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Background:Chemicals may lead to acute liver injuries, posing a serious threat to
human health. Achieving the precise safety profile of a compound is challenging
due to the complex and expensive testing procedures. In silico approaches will
aid in identifying the potential risk of drug candidates in the initial stage of drug
development and thus mitigating the developmental cost.

Methods: In current studies, QSAR models were developed for hepatotoxicity
predictions using the ensemble strategy to integrate machine learning (ML) and
deep learning (DL) algorithms using various molecular features. A large dataset of
2588 chemicals and drugswas randomly divided into training (80%) and test (20%)
sets, followed by the training of individual base models using diverse machine
learning or deep learning based on three different kinds of descriptors and
fingerprints. Feature selection approaches were employed to proceed with
model optimizations based on the model performance. Hybrid ensemble
approaches were further utilized to determine the method with the best
performance.

Results: The voting ensemble classifier emerged as the optimal model, achieving
an excellent prediction accuracy of 80.26%, AUC of 82.84%, and recall of over
93% followed by bagging and stacking ensemble classifiers method. The model
was further verified by an external test set, internal 10-fold cross-validation, and
rigorous benchmark training, exhibiting much better reliability than the
published models.

Conclusion: The proposed ensemble model offers a dependable assessment
with a good performance for the prediction regarding the risk of chemicals and
drugs to induce liver damage.
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Introduction

The liver is a vital organ to oversee the metabolism and
detoxification of essential compounds in the body. During the
metabolic process of a compound, this organ is at substantial risk
of impairment. All the compounds are xenobiotics to enter the body
in the form of drugs, industrial chemicals, or environmental
pollutants (Mohi-Ud-Din et al., 2019). Liver injury, commonly
known as hepatotoxicity, can be caused by herbal remedies,
dietary supplements, and organic solvents as well. Medicinal
drugs usually produce hepatotoxicity in overdoses, and some may
even induce liver damage in the therapeutic range. Medicinal agents
account for 5% of hospital cases and 50% of acute liver failures (Abid
et al., 2020). Drug-induced liver injury constitutes one of the
primary factors leading to the failure of drugs during clinical
trials. The Food and Drug Administration (FDA) has published a
list of drugs causing liver injury, which is divided into four categories
of Most-DILI concern, Less-DILI concern, No-DILI concern, and
ambiguous DILI concern (Chen et al., 2016). It was reported that
approximately 18% of drug candidates were withdrawn from the
market or clinical trials due to the development of liver toxicity as a
serious side effect from 1953 to 2013 (Andrade et al., 2019; Walker
et al., 2020). Moreover, chemical-induced hepatotoxicity contributes
to 30%–50% cases of acute liver failures (Mohi-Ud-Din et al., 2019).
Themechanisms underlying hepatotoxic injury include inhibition of
mitochondrial function, oxidative stress, activation of apoptosis, and
disturbance of intracellular calcium homeostasis. Besides, many
compounds such as carbon tetrachloride and paracetamol may
have metabolic activations to form hepatotoxic metabolites,
which is a process primarily facilitated by liver cytochrome
P450 enzymes (Jaladanki et al., 2020; Pingili et al., 2023).

Evaluating chemicals for hepatotoxicity requires extensive safety
studies involving the administration of chemical candidates to a
large group of animals, thus incurring both time and financial costs
(DiMasi et al., 2015; Tetko and tropsha, 2020). In many cases,
animal models prove inadequate to accurately detect idiosyncratic
hepatotoxicity, which may later manifest in humans during clinical
trials or post-marketing surveillance (Dirven et al., 2021; Fernandez-
Checa et al., 2021). In addition, in vitro techniques using high-
throughput screening approaches have also been employed to assess
drug toxicity. However, in vitro assays could be insufficient to fully
substitute animal models since an individual in vitro assay primarily
targets a simple toxicity mechanism (Raies and Bajic, 2016).
Similarly, conventional computational models are inadequate and
frequently prone to errors in forecasting complicated toxicity
endpoints. These models are less robust to differentiate
compounds with similar structure/chemical properties but
manifest distinct toxicities (De et al., 2022). As discussed above,
hepatotoxicity is complex, emanating from diverse mechanisms and
different hepatotoxins. There is a significant need for the
establishment of novel computational approaches and
corresponding predictive models for hepatotoxicity that should
be employed during the early phases of drug development.

Computational methodologies have been evaluated for
regulatory decision-making, such as the REACH/3Rs framework
implemented by European Union (EU) while projects like
Tox21 and ToxCast by US Government agencies have made
substantial advancements (Silva and Kwok, 2020; Jeong et al.,

2022; Macmillan et al., 2023). These approaches have
predominantly directed their efforts toward the assessment of
high-throughput methodologies with a focus on methods that are
based on in vitro assays, in silico procedures, and toxicogenomics for
improving risk assessment. These methods leverage a variety of
statistical approaches to create prediction models, but it is generally
required of large and diverse datasets with well-documented toxicity
outcomes. One approach is the use of artificial intelligence (AI),
which has undergone swift evolution and paved the way for novel
research and innovation, marked notably by the emergence of
machine learning and deep learning (Xu et al., 2015). AI
methods gained importance due to their ability to examine large
datasets, make predictions, and offer insights into currently
impossible events (Sharifani and Amini, 2023). Machine Learning
(ML) and deep learning (DL) are the AI domains that have emerged
rapidly, gaining a notable surge in recent years. ML automates the
development of analytical models with data analysis methods,
enhancing their performance from experience without the need
for explicit programming (Mahrishi et al., 2020; Sharifani and
Amini, 2023). DL constitutes a subset of ML, focusing on the
employment of multilayer neural networks to extract the data in
the categorized form for solving complex problems. DL models are
inspired by the structure of the human brain to learn from the data
in an automated way through its self-directed learning process. It is
capable of training efficiently even with unstructured and complex
data (Unterthiner et al., 2014; Hughes et al., 2015; Ma et al., 2015).
The potential of ML and DL to revolutionize diverse industries and
reshape the global landscape has become progressively evident with
the ongoing expansion of generated data and the increasing
computer power. The progress in these approaches will establish
novel pathways for research and innovation, leading to significant
breakthroughs in multiple fields like healthcare, transportation, and
finance, etc (Alipanahi et al., 2015; Lee and Yoon, 2021). These
approaches have capacities to facilitate a deeper understanding of
complex systems, to enable informed decision-making, and to foster
the development of more efficient as well as effective solutions to
real-world problems (Park and Kellis, 2015; Li et al., 2020; Janiesch
et al., 2021).

