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Background: Osteoarthritis (OA) can lead to chronic joint pain, and currently
there are no methods available for complete cure. Utilizing the Gene Expression
Omnibus (GEO) database for bioinformatics analysis combined with Mendelian
randomization (MR) has been widely employed for drug repurposing and
discovery of novel therapeutic targets. Therefore, our research focus is to
identify new diagnostic markers and improved drug target sites.

Methods: Gene expression data from different tissues of synovial membrane,
cartilage and subchondral bone were collected through GEO data to screen out
differential genes. Two-sampleMRAnalysiswas used to estimate the causal effect of
expression quantitative trait loci (eQTL) on OA. Through the intersection of the two,
core genes were obtained, which were further screened by bioinformatics analysis
for in vitro and in vivo molecular experimental verification. Finally, drug prediction
and molecular docking further verified the medicinal value of drug targets.

Results: In the joint analysis utilizing the GEO database and MR approach, five
genes exhibited significance across both analytical methods. These genes were
subjected to bioinformatics analysis, revealing their close association with
immunological functions. Further refinement identified two core genes
(ARL4C and GAPDH), whose expression levels were found to decrease in OA
pathology and exhibited a protective effect in the MR analysis, thus
demonstrating consistent trends. Support from in vitro and in vivo molecular
experiments was also obtained, while molecular docking revealed favorable
interactions between the drugs and proteins, in line with existing structural data.

Conclusion: This study identified potential diagnostic biomarkers and drug
targets for OA through the utilization of the GEO database and MR analysis.
The findings suggest that the ARL4C and GAPDH genes may serve as therapeutic
targets, offering promise for personalized treatment of OA.
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1 Introduction

Osteoarthritis (OA) is an age-related disease characterized by
degeneration of articular cartilage, synovial inflammation, and
subchondral bone changes leading to chronic joint pain (Grandi and
Bhutani, 2020). According to the World Health Organization,
350 million people worldwide suffer from osteoarthritis. In
particular, more than 50% of people over the age of 65 are affected
by osteoarthritis (Chen et al., 2022a). Currently, the exact etiology of
osteoarthritis is not fully understood andmay be associated with factors
such as aging, obesity, inflammation, trauma, metabolic abnormalities,
and genetics (Englund, 2023). As a degenerative disease, there is no
definitive treatment for osteoarthritis, and current treatment options
mainly focus on pain relief, and the efficacy is not satisfactory (Cho
et al., 2021). Therefore, the search for targets that can diagnose and treat
OA remains the focus of current research. Our study hopes to further
the treatment of OAby identifying new possible diagnosticmarkers and
improving relevant drug targets.

However, the diagnosis and treatment of OA remain challenging
(DeJulius et al., 2024). Previous studies have indicated that the
pathogenesis of osteoarthritis primarily revolves around three
aspects: synovial inflammation, cartilage degeneration, and
subchondral bone sclerosis, with each scholar presenting differing
viewpoints (Rai et al., 2024). While the degenerative changes in joint
cartilage constitute the main pathogenic mechanism of OA,
components within the joint such as the synovium and subchondral
bone exhibit unique clinical manifestations. Stimulation of the joint
synovium can lead to inflammation and the release of various
inflammatory factors, thereby causing joint effusion (Scanzello and
Goldring, 2012). Subchondral bone, located deep within the cartilage,
manifests as cystic changes or osteophyte formation in different patients
(Goldring and Goldring, 2010). Consequently, these three components
are closely interlinked in the progression of the disease, and research
focusing solely on one aspect is insufficient. Thus, our research
emphasis and challenge lie in comprehensively studying the
diagnosis and treatment of OA from these three perspectives.

Fortunately, with the rapid advancement of bioinformatics, we can
now access gene expression data from various biological samples and
experimental conditions through the Gene Expression Omnibus
(GEO), a public database. This invaluable resource enables
researchers to investigate gene functions, disease mechanisms, and
drug treatment effects (Clough et al., 2024). We have gathered data
from different tissues, including synovium, cartilage, and subchondral
bone, for integration and analysis. Utilizing various bioinformatics
methods, we can efficiently determine the functions and roles of
differentially expressed genes, thereby providing valuable insights for
our subsequent research endeavors.

Mendelian Randomization (MR) is a method used to assess
causal relationships between modifiable exposures or risk factors
and clinically relevant outcomes (Su et al., 2023). Because genetic
variations are randomly allocated at conception, they serve as
unique instruments for assessing the randomness of allocation,
thus evaluating exposure-outcome causal relationships free from
confounding (Ference, 2022). Studies of expression quantitative
trait loci (eQTL) in disease-relevant cell/tissue types provide
valuable insights into this issue by characterizing the
associations between genetic variations and nearby gene
expression. The Genotype-Tissue Expression (GTEx) project

offers extensive eQTL data for many tissues (GTEx
Consortium, Laboratory, Data Analysis & Coordinating Center
(LDACC)—Analysis Working Group, Statistical Methods
groups—Analysis Working Group, Enhancing GTEx (eGTEx)
groups, NIH Common Fund, NIH/NCI, 2017). Genome-wide
association studies (GWAS) have proven highly successful in
identifying genetic variations associated with skeletal parameters
(Estrada et al., 2012). Recently, research has utilized a unique
osteoclast-specific eQTL dataset to identify numerous genetic
regulatory effects associated with osteoporosis (Mullin et al.,
2020). In the prediction of drug targets, MR analysis is also
robust. A study employed MR analysis to determine the impact of
lipid traits on non-alcoholic fatty liver disease (NAFLD) and
explore the potential effects of lipid-lowering drug targets on
NAFLD and liver functional traits (Li et al., 2023a). Conducting
preliminary validation studies of differentially expressed genes
obtained through the GEO database via MR analysis is an
effective approach to identify candidate genes for further
experimental investigation.

