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Mesenchymal stem/stromal cells (MSCs) have the capacity to migrate to tumor
sites in vivo and transmit paracrine signals by secreting extracellular vesicles (EVs)
to regulate tumor biological behaviors. MSC-derived EVs (MSC-EVs) have similar
tumor tropism and pro- or anti-tumorigenesis as their parental cells and exhibit
superior properties in drug delivery. MSC-EVs can transfer microRNAs (miRNAs)
to tumor cells, thereby manipulating multiple key cancer-related pathways, and
further playing a vital role in the tumor growth, metastasis, drug resistance and
other aspects. In addition, tumor cells can also influence the behaviors of MSCs in
the tumor microenvironment (TME), orchestrating this regulatory process via
miRNAs in EVs (EV-miRNAs). Clarifying the specific mechanism by which MSC-
derived EV-miRNAs regulate tumor progression, as well as investigating the roles
of EV-miRNAs in the TME will contribute to their applications in tumor
pharmacotherapy. This article mainly reviews the multifaceted roles and
mechanism of miRNAs in MSC-EVs affecting tumor progression, the crosstalk
between MSCs and tumor cells caused by EV-miRNAs in the TME. Eventually, the
clinical applications of miRNAs in MSC-EVs in tumor therapeutics are illustrated.
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1 Introduction

Mesenchymal stem/stromal cells (MSCs) are a group of non-hematopoietic multipotent
stem cells with the ability of self-renewal and multi-lineage differentiation, which can
participate in tissue regeneration and homeostasis, and have immunomodulatory properties
(Ullah et al., 2015; Wang Y. et al., 2022). MSCs can be isolated from a variety of human
tissues, including bone marrow, umbilical cord, adipose tissue, skin, dental pulp,
endometrium, and so on. Bone marrow is the most important source of MSCs
(Dabrowska et al., 2021). MSCs can influence the surrounding cells through paracrine
effects, and their secretory components consist of various bioactive factors including
extracellular vesicles (EVs) (Harrell et al., 2019; Mitchell et al., 2019). EVs are the
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nano-sized vesicles secreted by cells, which contain proteins, lipids,
nucleic acids, metabolites, growth factors, and cytokines, playing an
essential role in mediating cellular communication (Alzahrani et al.,
2024; Cabrera-Pastor, 2024). Based on the size and biogenesis, EVs
can be categorized into exosomes, microvesicles (MVs) and
apoptotic vesicles (Zhang F. et al., 2022) (Figure 1). MicroRNAs
(miRNAs), as an important component of EVs, are small non-
coding RNAs of about 18–25 nucleotides in length (Yao et al., 2019).
MiRNAs can be paired with mRNAs to exert the post-
transcriptional inhibition by translational repression, mRNA
destabilization, and mRNA cleavage. Besides, a single miRNA
can target multiple different mRNAs, and a single mRNA can be
coordinately suppressed by multiple different miRNAs. Thus,
miRNAs have vital roles in gene regulatory networks (Bartel,
2009; Lin and Gregory, 2015).

Tumors are complex tissues, which establish a unique
pathological environment, tumor microenvironment (TME),
during the process of their dynamic development. TME is
characterized by a hypoxic, acidic environment. The major
cellular components of TME include immune cells, stromal cells,
such as cancer-associated fibroblasts (CAFs), pericytes, MSCs, as
well as the other non-cellular components such as extracellular
matrix (ECM), vascular network and lymphatic system, and
multiple signaling molecules (Feng et al., 2023; Zhang et al.,
2023). In this environment, the interplay between stromal and
malignant cells critically determines tumor progression (Terry
et al., 2017).

In recent years, there has been increasing evidence that miRNAs
carried by MSC-derived EVs (MSC-EVs) play a crucial role in the
regulation of tumor progression. Figuring out the complex impacts
of miRNAs in MSC-EVs on tumors will provide the novel ideas for
tumor diagnosis, treatment and monitoring. This review first
summarized the roles and mechanism of miRNAs in MSC-EVs
that influence tumor progression, and then described the crosstalk

action of miRNAs in EVs between tumor cells and MSCs. Finally,
the application prospects of miRNAs in MSC-EVs for tumor clinical
therapeutics was explored.

2 Isolation of EVs

The extraction of EVs is a prerequisite for biomedical research
and clinical translation (Li et al., 2024). Different isolation methods
can significantly affect the cargo and physicochemical properties of
EVs (De Sousa et al., 2023). Currently, a multitude of separation
techniques have been developed.

Ultracentrifugation is considered as the “golden standard”
technique for the separation of EVs (Gardiner et al., 2016),
mainly comprising differential ultracentrifugation, density
gradient ultracentrifugation (Li et al., 2024). As the most
commonly used method, ultracentrifugation has the
characteristics of mature technology, wide applicability and low
cost. However, the drawbacks of time-consuming, poor
reproducibility, large sample volume required and high
impurities also limit its applications (Lucchetti et al., 2019; Chen
et al., 2022).

Size exclusion chromatography uses polymers to form a porous
stationary phase in a column to separate EVs (Jia et al., 2022).
Although short in time, low in cost, and high in purity, it requires
special columns and packings and is prone to lipoprotein
contamination (Böing et al., 2014; Chen et al., 2022).

Immunoaffinity capture isolates EVs by binding to specific
membrane receptors on the surface of EVs and specific
antibodies to obtain high-purity EVs, but it is low- yield and
expensive (Alzhrani et al., 2021; Stam et al., 2021).

The method of precipitation separates EVs from other
compounds based on the solubility, and polyethylene glycol is
often used to precipitate EVs (Coumans et al., 2017; Soares
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Martins et al., 2018). Precipitation is easy to operate, inexpensive,
and suitable for large sample size (Chen et al., 2022).

In addition to the above methods, ultrafiltration can concentrate
EVs into a small volume sample for EV separation (Zhu et al., 2020).
Microfluidics relies on the physical and biochemical properties to
isolate EVs (Alzhrani et al., 2021). In recent years, separation
methods of EVs have been further developed via utilizing
advanced materials (Yang et al., 2021; Dao et al., 2022; Kim
et al., 2024) and techniques (Chen et al., 2021).

3 Roles and mechanism of miRNAs in
MSC-EVs in tumor progression

MSCs are multipotent stem cells, which can be recruited into the
TME to become tumor-associated MSCs (Timaner et al., 2020).
Tumor-associated MSCs can influence tumor progression by
transmitting paracrine signals through the secretion of EVs.
Currently, MSCs are widely used in cancer research because of
their ability to migrate to the tumor site after systemic
administration and interact with tumor cells (Belmar-Lopez et al.,
2013; Alzahrani et al., 2018) and their ease of isolation as well as ex
vivo culture and modification. In addition, MSC-EVs can mimic
their parental cells, migrate to the tumor sites, and exert an impact
on them (Weng et al., 2021). Due to diverse tumor types, stem cell
sources, isolation methods, and in vitro culture conditions, MSC-
EVs have two opposite roles in tumor progression: promotion and
inhibition (Belmar-Lopez et al., 2013; Yassine and Alaaeddine, 2022;
Aldoghachi et al., 2023).