Quantitative structure-activity relationship (QSAR) is a
computational modeling approach to predict the biological
activity of chemical compounds by analyzing their molecular
structure. QSAR models have the potential to identify
compounds with desirable therapeutic activities or compounds
with possible risks to human health in terms of absorption,
distribution, metabolism, excretion, and toxicity (ADME/T) (Li
et al., 2020). QSAR models developed by ML or DL algorithms
can provide enhanced precision and robustness in predicting the
bioactivities of chemical compounds. Couples of hepatotoxicity-
predictive QSARmodels have been developed so far, including a few
studies of conventional ensemble models (Liew et al., 2011; Ai et al.,
2018; Li et al., 2020). One thing common among these published
models is based on drug-induced liver injury. To the best of our
knowledge, none of these models included industrial compounds,
chemicals, or organic solvents used in laboratories, which may also
induce liver damage. In current studies, we enclose these organic
compounds and solvents with known hepatotoxicity data to get a
much larger dataset of 2588 organic compounds from different
sources for generating a prediction model of hepatotoxicity in
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comparison to the previously reported works. Various base models
were first created using each of five algorithms on three different
molecular descriptors/fingerprints, i.e., RDkit molecular descriptors,
Mordred descriptors, and Morgan fingerprints, respectively. The
machine learning algorithms encompass 4 ML algorithms including
support vector machines classifier (SVC), random forest classifier
(RF), K-nearest neighbors (KNN), and extra tree classifier (ET),
along with the DL algorithm of recurrent neural network (RNN). In
order to improve the prediction capability of the generated model,
voting ensemble strategy was further applied for the model
development using the combination of above ML and DL base
models on different molecular features. Ensemble model I was
trained on base classifiers using RDkit molecular descriptors,
ensemble model II was built on base models of Mordred
descriptors, ensemble model III was trained on base models
using RDkit molecular and Mordred descriptors together, and
ensemble model IV was trained on base classifiers using Morgan
fingerprints. As a result, the ensemble model IV trained onMorgan’s
fingerprints emerged as the most effective among the evaluated
models. The model exhibited an accuracy of 80.26% and an AUC
score of 82.84%, outclassing all other models on hepatotoxicity. The
model has a sensitivity of 93.02%, F1 score of 86.07%, and a
precision of 80.19%. The ensemble model IV was further trained
using 10-fold cross-validation to mitigate the risk of overfitting and
to get more reliable predictions of the models. The ensemble model
IV was further trained by including a second DL model, i.e., a
multilayer perceptron (MLP)model. Later, RNNwas removed and it
was trained withMLP as the only DLmodel. Bothmodels performed
better to achieve AUC of around 80% but failed to outperform the
model trained on RNN along with ML models. In addition, another
two ensemble techniques of bagging and stacking were also applied
for ensemble model IV, illustrating a lower performance than the
voting ensemble classifier. In comparison to rigorous benchmark
training performed on the descriptors and models presented in
previously published studies, our generated models prove valuable
for the identification of potential chemicals and medicinal drugs and
could contribute to the reduction of hepatotoxicity-related attrition.

Materials and methods

Data collection, preprocessing and
extraction of key descriptors

A diverse dataset of 2588 chemicals and drugs was assembled
comprising compounds with documented evidence of
hepatotoxicity or those without any reported hepatotoxic effects.
Some compounds were gathered from the literature (Ai et al., 2018;
Thakkar et al., 2020), containing the data of liver tox (Bjo¨rnsson.
and Hoofnagle, 2016), Greene (Greene et al., 2010), Suzuki (Suzuki
et al., 2010), and Xu data set (Xu et al., 2008). Besides, the liver-
related toxicity data was mined from two public sites of comparative
toxicogenomics database (The Comparative Toxicogenomics
Database | CTD (https://ctdbase.org) and the National Library of
Medicine (NLM,s) database (https://haz-map.com/heptox1.htm),
enclosing industrial chemicals data in related to liver toxicity.
RDKit package was utilized to get the canonical SMILES notation
of the compounds from their chemical formula (Shi and Borchardt,

2017). After obtaining the canonical SMILES for each drug, all data
sets were consolidated and duplicate entries were removed from the
list. Mixtures and those lacking SMILES were removed from the
dataset too. In addition, compounds with ambiguous activity against
hepatotoxicity were excluded for further consideration. We chose to
exclude all inorganic compounds and other mixtures from our
model, keeping only organic compounds. It ensures data
consistency and aids in dimensionality reduction because
overfitting is more likely to occur in high dimensional data
(Emmanuel et al., 2021). Compounds with known hepatotoxicity
were labeled as 1 (positive) while those having no reported
hepatotoxicity were labeled as 0 (negative). The dataset was
finalized to contain 970 hepatotoxicity-negative compounds and
1618 hepatotoxicity-positive compounds, providing a balanced
representation for analysis.