In this study, we identified novel therapeutic targets for OA by
integrating and analyzing differential gene data in different tissues,
utilizing GEO databases and Mendelian randomization methods.
Bioinformatics methods were used to analyze differential gene
functions, pathways and immune cell interactions. The findings
were validated experimentally and the pharmacological activities of
two potential OA drug targets were validated by drug prediction and
molecular docking.

2 Materials and methods

The overview design of our work was shown in Figure 1.

2.1 Data source

The GEO database (https://www.ncbi.nlm.nih.gov/GEO/) is a
globally recognized public repository providing open access to high-
throughput datasets. Through comprehensive searching and
subsequent downloading, we acquired gene expression datasets
related to OA disease, namely, GSE51588, GSE82107, GSE98918,
and GSE10575 (Table 1). It is noteworthy that GSE51588,
GSE82107, and GSE98918 served as training set datasets, while
GSE10575 was employed as the validation set dataset for this study.
The expression matrices of the training set datasets were integrated
and batch effects were alleviated using the SVA package in R version
4.31 software.

The GWAS database (https://gwas.mrcieu.ac.uk/) is a repository
providing data on global human GWAS. This database aggregates a
wealth of GWAS data from various research teams, including
genetic association information on diseases, physical traits, and
other complex characteristics. From this database, we selected
OA-related outcome data (ebi-a-GCST90038686), including
484,598 samples from Europe, of which 39,515 were cases,
including data on 9,587,836 SNPS. We further chose data from
the eQTLGen consortium (https://www.eqtlgen.org/) (Vosa et al.,
2021) for exposure, specifically, eQTL data from 31,684 whole blood
samples, for the Two-sample MR analysis.
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2.2 Differentially expressed genes
identification

Utilizing Perl and platform annotation files, probe names were
converted to gene names. Background correction and normalization
for each dataset were performed using the R package limma, and the

sa package was employed to integrate datasets from three different
anatomical sites from the same platform to mitigate batch effects
(Leek et al., 2021). Differences before and after batch effect removal
in samples were visualized using two-dimensional PCA clustering
plots. The merged dataset was utilized as the training set for
subsequent analysis.

FIGURE 1
Overview of this study.
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In the R programming language, the limma package was utilized
to analyze gene expression differences between normal and OA
samples, based on Bayesian computation of t-values, f-values, and
log odds ratios. Subsequently, differentially expressed genes (DEGs)
meeting specific criteria (|logFC| ≥ 0.585 and adjusted
p-value <0.05) between the two groups were identified.
Visualization and interpretation of the obtained results were
performed using the ggplot2 and pheatmap packages to generate
volcano plots and heatmaps, respectively, providing intuitive
representation of the findings.

2.3 Mendelian randomization

All data in this study were sourced from open-access databases.
Utilizing a two-sampleMR approach, genes were investigated for causal
relationships with OA, with single nucleotide polymorphisms (SNPs)
defined as instrumental variables (IVs). Core gene data were obtained
from publicly available GWAS datasets. eQTL data were selected as the
exposure factors, and instrumental variable SNPs were analyzed for
correlation with OA disease using p1 = 5e-8, p2 = 5e-8, kb = 10000, and
r2 = 0.001 to remove linkage disequilibrium SNPs and weak
instrumental variables (F-test >10). Mendelian randomization
analyses were conducted with OA disease. MR analysis was
performed using the “TwoSampleMR” package, employing inverse
variance weighting (IVW) to assess the relationship between gene
levels and OA risk. The results were primarily analyzed using IVW,
with significance set at p < 0.05, and genes showing inconsistent odds
ratios across five statistical methods were excluded. Sensitivity analyses,
including heterogeneity testing, horizontal pleiotropy testing, Leave
One Out (LOO), and PRESSO, were conducted to ensure the
robustness of the findings. Particular attention was given to
horizontal pleiotropy testing, where results with p < 0.05 were removed.

2.4 Bioinformatics analysis

2.4.1 GO and KEGG analysis
To further elucidate the biological mechanisms underlying the

differentially expressed genes (DEGs), Gene Ontology (GO) analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
annotation were conducted using the “ClusterProfiler” R package
(Yu et al., 2012).

2.4.2 Immune cell analysis
To investigate the role of immune cells in OA pathology, the

correlation and infiltration levels of 22 immune cell types in the OA

disease group were assessed using CIBERSORT analysis (Chen
et al., 2018).

2.4.3 Gene network analysis
Gene correlation network maps are an important tool for

showing gene interactions and functional associations in scientific
research. First, five differential gene expression data were collected
and pre-processed, followed by bioinformatics analysis to obtain key
features. Next, network maps were constructed using known gene
interaction data and visualized using the R package ggraph. Finally,
the biological significance of the network was explained through
functional annotation and pathway analysis, and the results were
presented in the research report.

2.4.4 GSEA analysis
Gene Set Enrichment Analysis (GSEA) is a bioinformatics tool

used to interpret the significance of gene expression data. By
considering patterns of variation across entire gene sets rather
than individual genes, it evaluates the relevance of biological
processes or pathways. GSEA is characterized by its high
sensitivity and reliability and has become an indispensable
analytical tool in biological research. In this study, two key
differential genes were analyzed using the GSEA method,
focusing on the biological functions and related pathways of
these two genes in the low expression group of OA.

