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targets in lung adenocarcinoma: a
multi-omics approach integrating
bulk and single-cell RNA
sequencing with Mendelian
randomization
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Our research aimed to identify new therapeutic targets for Lung adenocarcinoma
(LUAD), a major subtype of non-small cell lung cancer known for its low 5-year
survival rate of 22%. By employing a comprehensive methodological approach,
we analyzed bulk RNA sequencing data from 513 LUAD and 59 non-tumorous
tissues, identifying 2,688 differentially expressed genes. Using Mendelian
randomization (MR), we identified 74 genes with strong evidence for a causal
effect on risk of LUAD. Survival analysis on these genes revealed significant
differences in survival rates for 13 of them. Our pathway enrichment analysis
highlighted their roles in immune response and cell communication, deepening
our understanding. We also utilized single-cell RNA sequencing (scRNA-seq) to
uncover cell type-specific gene expression patterns within LUAD, emphasizing
the tumor microenvironment's heterogeneity. Pseudotime analysis further
assisted in assessing the heterogeneity of tumor cell populations. Additionally,
protein-protein interaction (PPI) network analysis was conducted to evaluate the
potential druggability of these identified genes. The culmination of our efforts led

Abbreviations: BP, Biological Process; CC, Cellular Component; DEGs, Differentially expressed genes;
EBI, European Bioinformatics Institute; GDC, Genomic Data Commons; GO, Gene Ontology; GSEA,
Gene Set Enrichment Analysis; GTEx, Genotype-Tissue Expression; GWAS, Genome-Wide Association
Studies; IVW, Inverse-variance weighted; IVs, Instrumental variables; KEGG, Kyoto Encyclopedia of
Genes and Genomes; LUAD, Lung adenocarcinoma; MF, Molecular Function; MR, Mendelian
randomization; NSCLC, Non-small cell lung cancer; PCA, Principal component analysis; PPI, protein-
protein interaction; UMAP, Uniform Manifold Approximation and Projection; eQTL, expression
quantitative trait loci; scRNA-seq, single-cell RNA sequencing.
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to the identification of five genes (tier 1) with the most compelling evidence,
including SECISBP2L, PRCD, SMADS, C20rf91, and HSD17B13, and eight genes (tier
2) with convincing evidence for their potential as therapeutic targets.

KEYWORDS

lung adenocarcinoma, bulk RNA sequencing, Mendelian randomization, single-cell RNA
sequencing, potential therapeutic targets

1 Introduction

Lung adenocarcinoma (LUAD), the major subtype of non-small
cell lung cancer (NSCLC), poses a significant global health challenge
(Leiter et al., 2023). With a 5-year survival rate of only 22% (Siegel
et al,, 2022), there is an urgent need for effective interventions and
treatments for LUAD. To address these challenges, it is crucial to
identify novel therapeutic targets and biomarkers for LUAD.
Genetic studies, particularly those focusing on gene expression,
have shown great promise in this regard. Gene expression
profiles can provide valuable insights into the molecular
mechanisms underlying LUAD pathogenesis and progression,
and help identify potential drug targets.

Our research leverages a range of methods, including bulk RNA
sequencing, single-cell RNA sequencing (scRNA-seq), and
Mendelian randomization (MR). Bulk RNA sequencing has a
wide range of uses in cancer classification, biomarker discovery,
and optimization of treatments (Dang et al., 2021; Tran et al., 2023).
scRNA-seq is critical for understanding tumor transcriptomic
programs that are highly heterogeneous (Li and Wang, 2021).
MR is a method used to assess the causal relationship between
modifiable exposures or risk factors and clinically relevant outcomes
(Sekula et al, 2016). Integrating summary data from disease
Genome-Wide Association Studies (GWAS) and expression
quantitative trait loci (eQTL) studies, MR analysis has been
widely employed for repurposing already approved drugs and
discovering new therapeutic targets (Gaziano et al., 2021; Storm

et al,, 2021). The expression level of a gene can be considered a
lifelong exposure, and eQTLs located in genomic regions that
influence gene expression and are potentially targetable by drugs
are often used as proxies for the genes themselves (Zhu et al., 2016;
Schmidt et al., 2020).

In this study, we integrated bulk RNA sequencing, scRNA-
seq, and MR analyses to systematically identify and prioritize
potential therapeutic targets for LUAD. Specifically, we first
performed differential gene expression analysis using bulk
RNA-seq data that
dysregulated in LUAD tissues compared to normal lung

to identify genes are significantly
tissues. We then applied MR to evaluate the causal effects of
the expression levels of these genes on LUAD risk. To further
characterize the cellular contexts in which the prioritized genes
operate, we conducted scRNA-seq analysis to delineate their cell
type-specific expression patterns in the lung microenvironment.
Through this integrative approach, we aimed to uncover robust
and biologically relevant gene targets that can guide future drug
development efforts for LUAD.

In summary, our research employs advanced genomic
techniques and causal inference methods to unravel the complex
genetic architecture of LUAD, aiming to identify promising drug
targets and contribute to the global effort in reducing the burden of
this devastating disease. The identified gene targets and their
associated biological pathways may serve as a foundation for
developing novel therapeutic strategies and precision medicine
approaches for LUAD.
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2 Materials and methods

2.1 Study design

In our study, we employed a systematic array of analytical
techniques to identify and evaluate potential drug targets for
LUAD. We initiated our approach with bulk RNA sequencing to
identify differentially expressed genes (DEGs), followed by MR
analysis to further narrow down potential therapeutic target
genes. Subsequent survival analysis determined the association
between the expression levels of these genes and patient survival
rates. Pathway enrichment analysis was then conducted to reveal the
functional roles of these genes in the disease process. scCRNA-seq
analysis afforded us insights into the specific expression patterns of
these genes across different cell types and the changes in cell
proportions within the tumor microenvironment. Pseudotime
analysis further delineated the heterogeneity of tumor cell
populations across different stages of development. Lastly, by
integrating protein-protein interaction (PPI) network analysis, we
assessed the potential of these genes as drug targets. The workflow of
the study design is presented in Figure 1.