Numerical representation is an important depiction of the
chemical compounds that can be used for multiple purposes. These
representations capture different aspects of the molecular physico-
chemical properties and are widely used in both cheminformatics and
computational chemistry (Raghunathan and Priyakumar, 2022).
Representing chemical data in a clear and precise manner that is
easily understood by both humans andmachines, enables tasks such as
drug design, toxicology prediction, and material science research
(Wigh et al., 2022). Depending on the internal chemical structure
and external variables like shape, size, volume, and spatial context,
there are various methods for molecular representation. These
molecular representations play a pivotal role in the development of
different ML and DL models by numerically encoding input data to
facilitate its utilization in ML algorithms (Jaeger et al., 2018; Na, 2023).
For every compound, two kinds of molecular descriptors, RDKit
molecular descriptors and Mordred descriptors, were generated in
addition to the Morgan fingerprints (1024 bits). RDKit molecular
descriptors encompass a total of 208 molecular attributes retrieved
from the PandasTools modules of the RDKit (Ji et al., 2023). Similarly,
over 1800 Mordred descriptors were obtained for our dataset
containing 1D, 2D, and 3D descriptors (Moriwaki et al., 2018).
After computing descriptors, we excluded descriptors with missing
values or non-numerical values, the majority of which were 3D
descriptors, leaving a total of 1387 Mordred descriptors for model
establishment. During the process of generating descriptors inmachine
learning and deep learning, few compounds may not produce
descriptors to remain empty, and the missing values of the
descriptors can cause reduced sensitivity during the process of
model training (Yang et al., 2022). Moreover, a total of
2048 Morgan fingerprints were obtained from the RDKit library,
which was subsequently utilized in the process of model building
(Morgan, 1965). Table 1 illustrates the utilization of base models in
conjunction with various descriptors and fingerprints to construct
diverse ensemble models. The molecular descriptor values were
normalized within the range between 0 and 1 using the
MinMaxScaler function from the scikit learn package. In order to
guarantee a well-balanced distribution of data and to facilitate a
comprehensive evaluation of the model’s performance, the entire
dataset was randomly split into two subsets: the training set
included 80% of the compounds, while the test set had 20% of the
compounds. Random splitting of the dataset is necessary to uphold a
balanced and unbiased representation of compounds in each category
(Ma et al., 2020).
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Framework for base models
development

We divided the model development process into five different
stages as shown in Figure 1. Starting with the collection of data
(Figure 1A) and the retrieval of descriptors (Figure 1B), as described
above, the datasets were then trained on different ML and DL
models to make individual base models. We built 4 ML models of
SVC, RF, KNN, and ET while one DL model of RNN as the
individual base model (Figure 1C). Next, the embedded feature
selection (FS) process was followed by making a descriptors list
ranked in ascending or descending order based on feature
contributions. In this approach, a specific number of descriptors
were sequentially removed each time from the set of descriptors and
the performance of the model was recorded at each step. Here,
model performance was evaluated by removing descriptors from the
ranked list of descriptors as given in Equation 1.

model performancei � AUCw − AUCi

AUCw
(1)

where “i” denotes the selected descriptor whereas “w” denotes the
whole set of descriptors i.e., AUCi represents the AUC value of
the model developed without descriptor i, and AUCw denotes the
AUC value of the model developed using all the selected
descriptors. A greater accuracy and higher area under the
curve (AUC) suggest that the removed feature has less impact
on the model performance.

Fundamentals of ensemble models
development

After getting the optimized descriptors and fingerprints for the base
models, ensemble modeling integrating ML and DL was established
(Figure 1D). A hybrid ensemble was employed to integrate ML and DL
models in a unified manner, ensuring equal contributions for all base
models in the decision-making process. The architecture of the
ensemble model integrating ML and DL is presented in Figure 2. A
voting ensemble classifier was initially used to select the model with the
optimal performance. Later bagging and stacking ensemble modeling
were employed for the best model as the benchmark modeling. The
optimal ensemble model was validated with a 10-fold cross-validation
process (Figure 1E). In addition, the RNN base classifier of the optimal
model was replaced with other DL models such as multilayer
perceptron (MLP) to further validate the model. We also integrated
MLP along with the RNNmodel and applied ensemble modeling using
a voting classifier to confirm the integrated effect of multiple DLmodels
with the multiple ML models. Finally, benchmark modeling was

performed on our dataset with the descriptors and the base models
published in the literature (Figure 1E).

Uncovering the mechanics of RNN and
MLP models

Recurrent neural networks (RNNs) are specialized networks for
handling sequential and input-output data with varying lengths such as
time series or sequences of data points (Nosouhian et al., 2021). RNN
learnings are commanding sequential learners connected by three
different layers including input layers, recurrent layers, and output
layers. RNN modeling has garnered attention for model generations
owing to its ability to address machine learning challenges. In our
model, the RNN consisted of one implicit input layer, two recurrent
layers of long short-term memory (LSTM) having 64 units, and one
output layer, which is a dense layer with a sigmoid activation function.
A dropout layer was added after the LSTM layer to provide
regularization and prevent overfitting. The features of the second
LSTM layer are similar to those of the first layer. A wrapper class
(RNNWrapper) was created that implements the scikit-learn Base
Estimator and Classifier Mixin interfaces. The trained RNN model
was used to instantiate the wrapper class.

Multilayer perceptron (MLP) is a neural network having
multiple layers of interconnected nodes, making it acquire
complex patterns and relationships within data, making it a key
component of deep learning architecture (Naskath et al., 2023). We
instantiated an MLP classifier for our model with specific
parameters. Our MLP models include one input layer, 2 hidden
layers, and one output layer. The first hidden layer consists of
100 nodes followed by another layer of 50 nodes. The model
consists of a maximum of 500 iterations for convergence and was
adjusted to weights and biases iteratively by fitting to the training
data leveraging the backpropagation algorithm.

Models performance evaluation

The performance of the generated predictive models can be
evaluated using different strategies. In general, if the ensemble model
performs worse than base classifiers despite taking all aspects into
account, this would violate the fundamental notion of ensemble
modeling (Campagner et al., 2023). Therefore, the ensemble model
is expected to have a reliability surpassing the base classifiers.
Initially, it was compared to the performance of the ensemble
model with the individual base models. We used both internal
and external validation methods to assess the model
performance. To generate more consistent and reproducible

TABLE 1 Construction of ensemble models based on different descriptors and fingerprints integrating ML and DL models.