2.5 In Vivo and in vitro validation of
differential expression gene

2.5.1 Real-time quantitative polymerase chain
reaction (RT-qPCR)

Human chondrocytes (C28/i2, RiSai, China) were purchased and
cultured for 3-5 passages. Subsequently, the chondrocytes were seeded
into 6-well plates at a density of 5 × 10̂5 cells per well and divided into
control and inflammation model groups. The control group was treated
with high-glucose culture medium without the addition of fetal bovine
serum, while the model group was supplemented with 10 μg/m of IL-1α.
After 24 h, RNA was extracted from the chondrocytes using the
SPARKeasy Cell RNA Rapid Extraction Kit (CisGenome, China).
Genomic DNA was removed using the SPARKscript II RT Plus Kit
(with gDNA Eraser) (CisGenome, China), followed by reverse
transcription of the purified RNA into cDNA. Subsequently, the
relative levels of target genes were determined using the SYBR Green
method with an ABI 7500 fluorescent quantitative PCR instrument
(ABI, United States). The 2̂−ΔΔCtmethodwas employed to compare the
relative expression levels of the target genes to that of β-actin.

TABLE 1 The data in the article comes from the GEO database.

GEO(ID) Platform Tissue (Homo sapiens) Samples (normal/OA) Organism Attribute

GSE51588 GPL13497 subchondral bone (10/40) Homo sapiens Training

GSE82107 GPL570 synovium (7/10) Homo sapiens Training

GSE98918 GPL20844 cartilage (12/12) Homo sapiens Training

GSE10575 GPL570 cartilage (6/6) Homo sapiens Validation

GEO, gene expression omnibus; ID, identifier; OA, osteoarthritis.
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2.5.2 Western blot analysis of protein expression
Proteins were extracted from RAPI lysed cells and quantified

using the BCA assay kit (Cayman, China). Twenty micrograms of
protein were subjected to constant voltage and constant current
electrophoresis, followed by transfer of the target proteins onto
PVDF membranes (Millipore, United States). The membranes were
blocked with BSA (Sigma, United States) for 1 h, then incubated
overnight at 4°C with diluted primary antibodies (rabbit anti-mouse
ARL4C, GAPDH, ACTIN, at concentrations of 1:1000, 1:1000, 1:
1000, respectively, Proteintech, China). After washing the
membranes with PBST on a shaker for 20 min, they were
incubated with secondary antibodies (goat anti-rabbit IgG,
diluted 1:1000) at room temperature for 1 h, with ACTIN used
as an internal control. Protein bands were visualized using ECL (Bio-
Rad, Clarity Western ECL) and exposed, followed by densitometry
analysis using ImageJ software.

2.5.3 Rat arthritis model
Twenty male SD rats, specific pathogen-free (SPF) grade,

weighing (200 ± 20) g, were obtained from Shanghai SLAC
Laboratory Animal Co., Ltd., with production license number:
SCKK (Shanghai) 2007-0005, and experiments were conducted at
the Animal Experiment Center of Zhejiang Chinese Medical
University. The experimental protocol was approved by the
Medical Animal Experiment Ethics Committee (Approval No:
IACUC-20230320-17).

The laboratory conditions for the rat experiments were as
follows: temperature maintained at 22°C; humidity at 50%; a 12-h
light-dark cycle; and ad libitum access to water and food.
Following our established protocol, anterior cruciate ligament
transection (ACLT) surgery was performed to induce OA in
rats. Briefly, under anesthesia induced by intraperitoneal
injection of 3% pentobarbital sodium (0.15 mL/100 g), a
longitudinal skin incision was made on the medial side of the
right knee. Using a surgical microscope, the ACL was transected
through the medial approach after opening the knee joint via the
patellar ligament. The rodents were randomly allocated into
different groups, with 10 rats per group: sham surgery group
(skin incision without ACL transection) and ACLT group. After
8 weeks, when the model was successfully established, the rats were
euthanized, and their knee joints were harvested. The joints were
fixed in 4% paraformaldehyde (PFA) for 5 days, followed by
decalcification in 10% EDTA for 70 days. Subsequently, the
joints were embedded in paraffin, and 5-μm consecutive
sections were cut in the sagittal plane at the central medial
compartment of the joint, yielding tissue slices for histological
analysis (Chen et al., 2020).

2.5.4 Immunohistochemical analysis
Following dewaxing and rehydration of the tissue sections, they

were immersed in 1 × PBS for 3 min. Antigen retrieval was
performed using 0.01 M sodium citrate buffer (pH 6.0) in a heat-
induced antigen retrieval system for 4 h. Subsequently, rapid cooling
was achieved by ice-cold water, followed by three washes with
1×PBS for 3 min each. The sections were then incubated in 0.3%
Triton X-100 to enhance cell membrane permeability, followed by
another wash with 1×PBS. After delineating the tissue boundaries,
sections were treated with hydrogen peroxide blocking solution and

incubated at room temperature for 10 min, followed by sample
rinsing. Next, primary antibodies (ARL4C andGAPDH, diluted at 1:
200, from Proteintech, China) were added and incubated overnight.
On the following day, after washing the samples, secondary
antibodies were applied and incubated at room temperature for
20min. Subsequently, DAB chromogen staining was performed, and
the reaction was stopped by immediate washing with water
compared to the control group. Nuclear staining and
counterstaining were then carried out, followed by slide sealing
and image acquisition. At least three independent experiments were
conducted for each sample, and image data was generated each time
to ensure the reproducibility and robustness of the results. The
positive cell rate analysis consisted of randomly selecting at least five
high-power fields from each experiment and blind counting of
positive stained cells by two independent observers to calculate
the average positive cell rate. At least 1,000 cells were counted in
each field of view to ensure statistical accuracy. Positive cell rates
were calculated using Image Pro Plus software (number of positive
cells/total cells × 100%).