As early as 2014, it was demonstrated that paclitaxel (PTX)-
treated MSCs could secrete PTX-containing MVs, possessing the
significant anti-tumor effects. This finding suggested the potential

applications of MSC-EVs for drug packaging and delivery.
Furthermore, the pharmacological activity of PTX was not
affected during the physiological biogenesis of MVs (Pascucci
et al., 2014). More importantly, EVs obtained the better
therapeutic efficacy with more limited side effects than free drugs
(Namee and O’Driscoll, 2018). Another study compared the delivery
efficiency of modified exosomes derived from transgenic dental pulp
MSCs and liposomes for the delivery of anti-tumor miRNAs to
breast cancer cells, demonstrating the promising applications of
exosomes derived from MSCs in drug delivery (Vakhshiteh
et al., 2021).

In different types of cancer cells, miRNA expression appears to
be up-regulated or down-regulated (Wang et al., 2014; Wu et al.,
2020; Xing et al., 2020; Khazaei-Poul et al., 2021; Liu J. et al., 2021;
Wang and Lin, 2021; Yan et al., 2021; Jiang et al., 2022; Lv et al.,
2022; Wang X. et al., 2022; Wang X.-S. et al., 2022; Zhao et al., 2022;
Orso et al., 2023), which correlates with tumor prognosis (Lan et al.,
2018; Xing et al., 2020; Liu J. et al., 2021; Wang X. et al., 2022), tumor
grading (Xing et al., 2020), TNM staging (Wang et al., 2014; Wu
et al., 2020) and differentiation degree (Wu et al., 2020). This
indicates that targeting miRNAs can manipulate the tumor
biological behaviors. The strategies to regulate the expression of
miRNAs in tumors include the inactivation of oncogenic miRNAs,
the activation of tumor suppressor miRNAs, and the restoration of
drug sensitivity via targeting specific miRNAs (Sarkar et al., 2010).
Moreover, the expression levels of miRNAs in EVs (EV-miRNAs) in
MSCs derived from the patients with malignant tumors are different
from those of normal subjects (Roccaro et al., 2013; Wang et al.,
2014; Figueroa et al., 2017). The characteristics of miRNAs in MSC-
EVs in tumors has been extensively studied so far, and MSCs are
often modified to investigate the effects of miRNAs in modified
MSC-EVs on tumor progression.

FIGURE 1
Contents and types of EVs. EVs are rich in nucleic acids, proteins and lipids. Based on the size, EVs can be categorized into three types:microvesicles,
exosomes and apoptotic vesicles. Microvesicles range from 100 to 1,000 nm in diameter, and diameter of exosomes varies between 30 and 100 nm,while
apoptotic vesicles exceed 1,000 nm in diameter (Created with Biorender.com).
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A growing number of studies have shown that miRNAs in MSC-
EVs are involved in the regulation of key cancer-related pathways
(Bushati and Cohen, 2007; Jansson and Lund, 2012). These pathways
serve as diverse functions in tumor progression, including modulating
tumor cell proliferation, invasion, metastasis and angiogenesis,
dominating the host immune responses, as well as manipulating
tumor chemoresistance. In addition, it has been demonstrated that
miRNAs in MSC-derived exosomes (MSC-Exos) also participate in the
development of precancerous lesions (Li et al., 2019; Wang et al., 2019).

3.1 Influence on tumor cell proliferation

Maintaining the capacity of long-term proliferation is the most
fundamental characteristic of tumor cells, which can influence cell cycle
progression as well as cell growth by modulating growth-promoting
signals (Hanahan and Weinberg, 2011). As early as 2013, it was found
that MVs derived from human bone marrow mesenchymal stem cells
(BMSCs) inhibited cell cycle progression and induced apoptosis or
necrosis in hepatocellular carcinoma (HCC), Kaposi’s sarcoma, and
ovarian tumors (Bruno et al., 2013). Another later study discovered that
adipose mesenchymal stem cell (AMSC)-derived exosomes had a
similar effect on ovarian cancer (OC) cells, which was mediated by
RNAs rather than proteins in the exosomes. And it was concluded in
further study that miRNAs in AMSC-Exos were responsible for the
above observed anti-tumor activity (Reza et al., 2016). Increasing
evidence indicates that targeting cell cycle-related proteins or
signaling pathways, and inducing or repressing cell apoptosis are
common mechanisms, by which miRNAs in MSC-EVs orchestrate
tumor cell proliferation in a variety of tumors.

3.1.1 Tumor cell proliferation suppression
A case in point is the study by Xu et al. They found that BMSC-Exos

inhibited cell proliferation and cycle progression and promote apoptosis
in acute myeloid leukemia (AML) cells. Knock-down of miR-124-5p in
BMSCs eliminated this modulatory effect, suggesting that miR-124-5p
could contribute to the exosomal impacts observed in AML cells (Xu
et al., 2020). By suppressing JAG1 expression, BMSC-derived exosomal
miR-512-5p attenuated glioblastoma cell proliferation and induced cell
cycle arrest (Yan et al., 2021). Similarly, miR-144 in BMSC-Exos could
down-regulate the expression levels of CCNE1 and CCNE2, thereby
regulating the cell proliferation and cell cycle progression in non-small
cell lung cancer (NSCLC), and further inhibiting NSCLC progression
(Liang et al., 2020). Additionally, MSC-Exos was enriched in miR-100,
which couldmodulate themiR-100/mTOR/miR-143 axis, while mTOR
and miR-143 could diminish the cell proliferation and enhance cell
apoptosis in colorectal cancer (CRC) by affecting glycolysis, cell cycle
progression, and other mechanisms. Interestingly, miR-143 was also
enriched in MSC-Exos (Jahangiri et al., 2022).

One study reported that hBMSC-derived exosomal miR-484
inactivated the Wnt/MAPK pathway, relieved the proliferation and
boosted apoptosis of pancreatic cancer cells in vitro, and reduced
tumor size and weight in vivo (Lin et al., 2023). HBMSC-derived
exosomal miR-124-3p diminished cMYC expression by down-
regulating NFATc1 and exerted comparable effects on diffuse
large B-cell lymphoma (Zhao et al., 2023). Besides,
TRIM14 facilitated proliferation and restrain apoptosis of AML
cells through the activation of PI3K/AKT pathway, while hMSC-

Exos could reverse the effects of TRIM14 by delivering miR-23b-5p
(Cheng et al., 2021). Another analogous study demonstrated that
exo-miR-7-5p derived from BMSCs functioned by attenuating the
phosphorylation of PI3K/AKT/mTOR signaling pathway to
negatively regulate OSBPL11 (Jiang et al., 2022). Likewise, MSC-
Exos carrying miR-133b could repress glioma cell proliferation by
disrupting Wnt/β-catenin signaling pathway through
EZH2 inhibition (Xu H. et al., 2019). Additionally, miR-3182 in
human umbilical cord mesenchymal stem cells (hUCMSCs)-derived
exosomes exerted the similar influence on triple-negative breast
cancer (TNBC) cells (Khazaei-Poul et al., 2021).