Ensemble models Method Descriptor/Fingerprints used ML base models DL base models

Ensemble Model I Voting RDKit Molecular descriptor (208 in number) SVC, KNN, RF, ET RNN

Ensemble Model II Voting Mordred descriptors (1387 descriptors) SVC, KNN, RF, ET RNN

Ensemble Model III Voting RDKit + Mordred descriptors (1595 in number) SVC, KNN, RF, ET RNN

Ensemble Model IV Voting Morgan fingerprints (2048) SVC, KNN, RF, ET RNN, MLP
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results, a 10-fold cross-validation was employed for internal
validation. In this approach, the initial dataset is randomly
partitioned into 10 equal subsamples during the 10-fold cross-
validation. In each iteration of the process, 9 of these subsamples

are employed as the training set while one subsample serves as the
validation set to evaluate the performance of the model. The process
is repeated ten times so that each subsample serves as a validation set
once and hence, gives us a robust assessment of the model across

FIGURE 1
A schematic overview of the workflow of generating a hybrid ensemble model integrating machine learning (ML) and deep learning (DL) base
classifiers (A). Hepatotoxicity data was collected from the literature and online sources. The compounds were categorized into positive (hepatotoxic) and
negative (non-hepatotoxic) based on their established attributes (B). Different descriptors/fingerprints were downloaded for the dataset and compounds
containing missing values were removed. The dataset was divided into training (80%) and test set (20%) (C). ML and DL learning base models were
trained on the dataset. Four MLmodels including RF, KNN, SVC, and ET were constructed initially along with the RNN as a DLmodel (D). ML and DLmixed
ensemblemodel was assembled from the individual basemodels after the feature selection process. Three different kinds of ensemblemodels were built
to choose the one with the optimal performance (E). Dynamic validation approaches were employed to verify the authentication of the models and the
final evaluation was recorded in terms of accuracy, AUC, F1 score, recall, and specificity. Abbreviations: RF: random forest, KNN: K-nearest neighbors,
SVM: support vector machines classifier, ET: extra tree classifier, RNN: recurrent neural network, LR: logistic regression, XGBoost: extreme gradient
boosting, RF ML algorithm: random forest machine learning algorithm, KNN ML algorithm: K-nearest neighbors machine learning algorithm, SVM ML
algorithm: support vector machine learning algorithm, ET ML algorithm: extra tree machine learning algorithm, 10-Fold CV: 10-fold cross-validation,
AUC: area under the ROC curve.
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different data subsets. The purpose of repeating this procedure is to
reduce the influence of chance on the outcomes, ensuring a more
reliable evaluation of the model. Internal validation assists in
refining model parameters and mitigating the risk of overfitting.
Moreover, external validation was used to assess the performance of
the model on the external test set. External validation is used to
evaluate the model performance on a dataset that is not exposed
during the training of the model, providing a reliable measure of its
generalization capabilities. This validation offers a more realistic
assessment of the model performance in real-world scenarios
because it is tested on an independent dataset that was not used
during the model development. Furthermore, benchmark models
were employed to compare the outcomes of the published studies
with the result of our proposed ensemble model. The findings of
published studies were compared with individual base models as
well as with ensemble learning. We extracted the same descriptors/
fingerprints used in the published articles for our dataset and
subsequently trained our models for the same ML models used
in their studies. The methodology employed was consistent with that
utilized in our ensemble model.

Various metrics were used to evaluate the predictive
performance of models (Equations 2–5). Five different key
indicators were used to assess the performance of our model
containing accuracy (Q), representing the overall prediction
accuracy of both positive and negative samples of the model,
sensitivity (SE), indicating the accuracy of predicting positive
samples, reflecting the accuracy of predicting negative samples,
and the area under the receiver-operating characteristics curve
(ROC). Similarly, the F1 score (F1) was computed, which is
thought to be a better performance indicator than the regular
accuracy measure and precision (PRE), which correctly measures
how much was correctly classified as positive out of all positive.

Accuracy � TP + TN

TP + TN + FN + FP
× 100 (2)

Sensitivity � TP

TP + FN
× 100 (3)

Precision � TP

TP + FP
× 100 (4)

F1 � TP

Tp + 1
2 FP + FN( ) × 100 (5)

Here in the above formulas, true positive (TP) represents the
number of positive (hepatotoxicants) samples correctly predicted by
the model, true negative (TN) represents the number of negative
samples (non-hepatotoxicants) correctly predicted by the model,
false positive (FP) denotes the count of negative samples (non-
hepatotoxicants) that are wrongly predicted as positive
(hepatotoxicants), while false negative (FN) represents the
number of positive samples (hepatotoxicants) that are wrongly
predicted as negative (non-hepatotoxicants).

Statistical analysis

The data presented in the results represents the mean value along
with the standard deviation (SD), calculated from the repeated instances.
One-way analysis of variance (ANOVA) was employed to identify
statistically significant groups,with significance levels reported as p< 0.05.

Results

A couple of studies have explored the development of
hepatotoxicity prediction models, each leveraging a dataset of less

FIGURE 2
Ensemble model merging machine learning (ML) and deep learning (DL) models. The process consists of three stages (A). In the initial phase, base
models are trained on their training set. The hybrid model indicates a combination of ML and DL models. (B) In the second phase, the evaluation of each
base model is done according to their performance on the dataset. Class a, Class b, . . ., and Class n represent different performances of each basemodel
defined in section (A). (C) The voting ensemble model analyzes the base model calculations on which it has to make the final predictions.
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than 1600 compounds on drug-induced liver injury. There are
certain difficulties in the design of DL models to predict liver
toxicity and one such complication is sample size. In this study,
we collected an enlarged dataset of 2588 compounds including
industrial compounds and solvents with known hepatotoxic or
non-hepatotoxic effects along with the drugs. We used three
different kinds of descriptors and fingerprints for building four
differentML and twoDLmodels on our dataset, as shown in Table 1.
This was followed by different ensemble modeling to find the
optimal model with the highest performance. The performance of
the models was evaluated by an independent test data set and a 10-
fold cross-validation. A detailed analysis of the predicted models was
conducted to assess the prediction accuracy, F1 score, SE, and Area
Under the Receiver Operating Characteristic Curve (ROC-AUC).
Evaluation criteria are critical to finding a model that can identify
and efficiently filter chemicals and drugs that pose a risk of liver
injury as well as recognizing substances that are not associated
with this risk.