2.2 Raw data acquisition

The bulk RNA sequencing data for this study was obtained from
the Genomic Data Commons (GDC) TCGA Lung Adenocarcinoma
(LUAD) cohort, accessible through the Xena Browser (https://
xenabrowser.net/). Alongside this, Phenotype data for a broader
set of samples and survival data were also downloaded. These
datasets collectively provide a comprehensive genomic profile,
encompassing detailed RNA sequencing data, phenotypic
characteristics, and survival information from a rigorously
quality-controlled and annotated collection of LUAD samples.

In our MR study, we utilized two distinct datasets to explore the
genetic underpinnings of LUAD. The first dataset, comprising lung
tissue eQTL data, was sourced from European and American
participants through the Genotype-Tissue Expression (GTEx)
project (https://gtexportal.org/home/datasets/). This dataset was
specifically selected to analyze the genetic influences on gene
expression in lung tissues of these populations, serving as the
exposure variable in our analysis. The second dataset, identified
by the ID GCST004744 (McKay et al, 2017) in the European
Bioinformatics Institute (EBI) GWAS Catalog (https://www.ebi.
ac.uk/gwas/), contains a large collection of genetic variants
associated with LUAD risk. This GWAS dataset was employed as
the outcome data in our MR analyses, enabling the investigation of
potential causal relationships in LUAD. Both datasets were carefully
processed and filtered to align with our study’s objectives, ensuring
robust and reliable insights into the genetic factors influencing
this condition.

10x scRNA-seq data were downloaded from the
GSE149655 series. This dataset consists of two LUAD samples
and two adjacent non-cancerous tissue samples. The selection of
these samples aimed to provide insights into the cellular
heterogeneity within LUAD and its
facilitating a detailed analysis of gene expression patterns at a

surrounding  tissue,

single-cell level.
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2.3 Bulk RNA sequencing data processing
and analysis

For the analysis of bulk RNA sequencing data, we initially
screened our dataset to exclude patients lacking survival data. To
identify DEGs, we employed DESeq2 (version 1.40.2) for conducting
negative binomial tests in paired comparisons. This analysis was
performed using the default settings of the DESeq2 package. we
considered genes as differentially expressed if they met the following
parameters in the DESeq2 analysis—a Benjamini-Hochberg-
adjusted p-value of <0.01 and a log2 fold change of >1. We
chose a stringent adjusted p-value threshold of 0.01 to control for
false positives and focus on genes with strong evidence of differential
expression, considering the large number of genes being tested
simultaneously. ~ This  threshold is  consistent  with
recommendations by Schurch et al, 2016, who suggest that a
stringent adjusted threshold helps balance false positives and the
identification of biologically relevant genes. Additionally, the
log2 fold change threshold of >1 was chosen to prioritize genes
with a substantial change in expression levels, as suggested by Chen
et al, 1000. Additionally, we incorporated an average expression
threshold, considering only genes with an average expression
greater than 10.

Potential batch effects in our study should also be considered.
Batch effects can arise from various sources, such as differences in
sample collection, processing, or sequencing protocols, and can
introduce systematic biases that confound the biological signals
of interest. In our bulk RNA sequencing analysis, we used data
from the GDC TCGA-LUAD cohort, which has well-documented
procedures for sample collection, processing, and sequencing,
minimizing the likelihood of batch effects. Furthermore, we
applied the variance stabilizing transformation (vst) function in
the DESeq2 package to the DESeqDataSet object to correct for
batch effects.

2.4 Mendelian randomization (MR) analysis
and colocalisation analysis

In our MR study, using the TwoSampleMR package (version
0.5.7), we investigated the causal relationship between gene exposure
variables, defined by eQTLs, and LUAD outcomes. Instrumental
variables (IVs) were selected from these eQTLs, adhering to a
stringent p-value threshold of < 5e-08. To
independence of the selected IVs, we performed linkage

ensure the

disequilibrium clumping using the clumping function in the
TwoSampleMR package, with an r2 threshold of 0.01. This
process identified a set of independent IVs for each gene
exposure variable. To assess the relevance of the selected IVs, we
calculated the F-statistic for each IV using the formula F = R2/(1 —
R2) * (n — k — 1)/k, where R2 = 2 * MAF * (1-MAF) * Beta2, n is the
sample size, k is the number of instrumental variables, and MAF is
the minor allele frequency. IVs with an F-statistic greater than
10 were considered relevant and strong instruments for the gene
exposure variable, while those with an F-statistic less than 10 were
excluded to mitigate weak instrument bias.

To further reduce the potential impact of horizontal pleiotropy
on the results of our MR analysis, we selected SNPs within +1 Mb of
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the transcription start site of each gene. The harmonise_data
function was subsequently applied to harmonize the exposure
and outcome datasets, aligning the effect alleles and excluding
palindromic SNPs. The present MR study was performed in
accord with the recommended items
STROBE-MR-checklist).

The MR analysis was performed under the following

(Supplementary File:

assumptions:

1 Relevance assumption: The genetic variants (IVs) are strongly
associated with the exposure (gene expression levels).

2 Independence assumption: The genetic variants (IVs) are not
associated with any confounders that influence the relationship
between the exposure and the outcome.

3 Exclusion restriction assumption: The genetic variants (IVs)
affect the outcome (LUAD risk) only through their effect on
the exposure (gene expression levels) and not through any
other pathways.

Our MR analysis employed the Wald ratio method for single-
SNP analysis and the inverse-variance weighted (IVW) method for
analyses involving multiple SNPs. Results were deemed statistically
significant at a threshold of p < 0.05. We did not apply multiple
testing correction to the MR results, as the number of genes being
tested was relatively small compared to the bulk RNA-seq analysis.
Moreover, the stringent p-value threshold used for selecting IV (P <
5e-08) and the exclusion of SNPs related to LUAD outcomes or
associated traits already helped to control for potential
false positives.