Based on the different subpopulations of MSCs, Li et al. found that
CD90low ADSCs and their derived EVs significantly retarded the tumor
growth in hormonal mice, which was associated with decreased tumor
cell proliferation andmigration as well as increased tumor cell apoptosis.
More importantly, the pro-apoptotic effect of EVs on tumor cells was
further enhanced after loading the oncogenic miRNA -miR-16-5p
mimic into CD90low ADSC-EVs by liposomal membrane fusion
method (Li et al., 2020). Another study reported the findings that
under hypoxic conditions, intracellular let-7f levels were up-regulated
throughHIF-1α pathway, and the secreted let-7f encapsulated in hMSC-
Exos was also elevated. In vitro and in vivo experiments further proved
that hMSC-Exos containing let-7f could be ingested by tumor cells, and
thus attenuate tumor cell proliferation and invasion, and relieve tumor
growth in vivo, demonstrating that let-7f in hMSC-Exos possessed the
good anti-tumor activity. Besides, MSCs treated with inflammatory
factor and chemokine SDF-1α can also play a similar role (Egea
et al., 2021).

3.1.2 Tumor cell proliferation promotion
Contrary to the above findings, many studies have provided

evidence that miRNAs in MSC-EVs faciliate the tumor cell
proliferation. For instance, the expression of miR-217 in bladder
cancer cells was notably higher than that in normal human bladder
cells. Furthermore, the exosomal miR-217 derived from normal human
bladderMSCs boosted the proliferation andmigration of bladder cancer
cells and suppressed apoptosis by regulating the transcription factor YAP
and its target proteins (Huang et al., 2021). A study comparing BMSCs
under normoxic and hypoxic conditions, displayed that miR-328-3p
expression was up-regulated in hypoxia-treated BMSC-EVs. And
hypoxic BMSC-EVs could deliver the highly expressed miR-328-3p
to lung cancer cells, thus facilitating the proliferation of lung cancer cells,
and accelerating the growth of tumors in vivo. Further findings revealed
that the tumor-promoting effect was achieved by restraining the Hippo
pathway via targeting NF2 gene (Liu X. et al., 2021). What’s more, the
hypoxic BMSC-derived exosomal miR-652-3p has a comparable impact
on HCC (Li et al., 2023). Another miR-208a from BMSC-Exos also
favored osteosarcoma cell proliferation (Qin et al., 2020).

In conclusion, miRNAs in MSC-EVs under varying conditions
have diverse effects on tumor cell proliferation in different
tumors (Table 1).

3.2 Involvement in tumor invasion and
metastasis

Activation of cancer cell invasion and metastasis is one of the
main features of tumors (Hanahan and Weinberg, 2011). The
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formation of metastasis is the result of a complex multistep cascade
process. The basic steps involve the detachment of cancer cells from
the primary tumor, the occurrence of local invasion, and then the
cells entering the circulatory system (intravasation) and
extravasating to distant organs, eventually forming the secondary
tumor (Yang et al., 2020; Dymerska andMarusiak, 2024). Numerous
studies have shown that miRNAs in MSC-EVs have the capacity to
regulate tumor cell migration and invasion, ECM remodeling,
epithelial-mesenchymal transition (EMT), and distant metastasis
as well. It is worth mentioning that angiogenesis is also a factor
affecting tumor metastasis, which will be described
separately elsewhere.

3.2.1 Inhibition of tumor invasion and metastasis
MiRNAs in MSC-EVs can suppress the local invasion of

tumors. For example, FXYD3 is a sodium-potassium ATPase
regulator, which is a key mediator in multiple tumors. Let-7i
derived from BMSC-EVs could reduce FXYD3 expression by

inhibiting DCLK1 via KDM3A (Wang et al., 2017). Through this
mechanism, let-7i declined the proliferation, migration, and
invasion of lung cancer cells (Liu J. et al., 2021). BMSC-Exos
could carry and translocate miR-206 to osteosarcoma cells,
thereby attenuating cell migration and invasion by targeting
TRA2B (Zhang H. et al., 2020). Another study reported that
miR-375 was delivered to esophageal squamous cell carcinoma
cells via hUCMSC-Exos. MiR-375 subsequently decreased the
expression of ENAH and repressed the invasion and migration
of esophageal squamous cell carcinoma (ESCC) cells by
regulating the expression levels of EMT-related proteins
(E-cadherin, N-cadherin and Snail) (He et al., 2020).
Additionally, exosomes secreted by hBMSCs could also
transfer miR-205 into prostate cancer cells and suppress the
invasion and migration of tumor cells by restraining RHPN2
(Jiang et al., 2019). On a similar note, BMSC-Exos over-
expressing miR-16-5p curtailed CRC progression by down-
regulating ITGA2 (Xu Y. et al., 2019).

TABLE 1 Effects of miRNAs in MSC-EVs on tumor cell proliferation.

Tumors Source of
MSCs

microRNAs Targets Function References

Colorectal cancer Bone marrow miR-99b-5p, miR-16-5p,
miR-22-3p

FGFR3, ITGA2, RAP2B and
PI3K/AKT Pathway

↓Proliferation Xu Y. et al. (2019); Wang and
Lin (2021); Ning et al. (2023)

Umbilical cord miR-1827 SUCNR1 ↓Proliferation Chen J. et al. (2023)

Cervical cancer Bone marrow miR-331-3p, miR-144-3p DNMT3A, CEP55 ↓Proliferation
↑Apoptosis

Meng et al. (2021); Yang S. et al. (2022)

Breast cancer Bone marrow miR-106a-5p — ↑Proliferation
↑Cell viability

Xing et al. (2020)

Adipose tissue miR-381-3p Wnt signaling pathway ↓Proliferation
↑Apoptosis

Shojaei et al. (2021)

Dental pulp miR-34a — ↓Proliferation Vakhshiteh et al. (2021)

Esophageal squamous cell
carcinoma

Umbilical cord miR-655-3p, miR-375 LMO4/HDAC2, ENAH ↓Proliferation He et al. (2020);
Chen M. et al. (2023)

Bladder cancer Bone marrow miR-139-5p KIF3A/p21 ↓Proliferation
↑Apoptosis

Xiang et al. (2022)

Prostate cancer Bone marrow miR-205 RHPN2 ↓Proliferation
↑Apoptosis

Jiang et al. (2019)