2.6 Candidate drug prediction

Evaluating the interaction between proteins and drugs is crucial
for determining whether target genes can serve as viable drug targets.
In this study, we utilized the database from the United States Food
and Drug Administration (FDA) to achieve this objective. This
database contains approximately 1729 known compounds,
including structural, physicochemical properties, and toxicological
data. We aimed to identify potential candidate compounds through
this database.

2.7 Molecular docking and prediction of
drug targets

Molecular docking is a crucial method used to assess the binding
affinity and interaction patterns between candidate drugs and target
sites. In this study, protein structure files were initially downloaded
from the PDB database, and preprocessing was conducted using the
open-source software Auto dock Tools. Preprocessing steps
included the addition of hydrogen ions and missing loops,
removal of coordinating metal salts and water molecules, and
calculation of amino acid charge distribution. Subsequently,
molecular force fields and conformational optimization were
applied to the proteins. Structure files of the FDA compound
library were obtained from the PubChem website and
preprocessed using Open Babel software, which involved adding
hydrogen atoms, removing coordinating metal salts, and calculating
molecular charge distribution. Finally, small molecules were
subjected to molecular force fields and energy minimization to
obtain three-dimensional conformations.

Autodock Tools were utilized to generate docking configuration
files for the proteins. Initially, Blind Docking was employed to
identify the most energetically favorable binding sites for each
protein. The center coordinates, as well as the length, width, and
height information of these sites, were stored in a configuration file.
Two rounds of molecular docking were conducted. In the first
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round, all 1729 small molecules from the FDA compound library
were docked to the specified binding sites in each configuration file
(exhaustiveness = 10). Ten docking conformations were generated
for each compound, and each conformation was scored based on
binding free energy. Compounds were then ranked according to
their binding affinities, and the 20 compounds with the lowest
binding energies for each target protein were selected for further
analysis. Additionally, the three compounds with the lowest binding
energies for each target protein were subjected to the second round
of molecular docking. In the second round, small molecules were
docked to the binding sites with higher precision (exhaustiveness =
25), generating ten docking conformations for each compound.
Interactions between each molecule and its respective target protein
were analyzed and visualized. Through the analysis of molecular
docking simulation results, drug candidates with high binding
affinity and good interaction patterns can be identified, thus
providing valuable insights for further drug design and
experimental validation.

3 Results

3.1 GEO data processing

We integrated three datasets, namely, GSE51588 (subchondral
bone), GSE82107 (synovium), and GSE98918 (cartilage),
comprising a total of 31 normal synovial samples and 62 OA
samples. The gene expression levels of each sample before and
after batch effect removal were analyzed, along with principal
component analysis (Figures 2A, B).

3.2 Identification of differentially
expressed genes

Using the R package limma and applying the criteria (|logFC| >
0.585 and adjusted p-value <0.05), we identified 305 differentially
expressed genes (DEGs) associated with OA, among which

FIGURE 2
The gene differential expression analysis of GSE51588 (subchondral bone), GSE82107 (synovium), and GSE98918 (cartilage) data sets. (A) The two-
dimensional PCA cluster plot shows the differences before the batch effect is eliminated in the sample. (B) The two-dimensional PCA cluster plot shows
the difference after the batch effect is eliminated in the sample. (C) The DEG volcano map shows upregulated genes in redand downregulated genes in
green. (D) DEG expression heat map. (E) The VN map shows that five of these genes are present in both sets.
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187 genes were upregulated in arthritis, and 118 genes were
downregulated in OA. The detailed list of differentially expressed
OA-related genes is provided in Supplementary Table S1. Heatmaps
and volcano plots were employed to visualize these differences
(Figures 2C, D).

3.3 Genome-wide MR analysis

We selected 31,684 samples from the eQTLGen consortium in
whole blood as exposure and outcome data for osteoarthritis (OA)
(ID: ebi-a-GCST90038686) for two-sample MR analysis. Results
were primarily based on the Inverse Variance Weighting (IVW)
method, with p < 0.05 as the threshold for statistical significance.
Additionally, genes with inconsistent odds ratios across five
different statistical methods and those showing horizontal
pleiotropy (p < 0.05) were excluded. In total, 276 genes were
identified to have a causal relationship with OA
(Supplementary Table S2).

3.4 Intersection gene acquisition

We intersected the 305 DEGs obtained from GEO database
analysis with the 276 genes obtained from MR analysis. The
resulting intersection was visualized using a Venn diagram,
revealing five genes present in both sets: SLC22A4, CDKN2D,
CMIP, GAPDH, and ARL4C (Figure 2E). Sensitivity analysis
conducted on these five genes yielded results consistent with the
test requirements (Table 2).