We conducted a colocalization analysis on SNPs within 1 Mb
of the transcription start site (TSS) for genes potentially causally
related to LUAD risk, identified in MR analysis. This analysis was
performed using the R package COLOC (version 5.2.2). The
parameters were set as P1 = 1 x 107, P2 = 1 x 107, and P12 =
1 x 107°. The probability that a given SNP is associated with LUAD
risk is denoted as P1; the probability that a given SNP is a significant
eQTL is denoted as P2; and the probability that a given SNP is an
outcome of both LUAD risk and eQTL is denoted as P12. The
COLOC package was used to test five hypotheses, and the posterior
probability (PP) was used to quantify support for each hypothesis.
The hypotheses were identified as PPHO-PPH4: PPHO, no
association with either trait; PPHI, association with the LUAD
risk but not the expression of the gene; PPH2, association with
the expression of the gene but not the LUAD risk; PPH3, association
with the LUAD risk and expression of the gene, with distinct causal
variants; and PPH4, association with the LUAD risk and expression
of the gene, with a shared causal variant. Due to limited power in the
colocalisation analysis, we restricted our analysis to genes reaching a

combined PPH3 and PPH4 of >0.8 (Giambartolomei et al., 2014).

2.5 Evaluation of prognostic value

Genes identified as statistically significant from a MR study were
subjected to Kaplan-Meier survival analysis. Patients were classified
into high or low expression groups based on the median expression
of these genes. Survival differences between these groups were
assessed using log-rank tests, with a p-value of less than

Frontiers in Pharmacology

10.3389/fphar.2024.1433147

0.05 considered statistically significant (Dang et al., 2023; Viet-
Nhi et al., 2024). We did not apply multiple testing correction to the
survival analysis results, as the genes tested were preselected based
on their statistical significance in the MR analysis, which already
incorporated stringent criteria for selecting instrumental variables
(P < 5e-08) and excluded SNPs related to LUAD outcomes or
associated traits.

We classified the identified genes into two tiers based on the
consistency of their associations with LUAD risk and prognosis
across the different analyses. Tier 1 genes were defined as those
exhibiting a consistent direction of effect in both the bulk RNA
sequencing and MR analyses. Specifically, genes with higher
expression in cancer tissues compared to adjacent non-cancerous
tissues and a positive association with increased LUAD risk in MR
analysis, or genes with lower expression in cancer tissues and a
negative association with LUAD risk, were classified as Tier 1. Genes
that did not meet these criteria were classified as Tier 2.

2.6 Pathway and function enrichment
analysis and gene set enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were conducted on potential
therapeutic targets linked to LUAD, utilizing the clusterProfiler
(version 4.8.2) and org.Hs.eg.db (version 3.17.0) R packages. For
GO enrichment analysis, the background gene set and GO gene sets
were obtained from the orgHs.eg.db package. For KEGG
enrichment analysis, the background gene set and KEGG gene
sets were obtained from the KEGG database, using the “hsa”
(human) organism. Subsequent Gene Set Enrichment Analysis
(GSEA) was performed on these significant GO and KEGG
pathways. The same gene sets were used for GSEA analysis using
the gseGO and gseKEGG functions. For all three analyses, the
Benjamini-Hochberg method was applied for multiple testing
correction, with an adjusted p-value cutoff of 0.05. Pathways
achieving an adjusted p-value of <0.05 were considered
statistically significant.

2.7 scRNA-seq data processing and analysis

10 x scRNA-seq data were processed using R, with the Seurat
package (version 4.3.0.1) (Macosko et al., 2015) utilized for converting
data into Seurat objects. The quality control criteria included a
minimum of 3 cells per gene and at least 300 genes per cell,
excluding cells with mitochondrial gene content over 10% and
hemoglobin gene content over 3%. These thresholds are based on
widely accepted practices in the field of scRNA-seq data analysis (Ilicic
etal, 2016; Luecken and Theis, 2019) and aim to remove low-quality
or potentially damaged cells that may introduce noise into the
analysis. Following this, the top 2000 highly variable genes were
identified for analysis. Dimensionality reduction and clustering were
performed using principal component analysis (PCA). Clustering was
then conducted using the Seurat FindClusters function, which applies
a shared nearest neighbor modularity optimization-based clustering
algorithm. The resolution parameter was set to 0.5, resulting in
14 clusters. These clusters were visualized using Uniform Manifold
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Identification of Potential Drug Targets. (A) Volcano plot displaying the differential expression of genes between cancerous and adjacent non-
cancerous lung tissues, with upregulated genes highlighted in red, downregulated genes in blue. DEGs were defined as genes with a Benjamini-
Hochberg-adjusted p-value <0.01 and a log2 fold change >1. (B) Forest plot from Mendelian randomization analysis illustrating potential therapeutic
targets with lung eQTL data as the exposure and lung adenocarcinoma GWAS data as the outcome. (C) Kaplan-Meier survival plots for 13 potential
therapeutic targets, where patients with high gene expression (above median) are shown in red and those with low expression (below median) are in blue,
with p-values denoting statistical significance. (D) Heatmap showing the expression profile of potential therapeutic targets in cancerous and adjacent

non-cancerous tissues.

Approximation and Projection (UMAP) (Becht et al., 2018). Marker
gene identification for clusters was conducted with a log2 fold change
threshold of 0.25. To assess whether genes are overexpressed in
specific cell types, we employed a differential expression analysis
based on the Wilcoxon Rank Sum test, comparing gene expression
levels between 1 cell type and all other cell types. We define “cell type-
specific enrichment” as the significant overexpression of genes in 1 cell
type compared to all other cell types. The p-values from the Wilcoxon
Rank Sum test were adjusted using the Bonferroni correction method
to control for multiple testing. Genes with a log2 fold change greater
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than 0.25 and an adjusted p-value less than 0.05 were identified as
enriched in a specific cell type. Initial cell type annotation was
performed using the “SingleR” package (version 2.2.0) (Aran et al,
2019), with the Human Primary Cell Atlas as a reference. This initial
annotation was then refined by examining the expression of known
cell type-specific marker genes within each cluster. Clusters expressing
similar marker genes were merged, resulting in a final set of 10 distinct
cell types. The final annotation was manually confirmed based on
marker gene expression, ensuring accurate characterization of cellular
subpopulations.
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FIGURE 3

Pathway enrichment analysis of potential therapeutic targets in lung adenocarcinoma. (A) Gene Ontology (GO) enrichment analysis showing
significant molecular function pathways among the 13 potential therapeutic targets. Key pathways are related to immune response, including MHC class |
and Il protein bindings, gap junction channel activity, and cell-cell adhesion. (B) Gene Set Enrichment Analysis (GSEA) results indicating the significance of
the "MHC Class Il Protein Complex Binding” and "MHC Protein Complex Binding” pathways across the entire dataset.