Pancreatic ductal
adenocarcinoma

Umbilical cord miR-145-5p — ↓Proliferation
↑Apoptosis

Ding et al. (2019)

Ovarian cancer — miR-18a-5p NACC1/AKT/mTOR ↓Proliferation Wang X. et al. (2022)

Thyroid-like cancer Umbilical cord miR-30c-5p PELI1/PI3K/AKT ↓Proliferation Zheng et al. (2022)

Lung cancer Bone marrow let-7i KDM3A/DCLK1/FXYD3 ↓Proliferation Liu J. et al. (2021)

Nasopharyngeal carcinoma — miR-34c β-Catenin ↓Proliferation
↑Apoptosis

Wan et al. (2020)

Hepatocellular carcinoma Adipose tissue miR-125b — ↓Proliferation Baldari et al. (2019)

Osteosarcoma Bone marrow miR-206 TRA2B ↓Proliferation
↑Apoptosis

Zhang H. et al. (2020)

Glioma Bone marrow miR-375, miRNA-199a SLC31A1, AGAP2 ↓Proliferation Yu et al. (2019); Deng et al. (2020)

miR-503 KIF5A ↑Proliferation Wang X.-S. et al. (2022)

Wilms tumor Umbilical cord miR-15a-5p SEPT2 ↓Proliferation
↑Apoptosis

Huang et al. (2022)
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ECM is involved in the composition of the TME and plays a very
critical role in altering the phenotypic and functional characteristics
of tumor cells and stromal cells (Wu et al., 2019). MiRNAs in MSC-
EVs can mediate ECM remodeling, thereby favoring the local
invasion of tumor cells. For example, miR-331-3p repressed the
expression of DNMT3A in cervical cancer cells by binding to
DNMT3A mRNA. DNMT3A mediated the methylation of the
CpG island at the promoter of LIMS2, and thus diminishing the
expression of LIMS2 in cervical cancer cells. The LIMS2 gene
encoded a protein (PINCH-2) that mediated the cytoskeletal and
ECM interactions by forming a ternary complex (IPP complex) with
ILK and parvin (Xu et al., 2016). Through the above mechanism,
miR-331-3p provided by BMSC-EVs weakened the invasiveness of
cervical cancer cells (Yang S. et al., 2022).

EMT is a cellular process, in which a phenotypic transformation
of epithelial cells to mesenchymal cells occurs. EMT is activated
during tumor pathogenesis, resulting in cells more migratory and
often aggressive (Yang et al., 2020). Several studies have
demonstrated that the regulatory effects of tumor invasion and
metastasis by miRNAs in MSC-EVs are related to EMT. For
instance, BMSC-derived exosomal miR-16-5p restrained EMT
and hindered breast cancer progression by alleviating the
activation of the NF-κB signaling pathway and down-regulating
the expression of EPHA1 (Zhang Y. et al., 2022). MiR-34a-5p in
MSC-EVs suppressed CRC cell growth and EMT process by
influencing c-MYC binding to DNMT3a and epigenetically
regulating PTEN (Zhao et al., 2022). Similarly, MSC-Exos
repressed EMT, invasion, and migration of CRC cells through
miR-100 and miR-143 (Jahangiri et al., 2022). Moreover, AMSC-
Exos loaded with miR-381 reduced TNBC cell viability, migration,
and invasiveness by targeting Wnt signaling pathway and EMT-
related transcription factors (Shojaei et al., 2021). MiR-34c in MSC-
Exos exhibited the similar tumor-suppressive impact on
nasopharyngeal carcinoma via targeted inhibition of β-catenin
(Wan et al., 2020).

MiRNAs in MSC-EVs can also modulate the distant metastasis
of tumors. MiR-101-rich EVs from AMSCs could be taken up by
osteosarcoma cells, and systemic injection of these EVs effectively
inhibited tumor metastasis in vivo without obvious side effects
(Zhang K. et al., 2020). One study found that miR-655-3p in
hUCMSC-EVs suppressed the liver metastasis of ESCC by
inactivating HIF-1α via the LMO4/HDAC2 axis (Chen M. et al.,
2023). BMSC-EVs delivered miR-139-5p to bladder cancer cells,
leading to the down-regulation of KIF3A and activation of p21. This
process prevented the tumorigenesis and metastasis of bladder
cancer cells in vivo (Xiang et al., 2022). Likewise, miR-1827
carried by hUCMSC-Exos could hamper the liver metastasis of
CRC in vivo (Chen J. et al., 2023).

3.2.2 Facilitation of tumor invasion and metastasis
Although most of the current studies focus on the inhibitory

effects of miRNAs in MSC-EVs on tumor invasion and metastasis,
they can also play a pro-metastatic role. Zhang et al. examined the
expression profiles of exosomal miRNAs in BMSCs under hypoxic
condition. And it was demonstrated that compared with normoxic
BMSCs, the expression of some exosomal miRNAs in hypoxic
BMSCs, including miR-146a-5p, miR-574-3p, miR-328-3p, miR-
326-3p, miR-193a-3p, miR-5100, and miR-210-3p were up-

regulated, while the other exosomal miRNAs, such as miR-6404,
miR-6995-3p, and miR-5112 were down-regulated. Then they
selected miR-193a, miR-210-3p, and miR-5100 for further study.
The results revealed that the above miRNAs in hypoxic BMSC-Exos
could activate STAT3 signaling-induced EMT, which gave rise to the
enhanced invasive properties of lung cancer cells (Zhang et al.,
2019). Another subsequent study confirmed that miR-328-3p
induced by hypoxia could play a similar role through NF2 gene-
mediated inhibition of the Hippo pathway (Liu X. et al., 2021).
Besides, miR-652-3p in hypoxic BMSC-Exos contributed to HCC
metastasis by targeting TNRC6A (Li et al., 2023). BMSC-derived
exosomal miR-208a could boost the viability, migration, and
clonogenicity of osteosarcoma cells (Qin et al., 2020).

Overall, miRNAs in MSC-EVs possess the ability to manipulate
the local invasion and distant metastasis of tumors by interfering
with multiple steps of tumor metastasis (Table 2).

3.3 Participation in immunomodulation

Tumor progression is also influenced by immunomodulation.
MiRNAs in MSC-EVs positively or negatively regulate immune
function by affecting various pathways. It is reported that miR-
503 in MSC-EVs directly targeted KIF5A, which facilitated the
release of immunosuppressive factors through IL-7 signaling
pathway. Such mechanism enhanced tumor cell proliferation,
migration and invasion, as well as immune escape, and
attenuating T-cell proliferation in glioma cells (Wang X.-S.
et al., 2022). In addition, miR-222 in MSC-EVs could
modulate AKT1 transcription in CRC by interacting with
ATF3, thereby propelling immune escape from CRC cells (Li
et al., 2021).