Development of ML and DL base models:
commencement of liver toxicity
prediction models

Liver toxicity prediction models were initially constructed
individually with ML and DL algorithms using three different kinds
of descriptors and fingerprints. After data preprocessing by removing
mixtures and redundant compounds, the dataset was randomly divided
into training and test sets followed by themodel fitting on the individual
descriptors. Initially, five different models were built including 4 ML
and one DL models for each type of descriptor/fingerprint. All the
models followed the same development strategy but they were built
using different descriptors or fingerprints. The results of the base
models constructed on different descriptors and fingerprints are
presented in Supplementary Tables S1–S4. Among all, the model
based on the Morgan fingerprints outperformed the other models in
terms of performance. Most of theML and DLmodels had a prediction
accuracy below 0.70 on the test dataset with only a couple of the ML
base models displaying accuracy higher than 0.70. For almost all the
descriptors, we attained an accuracy of approximately 0.70 for the ML
base models but none surpassing 0.75 on the test dataset. The
performance of the DL RNN models was even inferior to that of
ML models for all these descriptors. Among DL base models, the RNN
model based on Mordered descriptors demonstrated the best
performance with an accuracy of 0.72 (Supplementary Table S2).

As described above, all the base models trained on molecular
features using individual machine learning/deep learning algorithms
were unable to demonstrate satisfactory prediction capability. The
ensemble strategy was further employed for these base classifier
models but the performance of any ensemble model failed to meet
the desired level of accuracy expected from an efficient model. We
modified our approach and decided to use the feature importance
step based on the significance of different available descriptors after
finding that the performance of each of the individual base models
was not adequate. Features were selected based on model
contribution by placing them in ascending or descending order
and then choosing the best optimal features among them to produce
the model with the best performance. This approach is called

sequential feature selection, where we gradually decrease or
increase the selected features to find an interpretable model at
the end (Li et al., 2020). The ultimate goal was to reduce the
number of the informative descriptors to get a reliable
relationship between the chosen descriptors and the target variable.

In the process of feature optimizations, descriptors were firstly
arranged in descending order based on their contribution to the
model. After that, we sequentially removed a certain number of
descriptors each time to build a model on the remaining descriptors,
checking the performance of the model. The aim was to eliminate
the uninformative descriptors, minimizing the loss of prediction
performance. As illustrated in Supplementary Tables S5–S7, the
feature selection approach significantly enhanced the performance
of almost all theML and DLmodels. Enhanced performance was not
limited to any specific models but all models built on different
descriptors exhibited better performance compared to their previous
one. After feature optimization, all the ML and DL base models
demonstrated better performance with an accuracy of over 0.70 for
all types of molecular descriptors/fingerprints. Meanwhile, it was
indicated that models built on Morgan’s fingerprints outperformed
all other models (Table 2), hence, emerging as the most effective
model. The SVC base model built on Morgan’s fingerprints emerged
as the best model among all the base models with an accuracy of
0.783 followed by the RNN base model. All the base models
constructed on Morgan’s fingerprints displayed prediction
accuracies of over 0.75 after following the feature importance
approach. The results of the base models constructed on
Morgan’s fingerprints are presented in Table 2.

The feature importance approach improves the performance of
almost all the base models built on other descriptors. The improvement
was not limited to the accuracy but was evident in all the predictive
indicators of the models including SE, SP, F1 score, and AUC as well.
The results of different base models utilizing the feature importance
approach are given in Supplementary Tables S5–S7 (supplementary
file). The performance of machine learning and deep learning models
was assessed systematically using different hyperparameter conditions
to acquire the best base models. The optimized conditions facilitated us
to identify and select the most pertinent variables, ensuring the precise
correlation of the chemical structures with their toxicological effects.
Each model acquired independent optimization to get the best possible
results for different training models. Base classifiers were set for each
model with the optimal parameters, i.e., optimized number of neighbors
K was 5 in the case of the KNNmodel. RF and ETmodels were trained
on training data using 700, 500, 300, and 100 n_estimators to select and
optimize the best estimators. Similarly, parameters for the RNN model
were optimized after trying different settings, identifying that it
performed finest using the learning rate of 0.001, 10 epochs, and
batch size of 128. Selecting optimal features and hyperparameters
enabled us to achieve the best results for our base models, paving
the way for the development of ensemble learning.

Ensemble strategies for converging ML and
DL models

After concluding the features optimization for the individual
base model development, we further proceeded with the ensemble
modeling strategy, utilizing several ensemble techniques to merge
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the ML base models that were developed earlier with the DL base
model. Ensemble algorithms were built on the individual ML and
DL models to extract and integrate all the information produced
from the individual models. We proposed a new ensemble learning
technique trained on a blend of ML and DL models by integrating

them together. The hybrid approach is anticipated to increase the
performance and prediction ability of individual ML and DLmodels
in determining the hepatotoxicity of drugs and chemicals.

Initially, a primary framework was constructed using the 4 ML
base models incorporated together with the RNN base model. A

TABLE 2 Performance metrics of individual base models and ensemble model IV built on Morgan fingerprints using the voting ensemble technique in
comparison to other ensemble models. Results of the ensemble models presented here are expressed as mean value (n = 5).

Models Accuracy AUC F1 score Sensitivity Specificity Precision

KNN 0.7648 0.7521 0.8387 0.9195 0.3790 0.7710

SVC 0.7839 0.8103 0.8458 0.8908 0.5714 0.8051

RF 0.7686 0.8131 0.8371 0.8936 0.5200 0.7873

ET 0.7629 0.8180 0.8277 0.8563 0.5771 0.8010

RNN 0.7705 0.8088 0.8255 0.8160 0.6800 0.8352

MLP 0.7380 0.6870 0.7977 0.8390 0.5371 0.7828

Ensemble model I 0.7381 0.7893 0.8107 0.8521 0.5189 0.7657

Ensemble model II 0.7589 0.7910 0.8227 0.8613 0.5448 0.7867

Ensemble model III 0.7532 0.7921 0.8242 0.8713 0.5224 0.7808

Ensemble model IV 0.8026 0.8284 0.8607 0.9302 0.5424 0.8019

Ensemble model IV(A) 0.7823 0.8147 0.8323 0.8891 0.5579 0.7946

Ensemble model IV(B) 0.7791 0.8109 0.8407 0.8933 0.5381 0.7931

Ensemble model I: Ensemble model built on 4 ML, models (KNN, SVC, RF, ET) and one DL, model (RNN) using RDKit, Molecular descriptor.

Ensemble model II: Ensemble model built on 4 ML, models (KNN, SVC, RF, ET) and one DL, model (RNN) using Mordered descriptors.

Ensemble model III: Ensemble model built on 4 ML, models (KNN, SVC, RF, ET) and one DL, model (RNN) using RDKit, Molecular descriptor and Mordered descriptors together.