For the scRNA-seq data from the GSE149655 series, we applied
batch effect correction using the Seurat package to align the datasets
and mitigate potential batch effects. Specifically, we used the
“IntegrateData” function, which employs a canonical correlation
analysis to identify shared sources of variation between the datasets
and then integrates them based on these shared sources. While these
measures help to control for batch effects, we cannot entirely rule
out their potential influence on our results.

2.8 Monocle3 for pseudotime analysis

To investigate the differentiation trajectories within major cell
clusters (Type II Alveolar Epithelial Cells, Microvascular Endothelial
Cells, and Fibroblasts), we applied the Monocle3 R package (version
1.3.3). For each cell type, the Seurat object was subsetted to include
only the cells from the clusters of interest (e.g., clusters 7 and 11 for
Fibroblasts) and then converted into a Monocle3 cell_data_set
object using the new_cell data_set function. The data was
preprocessed using the preprocess_cds function. Batch effects
were corrected using the align_cds function, and then the
dimensionality of the data was reduced using the reduce_
dimension function. Pseudotime trajectories were inferred using
the learn_graph function, and the resulting differentiation pathways
were visualized using UMAP plots generated by the plot_cells
function. These steps were repeated for each cell type of interest
(Type II Alveolar Epithelial Cells, Microvascular Endothelial Cells,
and Fibroblasts), with the appropriate cluster IDs used to subset the
data and perform pseudotime trajectory analysis.

2.9 Protein-protein interaction (PPI) and
druggability evaluation

To investigate gene interactions, a PPI network of the potential
therapeutic targets was constructed using the STRING database
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(https://string-db.org/). In the STRING database, we set the
minimum required interaction score to medium confidence (0.
400) and the species to “Homo sapiens.” All other parameters
were kept at their default settings. This allowed us to assess the
strength and quality of the interactions based on the confidence
scores provided by STRING, which are derived from various sources
such as experimental data, computational prediction, and text
mining. This analysis facilitated the understanding of gene
interplay and their biological functions. Simultaneously, we
assessed the potential of these genes as therapeutic targets
through a literature review. We conducted a systematic search in
the PubMed database using the following search strategy: (gene
name) AND ((“therapeutic target”) OR (“drug target”) OR
(“therapy”) OR (“treatment”)). No restrictions were placed on
publication date or article type to ensure comprehensive coverage.

For each gene, we carefully evaluated the evidence in the existing
literature to determine its suitability as a therapeutic target for
LUAD. We considered the following criteria: 1) the gene’s role in
LUAD pathogenesis; 2) the association between gene expression or
activity and LUAD prognosis; 3) existing or developing therapeutic
approaches targeting the gene or its encoded product; and 4)
potential clinical benefits and risks associated with targeting the
gene. To further evaluate the therapeutic potential of the identified
genes, we cross-referenced our results with three drug-gene
interaction databases: DGIdb (Drug Gene Interaction Database)
(Freshour et al., 2021), DrugBank (Wishart et al, 2018), and
Therapeutic Target Database (Zhou et al., 2024). These databases
provide comprehensive information on known and potential drug-
target interactions, helping us assess the likelihood of our genes of
interest being viable therapeutic targets.

However, our literature review has some limitations. For certain
genes, particularly those newly discovered or less studied, there may
be insufficient literature evidence to comprehensively assess their
therapeutic potential. Moreover, the design quality and reported
results of existing studies may vary, posing challenges for cross-
study comparison and evidence synthesis. In cases where the
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Single-Cell Transcriptomic Analysis of Potential Therapeutic Targets in Lung Adenocarcinoma and Adjacent Normal Tissues. (A, B) UMAP plots
depicting 14 distinct cell clusters identified within lung adenocarcinoma and adjacent normal tissues. (C) UMAP plot highlighting the distribution of 10 cell
types across the identified clusters. (D, E) Bubble and UMAP plots showing the expression and distribution of 12 out of 13 potential therapeutic targets in
cancer tissues, with the absence of detection for RP11-33E12.2. (F) Stacked bar graph indicating the cell type-specific enrichment of 6 potential
therapeutic targets in lung adenocarcinoma. (G, H) Bubble and UMAP plots depicting the expression and distribution of 12 out of 13 potential therapeutic
targets in adjacent normal tissues, with RP11-33E12.2 again not detected. (I) Stacked bar graph demonstrating the cell type-specific enrichment of
6 potential therapeutic targets in normal lung tissues, contrasting with the expression patterns observed in cancerous tissues. (J) Stacked bar chart
comparing the cellular proportions of two cancer tissues and two adjacent normal tissues across the identified clusters, emphasizing the differential

cellular composition between the two conditions.

literature evidence was inconsistent or sparse, we prioritized the 3 Results
findings from more consistent studies and aimed to present a

balanced view of the available evidence. The drug-gene 3.1 ldentification of potential drug targets:
interaction databases also have their own limitations, such as ~ from differential gene expression to MR and

potential biases towards well-studied genes and the inclusion of ~ Survival analysis

both validated and predicted interactions. Despite these limitations,

our literature review and database cross-referencing provides In our study, we began by processing bulk RNA sequencing data,
important preliminary insights into the potential of these genes  excluding patients without survival data. This resulted in a final
as therapeutic targets for LUAD and guides future experimental and ~ dataset of 59 adjacent non-tumorous tissues and 513 cancer tissues

clinical research directions. for our analysis. The differential expression analysis, when

This combined strategy of PPI network construction, drug-gene  intersected with eQTL data, yielded 2,688 DEGs (Supplementary

interaction database analysis and target evaluation provided insights ~ Table S1). Of these, 967 genes were downregulated and 1,721 were
into the therapeutic potential and interaction mechanisms of the  upregulated (Figure 2A). This step effectively narrowed down our
potential therapeutic targets. gene set for more comprehensive analyses.
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FIGURE 5
Pseudo-temporal Analysis of Cell Differentiation in Lung Adenocarcinoma. (A, B) UMAP visualization and pseudo-temporal trajectory of Type Il
Alveolar Epithelial Cells showing the progression from cluster O to cluster 1, depicting the potential early to late differentiation stages within the tumor
microenvironment. (C, D) UMAP and trajectory analysis of Microvascular Endothelial Cells transitioning from cluster 3 to cluster 4, reflecting changes in
the cellular landscape associated with tumor evolution. (E, F) UMAP plots coupled with pseudo-temporal ordering of Fibroblasts, charting a course
from cluster 7 to cluster 11, illustrating a progression of fibroblast differentiation within lung adenocarcinoma.