As an important component of the TME, M2 polarization of
tumor-associated macrophages (TAMs) provides an
immunosuppressive niche for tumor progression (Yang et al.,
2015). MiR-744-5p in MSC-EVs could relieve MAPK signaling
activity through down-regulating TGFB1, which in turn reduced
macrophage M2 polarization and thus prevented glioma
progression (Liu L. et al., 2022). Similarly, exosomes from
hUCMSCs carrying miR-1827 attenuated M2 macrophage
polarization through SUCNR1 down-regulation, thereby
restraining CRC cell migration and invasion (Chen J. et al., 2023).

3.4 Influence on angiogenesis

Pathological angiogenesis is one of the hallmarks of cancer and
also an essential process in tumor growth and metastasis (Carmeliet
and Jain, 2000). MSC-Exos with high expression of miR-29a-3p
declined angiogenic mimicry formation in glioma cells, which was
an alternative microvascular cycle independent of vascular
endothelial growth factor (VEGF)-driven angiogenesis (Zhang
et al., 2021). MiR-100-5p and miR-1246 enriched in exosomes
derived from human dental pulp stem cells could target VEGFA
in endothelial cells. This process refrained endothelial cell
proliferation and migration, and induced cell apoptosis,
ultimately alleviating angiogenesis and exerting an anti-tumor
effect on oral squamous cell carcinoma (Liu P. et al., 2022).
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3.5 Impact on chemotherapy sensitivity

Chemotherapy is an important strategy for tumor treatment,
however, drug resistance of tumor cells restricts its application and
development (Lohitesh et al., 2018). The effects of miRNAs on drug
resistance in tumors have long been recognized and systematically
reviewed (Sarkar et al., 2010). In recent years, researchers have
attempted to intervene in this situation with miRNAs in MSC-EVs.
For e.g., Wu et al. found that miR-193a was less expressed in
cisplatin (DDP)-resistant tissues compared with DDP-sensitive

tissues, suggesting that miR-193a might be associated with DDP
resistance. Subsequently, NSCLC DDP-resistant cells and mice were
treated with BMSC-Exos, which were highly expressed miR-193a.
And it was demonstrated that BMSC-Exos restrained the
proliferation and augmented the apoptosis of NSCLC cells
in vitro, and dampened the growth of NSCLC graft tumors in
mice in vivo. Further, this inhibitory effect was achieved by
down-regulating LRRC1 (Wu et al., 2020). Another study
reported that miR-301b-3p expression was elevated in cisplatin-
and vincristine-resistant gastric cancer tissues, whereas MSC-EVs

TABLE 2 Effects of miRNAs in MSC-EVs on tumor invasion and metastasis.

Tumors Source of
MSCs

microRNAs Targets Function References

Colorectal cancer Bone marrow miR-99b-5p, miR-22-3p FGFR3, RAP2B and PI3K/
AKT Pathway

↓Invasion Wang and Lin (2021); Ning et al. (2023)

Umbilical cord miR-1827 SUCNR1 ↓Migration
↓Invasion
↓Metastasis

Chen J. et al. (2023)

Breast cancer Bone marrow miR-106a-5p — ↑Migration
↑Invasion

Xing et al. (2020)

miRNA-551b-3p TRIM31/Akt ↓Migration Yang Z. et al. (2022)

Umbilical cord miR-3182 mTOR and S6KB1 genes ↓Migration Khazaei-Poul et al. (2021)

Adipose tissue miR-16-5p — ↓Migration Li et al. (2020)

Bladder cancer Bone marrow miR-139-5p KIF3A/p21 ↓Migration
↓Invasion
↓Metastasis

Xiang et al. (2022)

Bladder miR-217 Hippo-YAP ↑Migration Huang et al. (2021)

Ovarian cancer — miR-18a-5p NACC1/AKT/mTOR ↓Migration
↓Invasion

Wang X. et al. (2022)

Cervical carcinoma Bone marrow miR-144-3p CEP55 ↓Migration
↓Invasion

Meng et al. (2021)

Thyroid-like cancer Umbilical cord miR-30c-5p PELI1/PI3K/AKT ↓Migration Zheng et al. (2022)

Mammary tumor Bone marrow let-7f — ↓Invasion Egea et al. (2021)

Pancreatic ductal
adenocarcinoma

Umbilical cord miR-145-5p — ↓Invasion Ding et al. (2019)

Lung cancer Bone marrow miR-21-5p — ↑Mobility
↑EMT

Ren et al. (2019)

Esophageal cancer Umbilical cord miR-655-3p LMO4/HDAC2 ↓Metastasis Chen M. et al. (2023)

Hepatocarcinoma cancer Bone marrow miR-652-3p TNRC6A ↑Metastasis Li et al. (2023)

Osteosarcoma Adipose tissue miR-101 BCL6 ↓Migration
↓Invasion
↓Metastasis

Zhang K. et al. (2020)

— miRNA-22 Twist1/CADM1 ↓Migration
↓Invasion

Ruan et al. (2024)

Glioma Bone marrow miR-375, miR-199a, miR-
133b

SLC31A1, AGAP2, EZH2 ↓Migration
↓Invasion

Xu H. et al. (2019); Yu et al. (2019); Deng
et al. (2020)

miR-29a-3p — ↓Migration Zhang et al. (2021)

miR-503 KIF5A ↑Migration
↑Invasion

Wang X.-S. et al. (2022)

Wilms tumor Umbilical cord miR-15a-5p SEPT2 ↓Migration
↓Invasion

Huang et al. (2022)
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could down-regulate TXNIP by delivering miR-301b-3p, which
induced drug resistance and aggravated malignant behaviors of
gastric cancer (GC) cells in vitro and vivo (Zhu et al., 2023).

Many studies have modified MSCs to explore the possibility of
delivering miRNAs via EVs to improve drug resistance in tumors. Lou
et al. demonstrated that transfection of miR-122 in AMSCs, a miRNA
that has been shown to be associated with HCC chemosensitivity (Bai
et al., 2009), could effectively package miR-122 into secreted exosomes.
These exosomes could mediate miR-122 communication between
AMSCs and HCC cells, thereby sensitizing cancer cells to
chemotherapeutic agents by altering the expression of miR-122 target
genes in HCC cells. Moreover, intratumoral injection of miR-122-rich
Exo remarkably increased the anti-tumor effect of sorafenib against
HCC in vivo (Lou et al., 2015). Temozolomide (TMZ) chemotherapy is
one of the main treatments for glioma (Corso et al., 2017), MSC-Exos
over-expressing miR-199a could augment the chemosensitivity of
glioma cells to TMZ and retard tumor growth in vivo (Yu et al.,
2019). Another comparable study found that AMSC-derived miR-
199a-modified exosomes efficiently mediated the delivery of miR-
199a to HCC cells, thus enhancing the chemosensitivity of HCC cells
to doxorubicin in vivo and in vitro through mTOR pathway inhibition
(Lou et al., 2020). Additionally, exosomal miR-146a derived from
hUCMSCs elevated the sensitivity of OC cells to docetaxel and PTX
via LAMC2-mediated PI3K/Akt axis (Qiu et al., 2020). MiR-21-5p
strengthened the breast cancer drug resistance in the MSC-secreted
exosome by up-regulating S100A6 expression (Luo et al., 2020). Another
study reported that hMSC-EV-derived miR-18a-5p declined OC cell
proliferation, migration and invasion, and ameliorated cell sensitivity to
DDP. Although miR-18a-5p hindered OC progression by targeting the
NACC1/AKT/mTOR axis, it was not clear whether this axis was
correlated with miR-18a-5p-mediated chemosensitivity (Wang X.
et al., 2022).