3.5 Functional enrichment analysis of
intersection genes

We conducted preliminary analysis on the five genes obtained
using bioinformatics methods. The circular plot of chromosomes
illustrates the locations of these five genes, namely, ARL4C,
SLC22A4, GAPDH, CMIP, and CDKN2D, which are situated on
chromosomes 2, 5, 12, 16, and 19, respectively (Figure 3A). From our
analysis, it is evident that these genes are involved in various
biological processes, including protein nitrosylation, amino acid
betaine metabolism, betaine transport, carnitine metabolism,
regulation of peptidase activity, regulation of endopeptidase
activity, and negative regulation of protein hydrolysis. Cellular

components encompass nuclear envelope, transferase complex for
transferring phosphate groups, cellular basal part, basal lamina,
actin-based cell protrusions, and lipid droplets. Molecular
functions relate to the biochemical activity and function of gene
products, including modulation of amino acid transporter activity
across membranes, serine/threonine kinase inhibitor activity, and
organic cation transporter activity (Figures 3B, C). Through
enrichment analysis of several gene metabolic pathways and
signaling pathways, we identified their crucial roles in cell
biology and metabolism, involving regulation of cellular
metabolism, growth, stress response, and various physiological
processes related to disease occurrence and development. These
include the vital role of the FoxO signaling pathway in regulating cell
metabolism and growth, the central role of carbon metabolism in
cellular energy production and biosynthesis, and the critical
regulation of the HIF-1 signaling pathway under hypoxic
conditions. Additionally, the role of choline metabolism in
cancer, the importance of amino acid biosynthesis, and the
regulation of glycolysis/gluconeogenesis on blood glucose levels
and energy metabolism are highlighted in the figure (Figure 3D).
Finally, upon examining potential interactions among the genes, we
observed a connection between GAPDH and the other four
genes (Figure 3E).

3.6 Immunocellular analysis

The relationship between immune cells and OA disease is
significant. We conducted an analysis on core genes and
22 immune cells, initially comparing the relative percentages of
different types of immune cells under control and experimental
conditions. By comparing the two sets of data, we observed
alterations in the immune cell populations, indicative of
significant changes in the composition of immune cell
populations due to experimental interventions. For instance,
memory B cells, Tregs, or specific types of T cells, and
macrophages showed an increase in proportion in the
experimental group, suggesting that the experimental treatment
enhanced immune memory, immune suppression, or
inflammatory response, thereby reinforcing cell-mediated
immune response and pathogen clearance capabilities
(Figure 4A). Through correlation analysis between core genes
and immune cells, we observed positive correlations between
ARL4C, SLC22A4, GAPDH, and Macrophages M0, Macrophages
M2, Activated Dendritic cells, Eosinophils, and Neutrophils, while

TABLE 2 Details of sensitivity analysis of MR Results of 5 Genes and Osteoarthritis.

Exposure Outcome Heterogeneity tests MR-egger/IVW
Cochran’s Q (pvalue)

Directional horizontal
pleiotropy test

MR-PRESSO
resultsGlobalTest/p-value

ARL4C OA 1.573 (0.455)/1.578(0.664) 0.953 4.406/0.623

CDKN2D OA 2.776 (0.734)/6.166(0.404) 0.124 11.720/0.354

CMIP OA 0.918 (0.631)/2.244(0.523) 0.368 4.944/0.528

GAPDH OA 0.075 (0.783)/1.534(0.464) 0.440 3.792/0.143

SLC22A4 OA 3.748 (0.441)/3.980(0.552) 0.655 5.183/0.723

MR, Mendelian randomization; IVW, inverse variance weighted; OA, osteoarthritis.

Frontiers in Pharmacology frontiersin.org07

Cheng et al. 10.3389/fphar.2024.1439289

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1439289


being predominantly negatively correlated with T cells CD8, Tregs,
and resting NK cells. CMIP showed no strong correlation with any
immune cells, and CDKN2D exhibited only negative correlations
with immune cells, indicating relatively high associations between
ARL4C, SLC22A4, GAPDH, and immune cells (Figure 4B). In our
sample data, Macrophages M1, Neutrophils, and Regulatory T cells
demonstrated statistical significance (Figure 4C). ARL4C, SLC22A4,
and GAPDH may also regulate immune memory and immune
suppression by affecting the proliferation and apoptosis of

immune cells, thus modulating macrophage polarity to control
inflammatory responses.

3.7 MR analysis of individual genes

We conducted two-sample MR analyses using five genes as
exposures and OA as the outcome. Our findings reveal that three
genes, namely, SLC22A4, CDKN2D, and CMIP, exhibit promotive

FIGURE 3
Functional enrichment analysis of five intersecting genes. (A) The chromosomal loop of five intersecting genes. (B) GO circlize map of five
intersecting genes. (C) The bubble map of the GO of five intersecting genes. (D) The KEGG bubble map of five intersecting genes. (E)Correlation network
diagram of five intersecting genes.
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effects on OA disease, while two genes, GAPDH and ARL4C,
demonstrate protective effects (Figure 5). Upon analysis of gene
expression trends obtained from GEO datasets regarding OA, we
observed a consistent decrease in expression levels for GAPDH and
ARL4C, suggesting a protective role in OA pathology.

3.8 GSEA analysis of individual genes

We conducted GSEA to explore the biological functions and
pathway associations of the two genes under investigation. Given the
generally low expression levels of these genes in OA pathology, we

focused on elucidating the biological functions and pathways
associated with their low expression.

In OA samples with decreased expression of ARL4C, functions
related to muscle cell development, skeletal muscle fiber
organization, chemical stimulus perception, and olfactory
receptor activity were notably suppressed (Figure 6A).
Additionally, ARL4C appeared to play crucial roles in processes
such as drug metabolism, neurotransmitter signaling, olfaction and
taste transduction, and vitamin A metabolism, indicating a potential
link between reduced ARL4C expression and dysregulation in these
biological processes (Figure 6B).