Subsequently, we utilized MR analysis, with lung eQTL data
serving as the exposure and LUAD GWAS data as the outcome.
After calculating the F-statistic for each IVs and excluding those
with an F-statistic less than 10 (Supplementary Table S2), we
identified 74 genes with strong evidence for a causal effect on
risk of LUAD. (Figure 2B; Supplementary Table S3). Following
the MR analysis, we conducted a colocalization analysis on the SNPs
of the 74 genes to further determine the probability that the SNPs
associated with LUAD and eQTL share causal genetic variants
within the region. The results indicated that most genes and
LUAD are likely to share a causal variant within the region
(Supplementary Table S4). For further investigation, patients
were divided into high and low expression groups based on the
median expression levels of these genes.

Through Kaplan-Meier survival analysis, a significant disparity
in survival rates was observed in 14 genes, as denoted by a p-value
less than 0.05. Intriguingly, for 13 of these genes, the variations in
survival rates were in alignment with their differential expression
between cancerous and adjacent non-cancerous tissues. Genes with
higher expression in adjacent non-cancerous tissue compared to
cancerous tissue were associated with better survival outcomes.
Patients with higher expression of these genes had longer
survival times compared to those with lower expression (Figures
2C,D). This finding underscores the prognostic significance of these
genes in LUAD.

Based on the consistency of their associations across the
different analyses, we classified the 13 identified genes into two
tiers. Five genes (SECISBP2L, PRCD, SMADSY, C2orf91, and
HSDI17B13) were classified as Tier 1, exhibiting consistent
directions of effect in both the bulk RNA sequencing and MR
analyses. The remaining eight genes were classified as Tier 2.

Frontiers in Pharmacology

3.2 Comprehensive pathway enrichment
analysis of the 13 prognostic differential
genes: GO, KEGG, and GSEA approaches

In our comprehensive pathway enrichment analysis, we sought to
elucidate the functional impact of the 13 potential therapeutic targets
identified in LUAD. GO enrichment analysis using all human genes from
the orgHsegdb package as the background was performed
(Supplementary Tables S5-7), which revealed no statistically significant
pathways within the Biological Process (BP) and Cellular Component
(CC) categories. However, within the Molecular Function (MF) category,
12 pathways were found to be statistically significant (Figure 3A). These
pathways were predominantly related to immune response mechanisms,
such as MHC dlass I and II protein bindings, essential for antigen
Additionally, cellular
communication and adhesion, including gap junction channel activity

presentation. pathways  involved in
and cell-cell adhesion, were significantly enriched, underscoring their
importance in the regulation of cell proliferation and the maintenance of
tissue architecture. Furthermore, enrichment in steroid dehydrogenase
activity and TGF- signaling, as evidenced by I-SMAD binding, indicates
a notable involvement in hormone metabolism pathways.
Contrastingly, KEGG enrichment analysis using the human-
specific KEGG gene sets did not yield any pathways of statistical
significance (Supplementary Table S8). To gain a more robust
perspective of the dataset, GSEA was subsequently employed using
the same gene sets from GO and KEGG (Supplementary Tables S9-12).
GSEA demonstrated that out of the 12 meaningful pathways identified
by GO analysis, only two consistently exhibited gene expression changes
across the entire dataset when considering overall expression data, not
limited to potential therapeutic targets. This finding highlights the
potential relevance of these particular pathways, enhancing our
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understanding of their role in LUAD. Specifically, the pathways “MHC
Class II Protein Complex Binding” and “MHC Protein Complex
Binding” were validated by GSEA,
involvement in the disease’s molecular landscape (Figure 3B).

suggesting their critical

3.3 Single-cell transcriptomic analysis:
unveiling cell type-specific expression of
prognostic differential genes

To explore the cell type-specific enrichment of 13 potential
therapeutic targets, we performed a scRNA-seq analysis. This
resulted in the identification of 14 distinct clusters (Figures 4A,B),
which were visualized using UMAP. The clusters were further
annotated by SingleR and manual refinement based on marker gene
expression, identifying 10 main cell types: Type II Alveolar Epithelial
Cells, Mast Cells, Microvascular Endothelial Cells, Epithelial Cells,
Macrophage, Fibroblasts, Immune Cells, Airway Epithelial Cells,
Specialized Epithelial Cells, and Smooth Muscle Cells (Figure 4C).
Of the 13 genes, 12 were expressed in LUAD tissues, with RP11-33E12.2
not detected (Figures 4D,E). Notably, 6 genes exhibited cell type-specific
enrichment in LUAD tissue (Figure 4F). ALS2CR12 was predominantly
enriched in Specialized Epithelial Cells. CPEDI showed significant
enrichment in Fibroblasts. HLA-DRB5 was mainly enriched in Type
IT Alveolar Epithelial Cells, while SECISBP2L was found in Fibroblasts
(Cluster 11). SMAD9 showed enrichment in Microvascular Endothelial
Cells (Cluster 4). G/B3, unique to cancer tissue compared to adjacent
normal tissue, was enriched in both Specialized Epithelial Cells and
Airway Epithelial Cells.

In adjacent normal lung tissue, 12 out of the 13 genes were
expressed, with RP11-33E12.2 again undetected (Figures 4G,H). Six
genes showed cell type-specific enrichment in adjacent normal lung
tissues (Figure 4I). ALS2CRI2 exhibited a notable enrichment in
Specialized Epithelial Cells, with its abundance being significantly
higher compared to cancer tissues, indicated by a greater log2 fold
change. CPEDI was enriched in both Fibroblasts and Smooth
Cells. HLA-DRB5 was
Microvascular Endothelial Cells and Immune Cells (Cluster 9),
and SECISBP2L in Type II Alveolar Epithelial Cells. SMAD9 was
enriched in Epithelial Cells. HSD17B13, unique to adjacent normal
tissue compared to cancer tissue, was enriched in both Specialized
Epithelial Cells and Airway Epithelial Cells.