In conclusion, EV-miRNAs from MSCs promote or inhibit tumor
progression by regulating tumor cell proliferation and apoptosis,
invasion and metastasis, mediating immune modulation, and
influencing angiogenesis as well as chemosensitivity. In addition,
other mechanisms intervening in tumor progression have also been
reported, such as interference with mitochondrial metabolism (Lin
et al., 2023) and radioresistance (Wan et al., 2020). Notably, the above
mechanisms do not play a single role but affect multiple aspects of the
tumors. For example, EVs secreted by hypoxic pre-stimulated MSCs
delivered miR-21-5p into NSCLC cells, which not only accelerated
tumor growth in vivo but also facilitated intratumoral angiogenesis and
macrophage M2 polarization by decreasing the expression of PTEN,
PDCD4 and RECK genes in NSCLC cells (Ren et al., 2019). The various
pro- and anti-tumor effects and mechanism of miRNAs in MSC-EVs
are demonstrated in Figure 2 using the more studied glioma as
an example.

4 Function of miRNAs in EVs in the
crosstalk between MSCs and
tumor cells

During the process of tumor progression, tumor cells constantly
communicate with the components in TME, and EVs and miRNAs
play a special role (Bakhsh et al., 2022). This paper focuses on the
function of miRNAs in EVs in the crosstalk between MSCs and

tumor cells. Tumor cells recruit MSCs to the TME, alter their
functional characteristics, and further reprogramm them into
tumor-associated MSCs, which in turn have an impact on tumor
progression (Whiteside, 2018). It has been shown that when MSCs
are recruited to the sites of liver injury, they acquire a cancer-
promoting phenotype under the influence of the TME, which is
partly mediated by dysregulated expression of intracellular miRNAs
(Salah et al., 2022). In addition, the biological behaviors of MSCs in
TME can also be modulated by EV-miRNAs secreted by tumor cells.
Altogether, miRNAs, as mediators of the interplay between tumor
cells and MSCs, exert the key roles in tumor progression (Figure 3).

4.1 MSCs in TME affect tumor cells through
EV-miRNAs

MSCs in TME exhibit a different secretome profile from normal
tissue MSCs, which favors tumor progression. Research suggested
that the levels of certain miRNAs in EVs derived from gastric cancer
tissue MSCs were significantly discrepant compared with the
neighboring noncancerous tissue MSCs. Among them, miR-221,
which was markedly up-regulated in gastric cancer tissue MSCs,
could be delivered to gastric cancer cells via exosomes and accelerate
cell proliferation and migration (Wang et al., 2014). One study
reported that miR-26a-5p was highly expressed in small-sized EVs
from BMSCs of AML patients compared with healthy controls.
MiR-26a-5p could diminish GSK3β expression and activate Wnt/β-
catenin signaling pathway in AML cells, thus promoting AML
progression (Ji et al., 2021). In another study, specific miRNAs
were found to be enriched in exosomes derived from glioma-
associated MSCs (GA-MSCs). Among these miRNAs, miR-1587
could target the tumor suppressor NCOR1 in glioma Stem-like Cells
and enhance their proliferative and clone-forming capacity in vitro,
as well as the tumorigenicity in vivo (Figueroa et al., 2017).

Importantly, the alterations of miRNAs in MSC-EVs in TME and
the corresponding promoting effects may be the result of tumor
pathogenesis. It has been reported that breast cancer cells could
stimulate MSCs to release exosomes containing diverse miRNAs,
such as miR-222/223, which in turn induced quiescence and drug
resistance in a subset of cancer cells (Bliss et al., 2016). Another study
reached a consistent conclusion by establishing the co-culture of
hBMSCs with osteosarcoma cells (Qi et al., 2021). Some specific
mechanisms have been explored. Qiu et al. demonstrated that
CD44 in glioma exosomes could trigger a miR-21/SP1/
DNMT1 positive feedback loop in MSCs, which led to the secretion
ofmiR-21-rich exosomes byGA-MSCs. Then exosomalmiR-21 further
contributed to the progression of gliomas by immunosuppression.
Interestingly, the immunosuppressive mechanism induced by
exosomal miR-21 secreted by GA-MSCs was similar to, but more
intense than, the miR-21-mediated immunosuppressive signaling in
glioma exosomes. Thereby, this study reveals the critical role ofMSCs as
a signal multiplier in the glioma microenvironment to enhance
immunosuppressive signaling of glioma exosomes (Qiu et al., 2023).
Another study showed that tumor cells were able to induce stromal
cells, including MSCs, to produce miR-214-rich EVs upon the
activation of IL-6/STAT3 signaling, which favored the tumor
dissemination (Orso et al., 2023). To sum up, MSCs in TME can
facilitate tumor progression via releasing pro-oncogenic EV-miRNAs,
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FIGURE 2
Schematic representation of the pro- and anti-tumor effects of miRNAs in MSC-EVs in gliomas through multiple mechanisms. MSCs can secrete
miRNAs-containing EVs to regulate the biological behaviors of tumor cells, thus exerting different impacts on tumor. MiRNAs in MSC-EVs can promote or
inhibit tumorigenesis by influencing tumor cell proliferation and apoptosis, altering tumor cell invasion and metastasis, mediating immune regulation,
modulating angiogenesis, and modifying the expression of drug-resistant genes. In this figure, green represents tumor-promoting properties and
blue represents anti-tumor properties. The miRNAs enclosed in the rectangle are those that have important roles in the process of tumorigenesis
(Created with Biorender.com).