In OA samples with diminished expression of GAPDH,
functions associated with lipid metabolism regulation, triglyceride
metabolism, transcriptional activation, and GPCR signaling were
inhibited. This inhibition might be related to biological phenomena
such as slowed energy metabolism and alterations in cellular
signaling (Figure 6C). Furthermore, our experimental findings
revealed that in samples with lower GAPDH expression,
pathways related to energy metabolism, immune response, neural
signal transmission, and taste perception were either suppressed or
altered. This observation suggests potential associations with
decelerated cellular energy metabolism, changes in immune
system function, abnormalities in neural regulation, and
alterations in taste perception (Figure 6D).

3.9 Validation of gene expression in the
validation set

In the GSE10575 dataset, we examined the expression levels of
ARL4C and GAPDH genes and obtained results consistent with our
expectations. The expression levels of these two genes in the cartilage
of OA patients were relatively low compared to healthy individuals,
indicating a protective role of these genes in the disease.
Furthermore, their expression decreased progressively with
disease advancement (Figure 7A).

3.10 Molecular experiments and in vivo/
in vitro validation results

In our experimental setup, we further validated our findings.
From the qPCR results, we observed varying degrees of
downregulation in the expression of both genes in the
chondrocyte group of normal individuals compared to the OA
group, suggesting that the occurrence and progression of OA can
diminish their expression levels (Figures 7B, C). Western blot
analysis revealed a decrease in the expression of these two genes
when translated into proteins in both normal and OA groups,
further confirming our findings (Figures 7D–F). After validating
our findings in vitro, we proceeded with in vivo validation. By
comparing the OA rat joint model group with the sham surgery
group, staining slices with safranin O-fast green showed successful
construction of our model (Figures 7G, J). Immunohistochemical
results of rat knee joints demonstrated a significant reduction in the
expression of these two proteins, ARL4C and GAPDH, in the OA
group compared to the normal group, providing further validation
of our findings in vivo (Figures 7H, I, K, L).

FIGURE 4
Immunoinfiltration analysis of five intersection genes. (A) The
amount of 22 immune cells in the normal group and the experimental
group. (B)Correlation analysis of five core genes and immune cells. (C)
The difference of immune cell expression between normal group
and experimental group.
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3.11 Prediction of candidate drugs and
molecular docking analysis

In this section, we explored the potential interaction between
GAPDH and ARL4C proteins. The docking results revealed a
binding energy of −275.41 kcal/mol for the GAPDH-ARL4C
complex. Residues surrounding the protein-protein interaction
interface were found to form hydrogen bonds, contributing to
the stabilization of the protein-protein complex. Specifically,
ARG-84, SER-81, PHE-47, and THR-49 of ARL4C were observed
to form hydrogen bonds with SER-284, SER-283, VAL-281, ALA-
299, and LYS-309 of GAPDH, with bond lengths ranging from 1.7Å
to 3.4Å, indicating potential active residues (Figure 8A).

Subsequent screening of the FDA library identified the top three
small molecules with the highest scores for binding to GAPDH:
Ubrogepant, Midostaurin, and Rimegepant, with binding energies
of −12 kcal/mol, −11.9 kcal/mol, and −11 kcal/mol, respectively
(Table 3; Figures 8B–D). Additionally, the top three small molecules
capable of binding to ARL4C were identified as Enasidenib,
Nilotinib, and KPT330, with binding energies of −8.1 kcal/
mol, −8 kcal/mol, and −7.4 kcal/mol, respectively (Table 3;
Figures 8E–G). These findings suggest potential candidates for
further investigation as therapeutic agents against osteoarthritis.

4 Discussion

Regarding research on OA, early scholars mainly focused on
cartilage wear and degeneration. However, with deeper

investigation, OA is now regarded as a systemic joint disease. It
involves interactions among articular cartilage, synovium,
subchondral bone, ligaments, muscles, and so forth (Loeser et al.,
2012). The interplay among synovium, cartilage, and subchondral
bone accelerates joint cartilage damage and loss, as well as the
occurrence of structural abnormalities and low-grade chronic
inflammation in the subchondral bone (Butterfield et al., 2021).
Evidence suggests a unique regulatory relationship between cartilage
and subchondral bone. Experiments on small molecule diffusion
have revealed the presence of direct molecular signaling between
cartilage and subchondral bone, which may contribute to OA
progression (Hu et al., 2021). Relevant studies indicate that
osteoarthritis is best conceptualized as a disease of the entire
“joint organ,” and the infrapatellar fat pad (IFP), a fat tissue near
the synovium, interacts with the synovium, articular cartilage, and
subchondral bone, accelerating OA progression (Zeng et al., 2020).
A comprehensive search for core genes influencing OA diagnosis
and treatment may be a crucial step in OA management (Tong
et al., 2022).

In our study, we collected gene expression data from different
sources, including synovium, cartilage, and subchondral bone, from
the GEO database. Through combined MR analysis, we identified
two genes, GAPDH and ARL4C, with consistent trends in
expression levels and MR. Their expression in OA is reduced,
exerting a protective effect against the disease. We not only
validated these two genes in the validation set but also confirmed
our findings through in vitro and in vivo experiments. We believe
that these two genes may play important roles in the occurrence,
development, or treatment of OA.