Additionally, the cellular proportions in two cancer tissues and

Muscle Interestingly, enriched in

two adjacent normal tissues differed significantly (Figure 4]). In
adjacent normal tissues, clusters 0 (Type II Alveolar Epithelial Cells)
and 3 (Microvascular Endothelial Cells) had a higher proportion
compared to clusters 1 (Type II Alveolar Epithelial Cells) and 4
(Microvascular Endothelial Cells), respectively, while in cancer
tissues, the proportions were opposite or similar.

3.4 Characterizing differentiation dynamics
in major cell populations through pseudo-
temporal sequencing

Through pseudo-temporal sequencing analysis, we have discerned

the heterogeneity of cell states in LUAD progression, where specific
genes exhibited significant correlations with the transitions in distinct
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cell types,
Dimensionality reduction and clustering of scRNA-seq data revealed

suggesting their potential as therapeutic targets.
bifurcation in three major cell populations—Type II Alveolar Epithelial
Cells, Microvascular Endothelial Cells, and Fibroblasts—each diverging
into two subgroups, indicative of the tumor microenvironment’s
charted the
developmental courses within these cell types: Type II Alveolar

heterogeneity. Monocle 3  trajectory analysis
Epithelial Cells transitioned from cluster 0 to cluster 1 (Figures
5A,B), Microvascular Endothelial Cells from cluster 3 to cluster 4
(Figures 5C,D), and Fibroblasts from cluster 7 to cluster 11 (Figures
5E,F). These differentiation pathways echo the cellular composition
differences between cancerous and adjacent normal tissues, particularly
an increased proportion of cells in clusters 1 and 4 within the tumorous
tissues, pointing to a dynamic interplay between cell differentiation and
tumor evolution.

Intriguingly, the trajectory analysis revealed differential expression
patterns of key potential therapeutic target genes along these
developmental trajectories. HLA-DRBS5, a gene previously identified
as downregulated in cancer tissues compared to adjacent normal tissues
in our bulk RNA sequencing analysis, exhibited a decrease in expression
as Type II Alveolar Epithelial Cells transitioned from cluster 0 to cluster
1 and as Microvascular Endothelial Cells progressed from cluster 3 to
cluster 4. Similarly, CPEDI, another gene with lower expression in
cancer tissues, showed reduced expression during the progression of
Fibroblasts from cluster 7 to cluster 11. These findings provide a more
detailed view of the cell type-specific expression changes of these
potential therapeutic targets, further supporting their involvement in
LUAD progression and their potential as intervention points.

The integration of our pseudo-temporal analysis with the
previous bulk RNA sequencing results and cell type-specific
enrichment findings paints a more comprehensive picture of the
complex gene expression landscape in LUAD. The observed
downregulation of HLA-DRB5 in both Type II Alveolar Epithelial
Cells Endothelial ~ Cells their
developmental trajectories, along with the reduced expression of
CPEDI in Fibroblasts, is consistent with their overall reduced
their
significance in LUAD pathogenesis. Further exploration of these

and Microvascular during

expression in cancer tissues, highlighting potential
genes and their associated pathways within the context of cellular
differentiation may yield valuable insights into the mechanisms
driving LUAD progression and guide the development of

targeted therapeutic strategies.

3.5 PPI and evaluation on the drug
target potential

In the present study, we analyzed the PPI network of potential
therapeutic targets. Our investigation revealed limited interactions
among these genes, with interactions observed only between HLA-
DRB5 and CD244, and HSDI17BI3 and CD244. Notably, the
expression levels of these genes of tumorous tissues were found
to be downregulated in comparison to adjacent non-tumorous
tissues in LUAD (Supplementary Figure S1). HLA-DRB5 and
CD244 play pivotal roles in controlling antigen processing and
presentation, as well as T-cell activation. It has been observed
that a downregulation in the expression of HLA-DRB5 correlates
with a poor prognosis in LUAD (Sun et al.,, 2021; Wu et al., 2021;

frontiersin.org


https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1433147

Chen et al.

Wang et al., 2022; Xu et al., 2022). Additionally, in NSCLC patients,
CD244 has been identified as a potential negative prognostic
biomarker (Vaes et al., 2021).

In our assessment of the druggability of the 13 potential
therapeutic target genes, we found that four of these genes (HLA-
DRB5, GJB3, HSD17B13, and CD244) have been targeted for drug
development (Supplementary Table S13). For HLA-DRBS, several
drugs have been identified, including 1D09C3 for various forms of
cancer, Coccidioides immitis spherule for detecting delayed-type
hypersensitivity in individuals with a history of pulmonary
coccidioidomycosis, and Apolizumab for solid tumors/cancer.
GJB3 has been associated with drugs such as SRT1720, which has
potential applications in treating conditions related to aging and
metabolic diseases, and SELISISTAT, which is being explored for the
treatment of Huntington’s disease.

A drug targeting HSD17B13, INI-822, has been found to be
applicable for fibrotic liver diseases, including non-alcoholic
steatohepatitis, and is currently undergoing Phase I clinical trials.
Moreover, Compound BI-3231 represents a novel, effective, and
selective inhibitor of HSD17B13 (Thamm et al., 2023). ARO-HSD is
specifically designed to target hepatocytes, aiming to silence
HSD17B13  expression (Mak et al, 2023). Additionally,
GSK4532990 has been identified as a potential drug targeting
HSD17B13 for the treatment of non-alcoholic steatohepatitis.

Furthermore, treatment with an anti-CD244 monoclonal
antibody significantly impaired the growth of established HNSCC
tumors in wild-type mice and increased the infiltration of CD8"
T cells within the tumors (Agresta et al., 2020). A vaccine targeting
CD244, leveraging antibodies against CD244 or its natural ligand
CD48, has been developed to enhance T-cell activation, offering a
novel approach against infectious diseases and cancers. Elotuzumab,
indicated in combination with lenalidomide and dexamethasone for
the treatment of patients with multiple myeloma who have received
one to three prior therapies, and ALDESLEUKIN, an antineoplastic
agent, have also been identified as drugs targeting CD244.