FIGURE 3
EV-miRNAsmediate the crosstalk betweenMSCs and tumor cells in the TME (A)MSCs release specific EV-miRNAs to boost tumor progression in the
TME. MSCs in TME secrete EVs enriched inmiR-21,miR-214, miR-222/223,miR-1587, miR-26a-5p, andmiR-221, which favor tumor progression through
the diverse mechanisms. Additionally, the release of miR-21 and miR-214 is also influenced by the tumor cells. CD44 in glioma exosomes triggers the
miR-21/SP1/DNMT1 positive feedback loop in MSCs, which causes GA-MSCs to secretemiR-21-rich exosomes, thus having an immunosuppressive
effect. Tumor cells induce MSCs to produce miR-214-rich EVs upon the activation of IL-6/STAT3 signaling, which can facilitate tumor proliferation. (B)
Tumor cells affect MSCs in the TME by releasing EV-miRNAs. MiR-92a-3p and miR-155 attenuate adipogenesis in ADSCs. MiR-320 inhibits osteogenesis
in BMSCs, whereas miR-940 promotes osteogenesis. Besides, miR-320a and miR-21 induce the transformation of MSCs into CAFs (Created with
Biorender.com).
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and the production of specific EV-miRNAs can also be influenced by
tumor cells (Figure 3A).

4.2 Tumor cells influence MSCs in TME via
EV-miRNAs

Tumor cells can also have an impact on MSCs in TME via EV-
miRNAs. A good example of this event is miR-92a-3p. MiR-92a-3p is
over-expressed in the exosomes of a variety of cancer cells including
chronic myelogenous leukemia (CML). In CML, it has been
demonstrated that miR-92a-3p could be transported to ADSCs
and slow down their adipogenesis by repressing the adipose
promoter C/EBPα, thus contributing to cancer-associated
malignant stroma (CAC) formation (Wan et al., 2019). It
ultimately led to a systemic syndrome characterized by weight loss,
skeletal muscle atrophy and adipose tissue atrophy (Petruzzelli and
Wagner, 2016). Similarly, GC exosomal miR-155 was shown to target
C/EPBβ in AMSCs, which in turn suppressed adipogenesis and
enhanced brown adipose differentiation, thereby correlating with
CAC formation (Liu Y. et al., 2022). In addition, CML cells could
selectively sort some tumor suppressor miRNAs, such as miR-320,
into exosomes via HNRNPA1, an RNA-binding protein. These
exosomes would be endocytosed by neighboring BMSCs and
subsequently attenuate their osteogenesis, thereby remodeling the
bone marrow niche that favored CML progression. Intriguingly, this
selective sorting of miRNAs also directly accelerated cell growth in
CML (Gao et al., 2019). Conversely, the exosome miR-940 from
prostate cancer cells facilitated hMSC osteogenesis in vitro and
induced the extensive osteogenic lesions in the bone metastatic
microenvironment in vivo (Hashimoto et al., 2018). Furthermore,
cancer-associated MSCs in TME could differentiate into CAFs, which
boosted tumor progression (Borriello et al., 2017). MiRNAs in EVs
secreted by tumor cells can induce this transformation process. For
example, miR-320a in small EVs secreted by tumor cells targeted
ITGA7 to activate TGF-β pathway, which drove CAF-like activation
of ADSCs and thus facilitated omental metastasis of OC (Gong et al.,
2024). Likewise, exosomes from head and neck squamous cell
carcinoma cells could trigger CAFs-like features in hBMSCs, which
was mediated by miR-21 (Wang et al., 2023). The above studies
indicate that tumor cells can produce EV-miRNAs to act on MSCs,
causing them to develop in a direction conducive to tumor
progression (Figure 3B).

Taken together, tumor cells and MSCs create a niche supporting
tumor progression or regression via the complex interaction of EV-
miRNAs in TME.

5 Applications of miRNAs in MSC-EVs in
tumor pharmacotherapy

5.1 Engineering modifications to EVs for
drug delivery

MSC-EVs have the unique advantages compared with EVs derived
from bodily fluids, other cellular sources, and other nanocarriers in
terms of drug delivery (Weng et al., 2021). There are twomain strategies
for introducing miRNAs into MSC-EVs. One is in vivo drug loading.

The genes to be studied are transferred into MSCs by gene transfection
methods, and then EVs loaded with the target miRNAs are extracted
and purified. Lentiviral transduction is one of themore commonly used
strategies. The other is in vitro drug loading. MiRNAs were loaded into
purified EVs by using liposome fusion (Li et al., 2020) and other
techniques (Lai et al., 2013).

Targeting ability is an issue often considered when utilizing EVs as
drug carriers. The cellular origins of EVs notably influences their
preferential homing sites (Herrmann et al., 2021). To ameliorate the
targeting specificity of EVs, surface engineering is a useful tool (Liang
et al., 2021). In a recent study, natural free streptavidin (SA) was
genetically engineered on the cell surface of BMSCs to obtain SA-
expressing BMSC-EVs. Based on the high affinity for biotinylated
molecules, SA can be paired with a variety of biotinylated molecules
and thus be endowed with various targeting properties. Subsequently,
researchers modified SA-EVs with different biotinylations and
demonstrated the feasibility of SA-EVs for targeted drug delivery in
a variety of situations (Meng et al., 2023). Another study constructed an
exosome over-expressing the fusion proteins Lamp2b-IL3 and HCELL,
and verified that the engineered exosomes could enhance bone marrow
homing and selective targeting of leukemia stem cells. After loading
miR-34c-5p into the engineered exosomes, the ability of target tumor
suppression was further confirmed in an AML mouse model (Wen
et al., 2023).

EVs are often used as an ideal natural endogenous nanodelivery
system for drug delivery due to their unique origin, structure and
physiological functions (Banerjee and Rajeswari, 2023).
Furthermore, EVs can encapsulate synthesized nanoparticles in
membranes to obtain biomimetic nanoparticles, which have both
the advantages of synthesized nanoparticles and the properties of
EVs source cells (Liu et al., 2023). A study demonstrated that
mesoporous silica nanoparticles were encapsulated into an
exosome to efficiently deliver drugs to cancer cells (Sarkar et al.,
2024). Xu et al. constructed gold-coated magnetic nanoparticles, and
then applied these nanoparticles to load EVs, augmenting EVs-
based drug delivery (Xu et al., 2023).

5.2 Clinical applications of EVs for
cancer therapy

As previously mentioned, the utility of MSC-EVs loaded with anti-
tumor miRNAs or inhibitors of pro-cancer miRNAs to repress tumor
progression has a well-established theoretical basis and has yielded
many results in preclinical studies. The applications of MSC-EVs in
cancer therapymainly involve the drug delivery as a vehicle, and a direct
therapeutic modality through their miRNA cargoes (Abdulmalek et al.,
2024). Currently, the main routes of EVs applications include
intravenous, intratumoral and intraperitoneal injection, as well as
oral administration (Figure 4). Multiple studies have indicated that
exosomes modified with targeted ligands can be effectively used to
deliver chemotherapeutic agents to tumors via intravenous injection
(Ding et al., 2019). So far, MSC-EVs have already under the clinical
assessment for future applications in cancer treatment. An ongoing
phase I clinical study has been exploring the therapeutic effectiveness of
MSC-Exos with KrasG12D siRNA in the patients with metastatic
pancreas cancer carrying KrasG12D mutation (NCT03608631).
Another study validates the safety and efficacy of UCMSC-Exos in
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FIGURE 4
Administration approaches of miRNAs in MSC-EVs in tumor pharmacotherapy. MSCs can be isolated from multiple human tissues such as bone
marrow, umbilical cord blood, skin, adipose tissue, endometrium, dental pulp, and so on. EV modifications include cargo engineering and surface
engineering. Cargo engineering enables miRNAs to be transferred into MSC-EVs, including in vivo loading and in vitro loading. Surface engineering can
enhance the target specificity of EVs, including genetic engineering, chemical modification, and hybridized membrane. Then EVs can be
administrated intravenously, intratumorally and intraperitoneally, as well as orally, further exerting the anti-tumor effects (Created with Biorender.com).
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promoting recovery of chemotherapy-induced myelosuppression in
patients with AML (NCT06245746).