Ensemble model IV: Ensemble model built on 4 ML, models (KNN, SVC, RF, ET) and one DL, model (RNN) using Morgan fingerprints.

Ensemble model IV(A): Ensemble model built on 4 ML, models (KNN, SVC, RF, ET) and one DL, model (MLP) using Morgan fingerprints.

Ensemble model IV(B): Ensemble model built on 4 ML, models (KNN, SVC, RF, ET) and two DL, models (RNN, MLP) using Morgan fingerprints.

Note: Best scores are marked as bold.

FIGURE 3
Comparison of all four ensemble models after employing the feature selection approach built on different descriptors and fingerprints using the
voting ensemble technique. Ensemble model I was built on RDKit Molecular descriptor and ensemble model II was constructed using Mordered
descriptors. Similarly, ensemble model III was built using RDKit Molecular descriptor and Mordered descriptors together while ensemble model IV was
built onMorgan fingerprints. Results are expressed asmean ± SD, n = 5. Different letters (A–D) on the bars indicate significant differences among the
different groups at p < 0.05 by one-way ANOVAwith the Duncan test. The * represents the significance between the two top groups at p < 0.05. Typically,
AUC is the area under the ROC curve, E. Model I represents the ensemblemodel I, E. Model II represents the ensemblemodel II, E. Model III represents the
ensemble model III, and E. Model IV represents the ensemble model IV.
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voting ensemble classifier was used to build a primary framework for
all four ensemble models (Table 1) based on the RDKit Molecular/
Mordered descriptors or Morgan fingerprint. Voting classifier
gathers predictions for each class label and directs class labels
with the highest number of votes or largest probability for
predictions (Kim et al., 2003). The ensemble model IV with
Morgan fingerprints outperformed all other three ensemble
models by achieving an AUC score of 82.84% and an accuracy of
80.26% (Table 2). Figure 3 illustrates performance comparisons of
the ensemble model IVwith and without the use of feature selection.
In fact, the voting ensemble classifier makes the other three
ensemble models I, II, and III to perform well by attaining an
accuracy of 75% or above, as shown in Figure 4. In current studies,
the hybrid ensemble method effectively mitigates classification
uncertainty and improves the overall performance of the base
classifiers. The different ensemble techniques vary from one
another in how they train and integrate diverse baseline models
(Krawczyk et al., 2017). Traditional ensemble models integrate
conventional ML models, applied across different fields. Recent
efforts have directed to extend the ensemble learning techniques
to DL but still, there are limitations in the training and
generalization of such models (Ammar and Kora, 2023). The
better performance of the voting ensemble classifier can also be
attributed to the robustness of the models, which effectively
generalizes to the test set and prevents the overfitting of the model.

Benchmarking, validation, and evaluation of
optimal model performance

Keeping in view the intricate nature of combining different ML
models with DL models, we proposed additional ensemble
techniques for the model exhibiting the best performance,
including bagging and stacking ensemble methods. The main
objective was to design an ensemble method which is capable of
capturing maximum drug and chemical-related information on
liver-related toxicities to provide maximal predictive evidence

with optimal efficacy. In current studies, both bagging and
stacking models performed well to achieve better accuracies of
77.17% and 77.43% respectively, in comparison to the base
models (Supplementary Tables S1–S3). The findings were
consistent with the possibility that employing computational
ensemble models with diverse molecular descriptors could lead to
increased prediction performance (Mora et al., 2020). However, the
results indicated that the bagging and stacking methods would not
have a good performance as voting ensemble classifier for our model
generations as illustrated in Figure 5 and Figure 6.

Next, we evaluated the performance of the best model (ensemble
model IV) using a 10-fold cross-validation approach. The cross-
validation technique enhances the reliability of the results by
performing training and accuracy assessment multiple times. As
listed in Table 3, the ensemble model IV exhibited an accuracy of
78.60% and an AUC of 83.93% under 10-fold cross-validations.
Additionally, other performance metrics including sensitivity,
precision, F1 score, and specificity were comparable to the
performance exhibited by this model without cross-validation
(Table 2). The primary criterion to evaluate the performance of
any model is the predictive performance metrics, as they are
considered quantifiable to be used as a standard for the
evaluation of the model. It demonstrated a sensitivity of 94.52%,
precision of 80.14%, and f1 score of 85.62%, obtained by the 10-fold
cross-validation, being comparable to those without cross-validation
(Table 2). The results thereby justified the reliability of our models.

After achieving the best performance of the ensemble model,
consisting of 4 ML models combined with RNN, we tested
additional DL models to assess the ensemble performance. This
time we opted for a multilayer perceptron (MLP) model rather than
an RNN as it can more efficiently discern complex patterns and
correlations within datasets because it contains several layers of
interconnected nodes (Ahsan et al., 2020). The idea was to assess its
performance alone or in combination with ML models using voting
ensemble learning and to compare it with the above ensemble model
IV. The ensemble model IVB (Table 2) containing MLP along with
4 ML models displayed slightly lower performance than the

FIGURE 4
Comparison of the ensemblemodel IV parameters with FS (feature selection) andwithout FS (feature selection). Results are expressed asmean± SD,
n = 5. AUC is the area under the ROC curve and BA is the balanced accuracy.
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ensemble model IV comprising RNN. In addition, we constructed
another new ensemble model IVC using an ensemble algorithm to
incorporate MLP and RNN along with the 4 ML models. However,
the performance of the ensemble model IVC (Table 2) comprising
two DL models alongside 4 ML models was commendable but failed
to surpass the outcomes of the ensemble model IV featuring only
RNN as the DL model. We deployed a new benchmark approach
utilizing different molecular descriptors/fingerprints and ML
models trained on our dataset approach, which was employed in
previous studies. We applied our voting ensemble method after
training ML base models and compared the analysis with the
published researches. One such reported study utilized the
averaging ensemble method by fusing 3 ML base models
constructed on twelve different descriptors (Ai et al., 2018).
Similarly, another study used a neural network framework to
ensemble five different base models built on different molecular
features (Li et al., 2020). We successfully extracted some of the

descriptors for our dataset mentioned in the above studies and
constructed similar ML models. The same voting ensemble
technique was employed as we used for our model,
demonstrating much better performance than the published
studies (Supplementary Tables S8, S9). Based on the above
findings, it is evident that our proposed model has great
potential in addressing and identifying the challenge of liver
injury caused by chemicals and drugs. Moreover, it can assist in
decreasing drug attrition rates and minimizing the risk of exposure
to agents causing liver toxicity.

