P-AktT,Bax|,Cyto C|,Cleaved-PARP |,Caspase NOX2, HEI-OCI cell, Sprague- Decrease Protection Ma et al. (2015) 2015
3. 9 [,ROS| Akt-Nrf2-HO-1 Dawley rat
Quercetin ROS|,Caspase 3, 9] / Zebrafish Decrease Protection Lee et al. (2015) 2015
Korean Red Ginseng (KRG) IL-6],Cyto C|,Caspase 1, 3, 9],Cleaved-PARP |,NF-«kB|,ROS| NE-«xB HEI-OCI cell, Sprague Dawley Decrease Protection = Kim et al. (2015), Im = 2015 2010
rat, Balb/c mice et al. (2010)
Edaravone (MCI-186, 3-methyl-1- ROS|,Caspase 3],Cleaved PARP |,TUNEL-positive cell| / HEI-OCI1 cell, Zebrafish Decrease Protection | Imetal. (2015), Hong | 2015 2013
phenyl-pyrazolin-5-one) et al. (2013)
Alpha lipoic acid (a-LA) ROS|,Caspase 3],p-IkBa|,IL-1B|,IL-6],p-ERK|,p38] MAPKs Wistar rat, Sprague Dawley rat, Decrease Protection Altintoprak et al. 2015 2014
Proinflammatory HEI-OC1 cell (2015), Kim et al.
cytokines (2014)
3-Amino-3-(4-fluoro-phenyl)-1H- ROS|,p-JNK|,p38],Cleaved-caspase 3|,Cleaved-PARP | MAPK HEI-OC1 cell, Zebrafish Decrease Protection Shin et al. (2014) 2014
quinoline-2,4-dione (KR-22335)
Dexmedetomidine (DEX) TUNEL-positive cell| / Zebrafish Decrease Protection Min et al. (2014) 2014
Silymarin Cleaved caspase 3|,Cleaved-PARP | / HEI-OCI1 cell Decrease Protection Cho et al. (2014) 2014
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TABLE 1 (Continued) CIO protective agents associated with apoptosis.

Compound Target Mechanism Model Apoptosis  Effect Reference Year
Metformin ROS|,Caspase 3],Cleaved-PARP |,SIRT3 T SIRT3 HEI-OCI cell Decrease Protection Du et al. (2023), 2014 2023
Chang et al. (2014)
Trichostatin A (TSA) Tnfrsfla mRNA |,Ltbr mRNA |, Tnfrsf11b mRNA |,Caspase 4, 7. Capnl, Capn2, Wistar rat Decrease Protection | Wang et al. (2013) 2013
12 mRNA |,Capn]l mRNA |,Capn2 mRNA |,CAMK2A mRNAT,, Tnfrsfla, Tp53
CAMK2B
mRNAT,Map2k6 mRNT,Snap25 mRNT,Vglutl mRNT,Rab3b mRNT
3-amino-3-(4-fluoro- ROS|,TUNEL-positive cell|,NOX3|,p53],p-ERK|,p-JNK|,c- p53,MAPK HEI-OCI cell, Zebrafish, Decrease Protection Shin et al. (2013) 2013
phenyl)-1H-quinoline-2,4-dione jun|,Cleaved caspase 3|,Cleaved PARP|,TNF-a| Sprague-Dawley rat (cochlear
(KR-22332) explant)
Gingko biloba extracts (EGb 761) Caspase-3|,PARP|,CxT,GJICT GJIC,Cx HEI-OCI cell, Sprague-Dawley Decrease Protection Choi et al. (2013a), 2013 2007
rat; Wistar rat Huang et al. (2007)
Apocynin Caspase-3 |,ROS |, TUNEL-positive cell| / HEI-OCI cell, Zebrafish Decrease Protection | Choi et al. (2013b) 2013
Purple bamboo salt (PBS) IL-6],Caspase-3|,NF -kB|,Cyt c|,ERK],Caspase-8,Caspase- NF -kB HEI-OCI cell, C57BL/6 mice Decrease Protection | Myung et al. (2011), | 2011 2011
9],Caspase-1|,ROS|,AIF| Jeong et al. (2011a)
Etanercept TNF-a| TNF-a Wistar rat Decrease Protection Kaur et al. (2011) 2011
Rosmarinic Acid Caspase-1|,Caspase-3 | ,Caspase-9 | ,Bax|,Bcl-2T,ROS|,NF -kB|,Cyt NF-kB,AIF HEI-OCI cell, Spague Decrease Protection | Jeong et al. (2011b) 2011
cl,AIF| Dawley rat
Phloretin Bcl-27,Bax|,Caspase-3|, Caspase-8], Caspase-9|,HO-1T HO-1 HEI-OCI cell Decrease Protection Choi et al. (2011) 2011
SB 216763 and LiCl GSK-3|,TNF-a|,IL-1b|,IL-6 |,Caspase-3|, Caspase-8]. Caspase-9| GSK-3 C57BL/6] and BALB/c mice, Decrease Protection Park et al. (2009) 2009
HEI-OCI cell
Epicatechin ROS|,Caspase-3 | / HEI-OCI1 cell, Zebrafish Decrease Protection Kim et al. (2008) 2008
Piperine HO-17,Nrf27 Nrf2-HO-1 HEI-OCI1 cell Decrease Protection Choi et al. (2007) 2007
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TABLE 2 CIO protective agents associated with autophagy.