6 Conclusion and prospects

There is no doubt that miRNAs carried by MSC-EVs are
involved in tumor pathogenesis in various ways and play a vital
role in tumor progression. A large number of related studies
have demonstrated their potential significance for clinical
applications. This article reviewed the multiple roles and
mechanism, by which MSC-derived EV-miRNAs influence
tumor progression, the function of EV-miRNAs in the
interaction between tumor cells and MSCs in TME, and how
to modify MSC-derived EV-miRNAs to facilitate their clinical
applications (Graphical Abstract).

Despite the promising clinical applications of miRNAs in MSC-
EVs, there are stillmany urgent problems to be solved in tumor research
and applications. First, the types of MSCs used in the studies are not
uniform. Previous studies have shown that the immune properties of
different species or subpopulations of MSCs (Shi et al., 2018), the ability
to migrate in vivo and transplant to tumors (Belmar-Lopez et al., 2013),
the effects on tumors (Li et al., 2020), and other characteristics are not
consistent. Therefore, the types of EV-miRNAs derived from different
species of MSCs and their impacts on tumors may also be diverse.
Correspondingly, the inhibitory effects of the same miRNAs derived
from MSC-EVs on different strains of tumor cells are also variable. It
has been reported that the miR-124a delivered by MSC-Exos, an anti-
glioma miRNA, exhibited varying inhibitory effects on the growth of
different glioma stem cell strains. Other anti-glioma miRNAs also
displayed selective inhibitory influences on glioma stem cell in
different strains (Lang et al., 2018). In addition, many other
bioactive substances besides miRNAs are present in EVs, which may
affect the regulatory roles of miRNAs or have a direct impact on tumor
progression. Although there is no very conclusive evidence, it has been
indicated that other factors rather than miRNAs in MSC-EVs are also
involved in the pro-cancer and immunomodulation of EVs (Ren et al.,
2019). Ultimately, since each miRNA can potentially regulate hundreds
ofmRNAs (Kong et al., 2012), off-target issues should also be taken into
account. As a result, future studies on the effects of miRNAs in MSC-
EVs on tumor progression should be more refined to elucidate the

influence of the above factors, such as the types of MSCs and different
strains of tumor cells. More attention needs to be paid to the possible
impact of the complex regulatory network among MSC-EVs, miRNAs
and tumor cells on the basic research and clinical applications.
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Glossary

AGAP2 Ankyrin repeat and PH domain 2

AML Acute myeloid leukemia

AMSC Adipose mesenchymal stem cell

BCL6 B cell lymphoma 6

BMSCs Bone marrow mesenchymal stem cells

CAC Cancer-associated malignant stroma

CAFs Cancer-associated fibroblasts

CAE Colorectal cancer

CCNE1 Cell cycle protein E1

CCNE2 Cell cycle protein E2

CEP55 Centrosomal protein, 55 Kd

CML Chronic myelogenous leukemia

CRC Colorectal cancer

DCLK1 Doublecortin-like kinase 1

DNMT1 DNA methyltransferase 1

DNMT3A DNA methyltransferase 3 alpha

DDP Cisplatin

ECM Extracellular matrix

EMT Epithelial-mesenchymal transition

ENAH Enabled homolog

EPHA1 Erythropoietin-producing hepatocellular A1

ESCC Esophageal squamous cell carcinoma

EVs Extracellular vesicles

EV-miRNAs MiRNAs in EVs

E2F2 E2F family of transcription factor 2

EZH2 Enhancer of Zeste 2

FGFR3 Fibroblast growth factor receptor 3

FOXA2 Forkhead box A2

FXYD3 FXYD domain-containing ion transport regulator 3

GA-MSCs Glioma-associated mesenchymal stem cells

GC Gastric cancer

HCC Hepatocellular carcinoma

HDAC2 Histone deacetylase 2

HNRNPA1 Heterogeneous nuclear ribonucleoprotein A1

IGF1R Insulin-like growth factor 1 receptor

ILK Integrin-linked kinase

ITGA2 Integrin α2

ITGA7 Integrin subunit alpha 7

JAG1 Jagged 1

KDM3A Lysine demethylase 3A

KIF3A Kinesin family member 3a

KIF5A Kinesin family member 5A

LAMP2B-IL3 Lysosome-associated membrane protein 2-interleukin 3

LAMC2 Laminin γ2

LMO4 LIM-only protein 4

LRRC1 Leucine-rich repeat-containing protein 1

LIMS2 LIM zinc finger domain containing 2

MELK Maternal embryonic leucine zipper kinase

miRNAs MicroRNAs

MVs Microvesicles

MSCs Mesenchymal stem/stromal cells

MSC-EVs MSC-derived EVs

MSC-Exos MSC-derived exosomes

NCOR1 Nuclear receptor co-repressor

NACC1 Nucleus accumbens-associated protein 1

NF-κB Nuclear factor-κB

NF2 Neurofibromin 2

NFATc1 Nuclear factor of activated T cells c1

NSCLC Non-small cell lung cancer

OSBPL11 Oxysterol binding protein like 11

OC Ovarian cancer

PD-L1 Programmed cell death ligand-1

PELI1 Pellino-1

PI3K Phosphatidylinositol 3-kinase

PTEN Phosphatase and tensin homolog

PTX Paclitaxel

RAP2B Rhoptry associated protein (RAP) 2B

RHPN2 Rhophilin Rho GTPase binding protein 2

SEPT2 Septin 2

SLC31A1 Solute carrier family 31 member 1

SUCNR1 Succinate receptor 1

STAT3 Signal transducers and activators of transcription 3

SA Streptavidin

TAMs Tumor-associated macrophages

TMZ Temozolomide

TNBC Triple-negative breast cancer

TRA2B Transformer 2β

TRIM31 Tripartite motif-containing protein 31

TME Tumor microenvironment

TXNIP Thioredoxin interacting protein

VEGF Vascular endothelial growth factor
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