Discussion

Drug-induced liver injury poses a substantial risk in the
development of drugs. Many drugs failed during clinical trials
while some are withdrawn from the market due to concerns of

FIGURE 5
Performance comparisons of the ensemble model IV generated by different ensemble strategies, voting, bagging, and stacking ensembles,
respectively. Results are expressed as mean ± SD, n = 5. AUC is the area under the ROC curve, BA is the balanced accuracy.

FIGURE 6
The ROC curves and the AUC scores of ensemble model IV, using three different strategies of the voting ensemble (A), the bagging ensemble (B),
and the stacking ensemble (C), respectively.
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liver injury. Similarly, industrial chemicals and solvents present a
severe hazard for the development of liver injury. Extensive studies
have been done to predict the risk of drugs causing hepatotoxicity
but the performance of these predictions falls short of optimal
standards, necessitating further work to address this problem. In
the current study, we proposed an ensemble model integrating ML
and DL models to enhance the predicting power of the model to
forecast hepatotoxicity. Ensemble model combining ML and DL is
an innovative approach that influences individual models to
enhance their performance and capabilities, helping in solving
complex tasks across diverse domains. An extensive search was
done to collect compounds from different databases and literature to
get a larger dataset. To the best of our knowledge, no previous study
has assembled such a large dataset of hepatotoxic compounds.
Increasing sample size can offer certain benefits in enhancing the
prediction accuracy of the models and mitigating the under-fitting
issue stemming from the limited size of the dataset (Zanette et al.,
2018). Four ensemble models were developed based on two different
descriptors (including molecular descriptors, and Mordred
descriptors) and Morgan fingerprints. The primary approach of a
QSAR model relies heavily on the utilization of descriptors to
characterize the molecular structure of biologically active
compounds. The importance of different features can be assessed
and quantified by leveraging information acquired from models. In
current studies, some of Mordred descriptors were not generated
leading to missing values, which were later deleted to avoid any kind
of irregularities in the model development. A connection between
the important descriptors and the model performance can be
assessed from the model information and it further allows us to
integrate the relationship between predictors (Kelleci Celik and
Karaduman, 2023).

Initially, individual ML and DL base models were developed for
each descriptor and fingerprint. The performance of the base models
was unsatisfactory and improved by the feature selection approach
based on the model contribution. Selecting important features from
the training set could give accurate, informative, and robust
performance of the model (Pradeep et al., 2021; Kelleci Celik and
Karaduman, 2023). Moreover, choosing descriptors based on their
model performance needs to endorse and guarantee that the selected
descriptors can generalize and perform well to unseen data
(Cherkasov et al., 2014). The sequential feature selection
approach was utilized not only to find the optimal features but

also to enhance the performance and explainability of the models
while minimizing the computational complexity and overfitting
(Ying, 2019). The feature selection process enhanced the
performance of base models and demonstrated superior
performance in comparison to the reported base models (Kang
and Kang, 2021) developed with a deep neural network (DNN)
along with RF, SVC, and Naive Bayesian on a dataset containing
1119 compounds to predict drug-induced liver injury, in which
ECFP4 (extended connectivity fingerprints 4), ECFP6, FCFP4
(functional class fingerprint 4), and FCFP6, respectively, were
utilized to get the best accuracy of 0.75 for ECFP4 using 10-fold
cross-validation. Our model overcame another published work,
which employed 12 different molecular fingerprints for
developing three kinds of ML base models of RF, SVC, and
XGBoost for each fingerprint to attain an accuracy of less than
0.71 (Ai et al., 2018). The enhancement in the model performance
was not solely due to the feature importance but finding the optimal
parameters for each model also played a pivotal role. The feature
selection process assisted us in identifying the optimal features for
the base model development, aiming to get the most accurate
predictive model by excluding unproductive descriptors from the
selection process. As a result, the base models and ensemble model’s
predictive accuracy and other performance parameters were
enhanced several times. Hong et al. (2017) extracted features for
the decision forest models by calculating and ranking the frequency
of each Mold2 descriptor according to their frequency values to
identify the most informative descriptors but still achieved lower
accuracy. The lower performance of their model could be due to
using a small dataset and ML models, which lack the robustness of
the ensemble strategy. Yang et al. (2024) utilized six different
molecular fingerprints for ML and DNN algorithms, and
achieved better performance for the DNN model while using the
ECFP_6 fingerprint with an accuracy of 0.713 outperforming all the
ML models. DNN got superior performance over the ML models
due to their robustness however, the overall performance of all
models might be limited for selecting only the top ten features using
the Shapley additive explanations (SHAP) algorithm. Selecting a
small number of features might have overlooked the valuable
information from other relevant features, resulting in a less
comprehensible model.

After achieving optimal performance of the individual models,
we proceeded with the voting ensemble algorithm by keeping

TABLE 3 Performance metrics of base classifiers and ensemble model IV built on Morgan fingerprints using 10-fold cross-validation.