Compound Target Mechanism
Trehalose LC3IIT, P627, LAMP1], LAMP2AT, TFEB
ATG5 mRNAT, ATG7 mRNAT,
Becnl mRNAT, TFEB mRNAT,
Lamp2 mRNAT, p62 mRNAT
Metformin AMPKT, FOXO3aT AMPK/foxo3a
U0126 LC3I1|, Beclin 1] -
Meclofenamic LC3II| —
Acid
Rapamycin LC3-1I/GAPDH|, Beclin 1T —

therapeutic avenues to protect against hearing loss. 2) Ferroptosis is
a recently recognized form of regulated cell death driven by iron-
dependent lipid peroxidation. Its involvement in CIO suggests that
modulating iron metabolism and oxidative stress may offer
protective strategies. 3) Pyroptosis is an inflammatory form of
cell death that occurs in response to infection or cellular stress.
Understanding its role in CIO could reveal new insights into how
inflammation contributes to ototoxicity and how it might be
controlled. 4) Autophagy, in contrast, presents a dual role that
remains unclear. It can either protect cells by removing damaged
organelles and proteins or contribute to cell death under certain
conditions. Clarifying whether autophagy acts protectively or
destructively in the context of CIO is crucial for developing
targeted interventions. This review highlights the molecular
mechanisms of programmed cell death in cisplatin-induced
ototoxicity (Figures 1-4). We discuss how inhibiting apoptosis,
ferroptosis, and pyroptosis can alleviate CIO to some extent,
emphasizing the need for a nuanced understanding of these
pathways to inform clinical strategies. Moreover, our review
synthesizes the latest preclinical findings identifying compounds
that provide varying degrees of protection against CIO. Although
many of these compounds are yet to be evaluated in clinical trials,
the recent FDA approval of sodium thiosulfate for the treatment of
patients  with
nonmetastatic hepatoblastoma marks a significant step forward.

cisplatin-induced hearing loss in pediatric
However, it is essential to note that sodium thiosulfate may
interfere with the anticancer effects of cisplatin and increase its
nephrotoxicity, highlighting the need for careful consideration in its
application. In summary, this review aims to elucidate the distinct
roles of various programmed cell death pathways in cisplatin-
induced ototoxicity and their potential implications for clinical
practice, thereby providing a comprehensive resource for
researchers and clinicians seeking to enhance the quality of life
for cancer survivors.

Based on our analysis, we summarize the challenges and
research directions for future studies: 1) There are controversies
and differences in the RCD pathways involved in cisplatin-induced
ototoxicity, and current studies cannot fully reveal the relationship

between autophagy and cisplatin-induced ototoxicity. Additional
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Model Autophagy Effect Reference Year
C57BL/6] mice, Increase Protection = Li et al. (2022b) 2022
HEI-OCI cell
C57BL/6 mice, Increase Protection Liang et al. 2021
HEI-OCI1 cell, (2021)
Zebrafish
wild-type C57BL/ Decrease Protection Wang et al. 2021
6 mice, HEI-OC1 (2021)
cell
HEI-OCI1 cell Decrease Protection Li et al. (2018) 2018
Wistar rat Increase Protection Fang and Xiao 2014