4 Discussion

The development of therapeutics for LUAD presents significant
challenges, primarily due to the complexity of Phase I trials and
resistance to traditional therapies. Conventional treatments like
radiation, surgery, and chemotherapy often lead to adverse side
effects (Lin, 2019; Rohilla et al., 2023). Employing our multi-tiered
approach, we identified 13 potentially potential therapeutic targets that
may influence the outcome of LUAD. Notably, among these
13 potential therapeutic targets, we discovered five with the most
compelling evidence (tier 1): SECISBP2L, PRCD, SMADY, C2o01f91,
and HSD17B13. These genes demonstrated a consistent causal effect on
LUAD risk in MR analysis, and were also found to be differentially
expressed between cancerous and adjacent non-cancerous tissues in
bulk RNA sequencing. Specifically, genes showing a positive causal
effect on LUAD risk in MR analysis were upregulated in cancer tissues
compared to adjacent tissues, while genes with a negative causal effect
were downregulated. Additionally, we identified eight genes with
convincing evidence for druggability (tier 2).

The classification of genes into tiers based on the consistency of
their associations across different analyses provides a prioritized list of
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potential therapeutic targets for LUAD. The Tier 1 genes, with their
robust and consistent associations, represent the most promising
candidates for further validation and drug development efforts. The
Tier 2 genes, while still exhibiting convincing evidence for druggability,
may require additional investigation to elucidate their roles in LUAD
pathogenesis and assess their suitability as therapeutic targets.
Inconsistencies between Tier 1 and Tier 2 genes may arise from the
complexity of LUAD pathogenesis and limitations of the analytical
methods. For instance, bulk RNA sequencing provides an average gene
expression profile across all cells in a tissue sample, which may obscure
cell type-specific expression patterns. In contrast, MR analysis assesses
the causal relationship between gene expression and disease risk based
on genetic variations, which may not fully capture the dynamic nature
of gene expression regulation. Moreover, survival analysis focuses on
the association between gene expression and patient outcomes, which
can be influenced by various clinical factors beyond the gene itself.
These methodological differences may contribute to the observed
inconsistencies between the tiers. Despite these challenges, our
multi-tiered
therapeutic targets. Future studies should aim to validate these

approach helps prioritize the most promising
findings in larger, independent cohorts and employ additional
experimental approaches to elucidate the biological mechanisms
underlying the gene-disease associations.

Previous studies have shown downregulation of SECISBP2L and
HLA-DRB5 in lung cancer (McKay et al., 2017), with HLA-DRB5
expression inversely correlated with LUAD risk (Xu et al., 2022).
ALS2CRI2 and GJB3 have been associated with lung cancer
(Fehringer et al., 2016; Cheng et al., 2023), with GJB3 predictive of
survival rates in LUAD patients. CD3EAP, SMADY, and CD244 are
considered valuable tumor markers (Yin et al., 2013; Hou et al., 2017;
Yu etal., 2018; Pan et al., 2020; Yin et al., 2020; Gao et al., 2021; Vaes
etal, 2021; Yin et al,, 2022), with CD3EAP particularly noteworthy as
a tumor marker in smokers. CPEDI is regarded as one of the tumor
suppressor genes in LUAD (Hsu et al, 2017). We also discovered
several novel candidate potential therapeutic targets, including PRCD,
IZUMOI, C2orf91, RP11-33E12.2, and HSDI7B13. Among these,
PRCD, C2o0rf91, and HSDI17B13 (tier 1) were prioritized as the
most compelling due to the robust evidence supporting their
potential impact on LUAD, thus warranting further exploration.
PRCD is a key gene in the development of retinal photoreceptor
cells, crucial for the high fidelity of photoreceptor disc formation
(Spencer et al., 2019). Retinas lacking PRCD produce an abundance of
extracellular vesicles containing rhodopsin, and discs fail to form
properly (Allon et al., 2019; Sechrest et al., 2020). C201f91, located on
human chromosome 2, has been implicated in ALK-positive NSCLC,
showing sensitivity to alectinib in ALK-C2orf91(intergenic) (Yan
et al,, 2023). HSD17B13 belongs to the HSD17B family, exhibiting
NAD(P)H/NAD(P)+ dependent oxidoreductase activity. Current
research primarily focuses on non-alcoholic fatty liver disease
(Ferenci et al., 2019; Ma et al,, 2019; Stickel et al., 2020; Ioannou,
2021; Zhang et al., 2021; Luukkonen et al,, 2023).

In our pathway enrichment analysis, we found that these genes are
predominantly enriched in pathways related to immune response
mechanisms. Considering the overall expression data, pathways such
as “MHC class II protein complex binding” and “MHC protein complex
binding” were validated through GSEA, indicating their critical roles in
the molecular landscape of the disease, potentially linked to increased
immune evasion of the tumor. Additionally, pathways involved in cell
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communication and adhesion were also highlighted, emphasizing their
importance in regulating cell proliferation and maintaining tissue
architecture. To further understand the specific expression patterns
of these genes in different cell types and the heterogeneity within the
tumor microenvironment, we conducted scRNA-seq analysis. Our
findings reveal that six of the 13 genes (ALS2CRI2, CPEDI, HLA-
DRB5, SECISBP2L, SMADY, GJB3) show cell type-specific enrichment
in cancerous tissues, with GJB3 being unique to cancer tissues.
Furthermore, six genes (ALS2CRI2, CPEDI, HLA-DRBS,
SECISBP2L, SMADY, HSDI7B13) demonstrate cell type-specific
enrichment in adjacent non-cancerous tissue, with HSDI7BI13
uniquely expressed in these tissues. Interestingly, one of the
13 genes, RP11-33E12.2, was not detected in either cancerous or
adjacent non-cancerous tissues in our scRNA-seq analysis. This
could be due to several reasons. First, RP11-33E12.2 might be
expressed at very low levels, below the detection threshold of the
scRNA-seq technology used. Second, RPII-33EI2.2 might be
expressed in a rare cell type that was not well represented in our
scRNA-seq data. Third, there could be technical issues with the scRNA-
seq data that prevented the detection of this gene. Despite the absence of
RP11-33E12.2 in the scRNA-seq data, its identification as a potential
therapeutic target in our bulk RNA sequencing, MR, and survival
analyses suggests that it may still play a role in LUAD pathogenesis.
Further studies using more sensitive techniques, such as qJPCR or RNA
in situ hybridization, could help validate the expression and function of
RP11-33E12.2 in LUAD tissues. In adjacent normal lung tissue,
ALS2CRI2 exhibited a notable enrichment in Specialized Epithelial
Cells, with its abundance being significantly higher compared to cancer
tissues, indicated by a greater log2 fold change. Interestingly, Type II
Alveolar Epithelial Cells specifically enrich for the SECISBP2L gene in
adjacent non-cancerous tissues, while HLA-DRB5 gene is enriched in
cancer tissues. Differences in cell proportions between tissues and
trajectory analyses showed that for genes downregulated in
cancerous tissues (as identified in bulk RNA sequencing), certain cell
types (Type II Alveolar Epithelial Cells, Microvascular Endothelial Cells,
and Fibroblasts) tend to form subgroups with even lower gene
expression, and the proportion of these subgroups is increased in
cancerous tissues. Therefore, these findings support the therapeutic
targets identified in our study.