FIGURE 5
MR Forest map of five core genes and OA.
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Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a
critically important enzyme with multifaceted functions in both
biology and medicine (Mondragón et al., 2019). Its primary role lies
within the glycolytic pathway, where it catalyzes the conversion of
glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-
BPG), a redox reaction essential for cellular energy production,
concomitantly reducing NAD + to NADH (Liao et al., 2019). Studies
indicate that GAPDH harbors an active site cysteine residue
susceptible to oxidation under hydrogen peroxide, resulting in
rapid enzyme inactivation, with its redox-switching activity
serving to preserve reductive capacity and promote the survival
of stressed tumor cells (Talwar et al., 2023). Moreover, GAPDH
plays a regulatory role in gene transcription and protein translation
within cells. It binds to RNA, influencing gene expression levels
(Tossounian et al., 2020), and interacts with cytoskeletal proteins to
maintain cellular morphology and motility, thus preserving cellular
architecture (Santos et al., 2023). Recent research highlights
GAPDH’s involvement in inhibiting homologous recombination
to stabilize cellular morphology, achieved through protein

interactions and deacetylation (Shi et al., 2023). Additionally,
GAPDH is implicated in regulating apoptosis and oxidative
stress; S-glutathionylation of GAPDH transmits signals to the
nuclear GAPDH transglutaminase, initiating cell apoptosis
(Mustafa Rizvi et al., 2021).

While the functionality of GAPDH is robust, unfortunately,
there is a dearth of research on it in OA. Most scholars have not
recognized the expression differences of GAPDH in OA, some even
utilize GAPDH as an internal reference in molecular experiments.
However, recent studies have found that the expression of GAPDH
may vary under certain pathological conditions, posing challenges to
its widespread use as an internal reference. The reliability assessment
of GAPDH requires consideration of its expression changes in
disease states. Since GAPDH expression in OA may not be
constant, researchers need to exercise caution when using
GAPDH as an internal reference and consider other potential
reference genes or adopt more precise quantitative methods to
ensure the accuracy of research results (Long et al., 2020). In
recent years, mounting evidence suggests a crucial association

FIGURE 6
GSEA enrichment analysis of 2 DEGs. (A) The GO curve is enriched in the low ARL4C group. (B) The KEGG curve was enriched in the low ARL4C
group. (C) The GO curve was enriched in the low GAPDH group. (D) The KEGG curve was enriched in the low GAPDH group.
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FIGURE 7
Validation set and in vitro and in vivomolecular experiments verified the results. (A) The expression of GAPDH and ARL4C decreased significantly in
GSE10575. (B) The expression of GAPDH in OA samples was significantly decreased. (C) The expression of ARL4C in OA samples was significantly
decreased. (D) Western blot results showed that the expression of GAPDH and ARL4C protein in OA samples was significantly decreased. (E) The
expression of GAPDH protein in OA samples was significantly decreased. (F) The expression of ARL4C protein in OA samples was significantly
decreased. (G) The stained section of the joint model group of OA rats and the sham operation group. (H) Immunohistochemical results of GAPDH in
knee joint sham operation and OA group of rats. (I) Immunohistochemical results of ARL4C in knee joint sham operation and OA group of rats. (J)OARSI
SCORE of kneeOA groupwas significantly increased. (K) The positive cell rate of GAPDH inOA groupwas significantly reduced. (L) The positive cell rate of
GAPDH in OA group was significantly reduced. (*) p < 0.05, (**) p < 0.01, (***) p < 0.001, (****) p < 0.0001.
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between GAPDH and immune cells. GAPDH inhibits the increase
in pH value of neutrophils, blocking this increase prevents cell death
and the formation of neutrophil extracellular traps (NETs) (Li et al.,
2023b). Recently, a serum acylation system of GAPDH has been
reported, which promotes the glycolytic metabolism and anti-tumor
immune activity of CD8 T cells (Wang et al., 2024). GAPDH
reverses the activation of Th2 cells induced by M2 through its
glycolytic activity, which plays an important immunomodulatory

role in preventing allergic asthma (Chen et al., 2022b). Of course,
GAPDH also interacts with other proteins, collectively influencing
the polarization changes of macrophages. GAPDH oxidation plays a
procedural role in shaping the metabolism and inflammatory
characteristics during macrophage activation (Yoo et al., 2022). It
is well known that OA is a low-grade inflammation and progressive
joint disease, and its progression is closely related to the imbalance of
M1/M2 synovial macrophages (Zhang et al., 2022). These studies

FIGURE 8
Molecular docking of GAPDH and ARL4C proteins and prediction of drug targets. (A) The GAPDH and ARL4C proteins form complexes through
hydrogen bonding of surrounding residues. (B) Molecular docking diagram of GAPDH and Rimegepant. (C) Molecular docking diagram of GAPDH and
Midostaurin. (D)Molecular docking diagram of GAPDH and Ubrogepant. (E)Molecular docking diagram of ARL4C and Enasidenib. (F)Molecular docking
diagram of ARL4C and KPT330. (G) Molecular docking diagram of ARL4C and Nilotinib.
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provide us with some clues, but further experimental research is
needed to elucidate how GAPDH affects the molecular
mechanisms of OA.