(2014)

research is needed in this area. 2) Significant advances have been
made in understanding cisplatin-induced ototoxicity related to
programmed cell death studies. However, clarifying how to
integrate the various pathways to understand the detailed
ototoxicity mechanisms is a major challenge for future studies.
We hypothesize that an upstream pathway might regulate
multiple cell death pathways simultaneously. Exploring the link
between different modes of cell death and cisplatin-induced
ototoxicity is a promising direction for future research. An ideal
outcome would be identifying a compound that simultaneously
modulates multiple cell death pathways and protects against
cisplatin-induced ototoxicity. 3) Can these protective agents be
combined with cisplatin without affecting their therapeutic
efficacy against tumors? Most studies have been limited to
validation in hair cell lines and tumor-free animals. Hearing
protection methods need to be tested in animal models with
tumors to determine their potential impact on cisplatin-
mediated cancer chemotherapy. This could lead to methods to
protect normal tissues (e.g., ears and kidneys) without affecting the
efficacy of cisplatin chemotherapy and the development of new
cisplatin-based cancer therapies. An ideal approach for hearing
protection would be to develop a therapy that protects the cochlea
while enhancing the therapeutic effects of cisplatin on tumors. 4)
The presence of the blood-labyrinth barrier (BLB) in the inner ear,
which regulates the ionic composition of the inner and outer
lymph, protects the inner ear from blood-borne toxins and
selectively allows ions, fluids, and nutrients to enter the cochlea.
This may result in the inability of drugs to reach an effective
concentration in the inner ear, thus reducing their protective
effects after systemic administration (Yu et al, 2020; Gu et al,
2022; Barbara et al., 2022). Identifying an effective mode of drug
administration and drug delivery medium is an area that needs to
be explored in depth. 5) The complex mechanism of cisplatin-
ototoxicity be
pathophysiological mechanism or the inhibition or activation of

induced cannot reduced to a single
a single cell death type. Therefore, a combination of drugs and
therapeutic modalities targeting multiple programmed cell death
pathways may be a more promising strategy for treating hearing

loss. 6) Validating genetic variants associated with cisplatin-
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induced ototoxicity and understanding their mechanisms may not
only determine their impact on cellular signaling pathways but also
have significant therapeutic potential.

In conclusion, this review contributes to our understanding of
the different functions of PCD in CIO to a certain extent. Studying
the PCD pathways involved in CIO has led to breakthroughs in
understanding the complex molecular pathogenesis of this severe
adverse drug reaction. However, further progress in this area is
needed. With a deeper understanding of the critical pathways
involved in the development of CIO, new and more effective
ways to prevent and treat this condition will emerge.
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Glossary

CIO cisplatin-induced ototoxicity

OHC:s outer hair cells

SGNss spiral ganglion neurons

PCD Programmed cell death

Caspase cysteinyl aspartate specific proteinase

ER endoplasmic reticulum

ROS reactive oxygen species

Cytc cytochrome C

MMP, AY¥ mitochondrial membrane potential

tBid truncated Bid

XIAP X-linked inhibitor of apoptosis protein

DR death receptor

TNFR tumor necrosis factor receptor

FAS/FASL Fas cell surface death receptor/Fas ligand
TRAILR/TRAIL Tumor necrosis factor-related apoptosis-inducing
ligand receptor/Tumor necrosis factor-related apoptosis-
inducing ligand

TNFR/TNF Tumor necrosis factor receptor/Tumor necrosis factor
FADD Fas-associated with death domain protein

UPR unfolded protein response

PERK protein kinase RNA-like endoplasmic reticulum kinase
elF2a eukaryotic initiation factor 2a

ATF4 activating transcription factor 4

CHOP C/EBP homologous protein

ATF6 transcription factor 6

TUDCA taurine deoxycholic acid

Atgs autophagy-related genes

Frontiers in Pharmacology

20

10.3389/fphar.2024.1430469

PARL presenilin-associated rhomboid-like protease

PINK1 phosphatase and tens of homologues-induced putative
kinase 1

BNIP3 Bcl-2/adenovirus E1B 19 kDa interacting protein 3

NLRX1 Nucleotide-binding domain and leucine-rich repeat
containing family member X1

DRP1 Dynamin-related protein 1

AMPK adenosine monophosphate-activated protein kinase
FOXO3 factor forkhead box protein O3
mTORCI mTOR complex 1

TFEB transcription factor EB

ACC2 acetyl-coenzyme A carboxylase 2
MA2 meclofenamic acid

NSAID non-steroidal antiinflammatory drug
Nrf2 Nuclear factor erythroid 2-related factor 2
GSH glutathione

GPX4 glutathione peroxidase 4

HO-1 heme oxygenase-1

TfR1 transferrin receptor 1

GSDM Gasdermin

NLRP3 NOD-like receptor protein 3

ASC apoptosis-associated speck-like protein
TXNIP Thioredoxin-interacting protein

Trx TXNIP expression or Thioredoxin

MC marginal cell

HMG-CoA hydroxymethylglutaryl-CoA

BLB blood labyrinth barrier

FDA the US Food and Drug Administration.
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