The STRING database is a robust resource for protein-protein
interactions, but it has limitations such as potential biases towards
well-studied proteins and interactions. Its integration of data from
various sources can lead to an overrepresentation of certain
interactions and varying quality of reported interactions, which
should be considered when interpreting our PPI network analysis
results. Our PPI network analysis identified key interactions between
HLA-DRB5 and CD244, as well as HSDI17B13 and CD244, as
potential therapeutic targets in LUAD, with these genes showing
The HLA-DRB5-CD244
interaction is particularly noteworthy due to their roles in

downregulation in tumor tissues.
immune response regulation, suggesting a possible contribution
to immune evasion in LUAD. Similarly, the HSD17B13-CD244
interaction introduces a novel aspect to LUAD pathogenesis,
given HSDI7B13’s known association with liver diseases and its
potential druggability in lung cancer. The identification of specific
drugs targeting HLA-DRB5, GJB3, HSD17B13, and CD244 for
various indications, such as cancer, metabolic diseases, and liver

disorders, further strengthens their potential as therapeutic targets
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in LUAD. These findings underscore the importance of further
research to explore the functional impacts of these interactions and
their therapeutic potential in LUAD, including the possibility of
combination therapies targeting these gene interactions. The
identification of specific drugs targeting these genes provides
valuable leads for further preclinical and clinical studies to
evaluate their efficacy and safety in the context of LUAD treatment.

In our investigation of potential therapeutic targets for LUAD, we
employed a multifaceted approach, including bulk RNA sequencing,
MR, survival analysis, pathway enrichment, scRNA-seq, pseudotime
analysis, and PPI network analysis. The consistency of results across
multiple rigorous analyses affirmed the robustness of our findings.
Additional evidence from single-cell type expression analysis, PPI, and
druggability assessments provided insights into the potential pathogenic
roles of potential therapeutic targets in LUAD and further prioritized
potential therapeutic targets. However, our study has several limitations.
First, our sample size for scRNA-seq was relatively small, which may
limit the generalizability of our findings. Future studies with larger
cohorts are needed to validate our results. Second, while we employed
multiple analytical methods to identify and prioritize potential
therapeutic targets, experimental validation of these targets was not
performed in this study. In vitro and in vivo functional studies are
necessary to confirm the roles of these genes in LUAD pathogenesis and
their potential as therapeutic targets. Third, our study focused on gene
expression data and genetic associations. Integration of other omics
data, such as proteomics and metabolomics, could provide a more
understanding of the
underlying LUAD. Fourth, our pathway enrichment and PPI

comprehensive molecular mechanisms
network analyses were based on current knowledge databases, which
may not capture all relevant biological interactions. Additionally, these
databases may have inherent biases, such as an overrepresentation of
well-studied pathways and interactions, which could influence the
results of our analyses. As these databases continue to expand,
reanalysis of our data may provide additional insights. Potential
sources of bias in our MR analysis, such as population stratification
and pleiotropy, should also be considered. To mitigate population
stratification, we used summary statistics from the GTEx project
and the GWAS Catalog (GCST0047449), both of which include
samples from individuals of European ancestry. To address
pleiotropy, we selected SNPs within £1 Mb of the transcription start
site of each gene and performed a colocalization analysis. However,
residual pleiotropy may still affect our results. Due to the limited
number of SNPs available for each gene, we were unable to employ
more advanced MR methods, such as MR-Egger regression, to further
account for potential pleiotropic effects. Finally, it is important to
acknowledge the potential limitations of the DESeq2 method used
for differential gene expression analysis. DESeq2 assumes that the
majority of genes are not differentially expressed between conditions
and that the count data follows a negative binomial distribution.
Violation of these assumptions may impact the accuracy of the
results. Additionally, DESeq2 relies on a generalized linear model to
estimate the coefficients for each gene, which may be sensitive to
outliers or extreme values. To mitigate these limitations, we applied
stringent quality control measures to ensure compliance with the
assumptions of DESeq2. Furthermore, potential biases inherent in
the datasets used in our study, such as GDC, GTEx, EBI GWAS
Catalog, and GSE149655 series, should be considered. For instance, the
GTEx data is primarily derived from European and American
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participants, which may not fully represent the global population.
Additionally, the relatively small sample size in the
GSE149655 series may limit the generalizability of our findings.
Despite these potential biases, we have taken measures to ensure the
robustness of our analyses, such as applying stringent quality control
procedures, employing strict thresholds for selecting instrumental
variables, and conducting a comprehensive literature review and
drug-gene interaction database cross-referencing to validate
our findings.

In conclusion, our study identified several promising therapeutic
targets for LUAD through a multi-tiered approach integrating bulk
RNA sequencing, MR, survival analysis, pathway enrichment,
scRNA-seq, pseudotime analysis, and PPI network analysis. While
our findings provide valuable insights into the molecular mechanisms
of LUAD and potential therapeutic strategies, further experimental
and clinical research is needed to evaluate the practicability and
efficacy of these candidate targets, in order to confirm our current

findings and advance their translational applications.
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