The protein encoded by the ARL4C gene is a small GTPase,
which is one of the members of the ARL (ADP-ribosylation factor-
like) family (Zhao et al., 2023). The ARL4C protein participates in
various biological processes within cells, including intracellular
membrane trafficking, cell polarity, and cell signaling (Han et al.,
2020). Aberrant expression or mutation of ARL4Cmay impact these
biological processes, thereby being associated with the occurrence
and development of diseases, such as endometrial cancer (Zhang
et al., 2020). There are some associations and interactions between
ARL4C and macrophages. Macrophages are an important cell type
in the immune system, primarily involved in clearing foreign
substances, bacteria, and dead cells to maintain tissue cleanliness
and immune balance (Ji et al., 2010). Some studies suggest that
ARL4C may regulate macrophage polarity, migration, and
phagocytic functions (Lazarov et al., 2023). Additionally, ARL4C
has been studied in other cell types as well. For instance, ARL4C
expression dependent on the RAF1-MEK/ERK pathway promotes
ameloblastoma cell proliferation and osteoclast formation (Fujii
et al., 2022). ARL4C also plays a role in drug targeting; miR-26
promotes foam cell formation by reducing ABCA1 and ARL4C
expression, supporting the development of drugs targeting
atherosclerosis (Chen et al., 2024). In lung cancer research, the
ubiquitination regulation mechanism of Arl4c is studied, and
potential chemotherapeutic drugs targeting Arl4c are explored
(Sun et al., 2020). Although most studies on ARL4C currently
come from tumors, its biological functions and role in
macrophage polarization provide us with some directions for
studying OA. In our research, ARL4C is identified as a protective
gene in OA, with decreased expression in OA diseases. It may serve
as a good diagnostic marker and drug target, and increasing the level
of ARL4C in OA patients may have a certain therapeutic effect.

In the field of OA, a significant unmet need remains the
development of reliable phenotyping and stratification capabilities
for patients, enabling more effective targeted therapies for inclusion
in clinical trials (Winthrop et al., 2024). Therefore, the identification
of essential genes is imperative, as it provides insights into core
structures and functions, expediting the discovery of drug targets
and other functionalities (Aromolaran et al., 2021). Molecular
docking aids researchers in understanding the interactions
between drugs and target molecules, facilitating high-throughput
screening from databases (Li et al., 2022).

In our study, we initially predicted the potential interaction
between two genes. Surprisingly, we found that GAPDH and
ARL4C can form a protein-protein complex through
surrounding residues, potentially stabilized by hydrogen bonds.
Whether their complex influences the development of OA disease
by modulating macrophage polarization remains speculative.
Subsequently, we conducted two rounds of screening on the
FDA library via virtual docking, predicting potential small-
molecule compounds that could target GAPDH and ARL4C.
Drug prediction and molecular docking were utilized to validate
the pharmacological value of these targets. These findings offer
promising clues for more effective OA therapies, potentially
reducing drug development costs and advancing personalized
medicine approaches. This research makes a valuable
contribution to the field, emphasizing the importance of these
identified targets in OA treatment.

While our study contributes valuable insights, it is essential to
acknowledge its limitations. Firstly, despite the pivotal role of the
GEO as a public repository for gene expression data, it presents
various challenges. These include disparities in data quality and
consistency, uneven distribution and coverage of data, lack of
standardization in data format and annotation, inadequate
metadata, delayed data updates and maintenance, and ethical
concerns regarding data privacy. These issues may undermine the
reliability of our conclusions.

Secondly, while MR serves as a causal inference method based
on genetic instrumental variables, facilitating the determination of
causal relationships between variables (Bowden and Holmes, 2019).
However, this approach has limitations. Mendelian randomization
relies on the analysis of existing datasets and is therefore unsuitable
for newly emerged or unobservable variables. To accurately establish
causal relationships between variables, a combination of methods is
necessary, corroborating evidence from various sources (Liu et al.,
2023). Moreover, the majority of datasets predominantly represent
European populations, lacking diversity in race and gender in
GWAS. Disparities in population backgrounds, influenced by
genetic backgrounds and linkage disequilibrium patterns, may
introduce potential biases in MR effect estimates. Additionally,
reliance on blood-based eQTL for MR testing poses challenges in
identifying the most effective tissues for therapeutic interventions.
Different tissues may exhibit distinct genetic regulatory
mechanisms, and focusing solely on blood eQTL may not
provide a comprehensive understanding of diseases and potential
treatment modalities.

TABLE 3 Docking results of two proteins with small molecules.

Target Structure ID Drug PubChem Binding energy (kcal/mol)

ARL4C ARL4C (AlphaFold) Enasidenib 89683805 −8.1

Nilotinib 644241 −8

KPT330 71481097 −7.4

GAPDH 1U8F (PDB) Ubrogepant 68748835 −12

Midostaurin 9829523 −11.9

Rimegepant 51049968 −11

The lower the Binding Energy, the better the binding efect and the higher the afnity.
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Furthermore, our in vitro and in vivo experiments were kept
straightforward, focusing solely on validation at the expression level.
We utilized specimens of human chondrocyte inflammatory models
and rat arthritis models, without collecting clinical samples for
validation. Gene function was not verified through downregulation
or overexpression to observe phenotypic changes in OA, nor were
experiments conducted on transgenicmice. Additionally, the accuracy
of molecular docking analysis heavily relies on the quality of protein
structures and ligands. While this method identifies potential drug
targets, it does not guarantee their effectiveness in clinical settings.
Subsequent experimental validation and clinical trials are necessary to
confirm the therapeutic potential of the identified targets.

5 Conclusion

In this study, the potential diagnostic biomarkers and drug
targets for OA were identified using a combination of the GEO
database andMR analysis. It was observed that ARL4C and GAPDH
genes exhibited significance in both cohorts and were supported by
in vitro and in vivo molecular experiments. These genes are
associated with macrophage polarization function and may serve
as effective therapeutic targets for OA. Additionally, drug prediction
and molecular docking were employed to validate the
pharmacological value of these targets. These findings provide
promising leads for more effective diagnosis and treatment of
OA, potentially reducing drug development costs and advancing
personalized medicine approaches.
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