Models Accuracy AUC F1 score Sensitivity Specificity Precision BA

KNN 0.7151 ± 0.0294 0.6733 ± 0.0479 0.8196 ± 0.0169 0.9856 ± 0.0192 0.1657 ± 0.0113 0.7019 ± 0.0229 0.575 ± 0.0405

SVC 0.7589 ± 0.0493 0.8010 ± 0.08164 0.8333 ± 0.03603 0.9078 ± 0.0513 0.4628 ± 0.0142 0.7709 ± 0.0328 0.6847 ± 0.0550

RF 0.7417 ± 0.0468 0.7661 ± 0.0948 0.8194 ± 0.0328 0.9221 ± 0.0449 0.421 ± 0.0184 0.7548 ± 0.0359 0.6512 ± 0.0531

ET 0.7437 ± 0.0532 0.7572 ± 0.0954 0.8266 ± 0.0315 0.9051 ± 0.0363 0.4457 ± 0.0218 0.7689 ± 0.0409 0.6842 ± 0.0686

RNN 0.7432 ± 0.0112 0.7939 ± 0.0095 0.8024± 0.0086 0.7836 ± 0.0098 0.6628 ± 0.02044 0.8221 ± 0.0097 0.7232 ± 0.0130

MLP 0.6968 ± 0.0182 0.7268 ± 0.0186 0.7690± 0.0172 0.8237 ± 0.0392 0.5302 ± 0.0415 0.7222 ± 0.0142 0.6919 ± 0.0129

Ensemble model IV 0.7860 ± 0.0314 0.8393 ± 0.0561 0.8562± 0.0365 0.9452 ± 0.02904 0.4529 ± 0.1349 0.8014 ± 0.0267 0.7038 ± 0.0754

Note: The ensemble model IV, is built on 4 ML, models (KNN, SVC, RF, ET) and RNN, base models. This performance of ensemble model IV, is based on 10-fold cross-validation. MLP, base

classifier is based on the Morgan fingerprints but is not included in the above ensemble model IV. Best scores are marked as bold.
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parameters consistent with each model’s peak performance. Some
heterogeneous ensemble models are reported to be built by
combining ML models with the traditional averaging method.
Obviously, the ensemble approach may offer some benefits to
capitalize on lower computational requirements with higher
diversity, thereby potentially improving overall performance
(Kelleci Celik and Karaduman, 2023). Ensemble models are
considered foremost to be influential, possessing properties to
reduce the overfitting of the baseline models. All four models
demonstrated moderate performances whereas the voting
ensemble model IV utilizing Morgan fingerprints exhibited
excellent performance, achieving an accuracy of 80.26%, AUC of
82.84%, and a sensitivity of 93.02%. In the current study, ensemble
models performed much better than reported ensemble models with
prediction accuracies below 0.70 by combining five base models ML
algorithms of LR (logistic regression), KNN, SVC, RF, and XGBoost
(extreme gradient boosting) based on three distinct descriptors (Li
et al., 2020). The potential lower accuracies might be due to using the
neural network approach on a small dataset of 1002 compounds, as
deep learning algorithms typically require a bigger sample size to
fully leverage their capabilities. Normally, ensemble learning
involves training multiple baseline models to make them
combine, constructing a more powerful and impressive single
model in comparison to the individual baseline models (Kumar
et al., 2021). We implemented a similar ensemble approach to that
employed by Islam and Nahiduzzaman (2022), however, our
approach was different in utilizing the DL algorithms as well.
The main idea behind using the voting ensemble approach was
to enhance the model accuracy by reducing the errors inherent in
individual algorithms. This was achieved by combining the decisions
of multiple algorithms through a voting scheme, where the final
prediction is determined by the most common outcome among all
algorithms. It helps to reduce the weakness of any single model by
aggregating diverse perspectives of all the models and mitigating the
risk of bias or overfitting associated with individual models (Maclin,
2016; Gu et al., 2021).

An exhaustive validation process was followed to substantiate
the performance of ensemble models using different benchmark
methods. Initially, the models were validated by comparing the
performance of the individual base models with ensemble models
with and without the selected features. In both cases, the
performance of the voting ensemble classifier was way better
than the one achieved by each base model. Furthermore, model
performance was validated by external validation using a test set
consisting of 20% of randomly separated data. It is crucial to
assess the generalizability and reliability of the model as it
provides insights into the model’s real-world performance on
unseen data. Additionally, two more ensemble learning
techniques of bagging and stacking ensembles were employed
along with the voting ensemble classifier, figuring out the voting
ensemble as the best method for combining the base models.
Bagging is a data-specific algorithm that works by creating small
subsets of the actual dataset, having the potential to perform well
on high-performance data. The bagging method is also known as
bootstrap aggregating, involving bootstrapping and aggregating
algorithms to solve any data problem (Kim and Baek, 2022).
Similarly, the stacking method is based on the information
generated from the multiple-base models to generate a new

model. Base models are initially fit on the training data and a
subsequent model learns their predictions and compiles them in a
way to give the best prediction (Ma et al., 2018). In continued, the
10-fold cross-validation was applied to the best model (the
ensemble model IV) for validating its performance to be
comparable with the same model without the cross-validation
method, indicating the reliability of the ensemble model. Our
studies indicated a superior performance in comparison to the
reported ensemble model constructed based on 3 ML classifiers
(Ai et al., 2018), which had an accuracy of approximately
0.715 using the averaging ensemble approach validated by a 5-
fold cross-validation. The lower performance might be attributed
to the averaging ensemble model, which combines the
predictions of multiple base models by averaging the predicted
value. This method does not enhance the performance to a
significant extent but we got the average result close to the
individual predictions. On the other hand, in a voting
ensemble, the predictions of multiple base models are
combined through a voting process and the class with the
majority of votes is selected as the final prediction. Moreover,
our model outperformed other studies in which ML or DL
approaches were utilized to build predictive models for
hepatotoxicity (Xu et al., 2015; Hong et al., 2017; Thakkar
et al., 2020).

The performance of ensemble model IV was further affirmed by
substituting RNN with MLP and the results indicated that the
ensemble model IV employing RNN had a better performance.
Next, an ensemble model using MLP and RNN as DL models was
employed along with 4 ML models but it did not exhibit better
results than our best model. In this context, our objective was to
assess the cumulative impact of two DL models over the ensemble
algorithm, since DL algorithms have the advantage of augmented
data generation to enhance computational capabilities, solving
complicated issues related to unstructured and varied data (Taye,
2023). Although ensemble models IVB and IVC did not perform
better than ensemble model IV, it is worth mentioning that all
ensemble approaches outperformed the individual MLP and RNN
models, confirming that ensemble methodology leads to better
performance than a single DL model (Ha et al., 2005). Ensemble
learning entails the integration of multiple models and this collective
approach leverages the diverse perspectives and strengths of each
base model to achieve robustness and enhanced predictive capability
(Ganaie et al., 2022). Finally, benchmark modeling was conducted
against previously reported studies, revealing our ensemble
approach outperformed the previous models. The voting method
combines the output of individual base models in an ensemble
algorithm by counting them to predict the final results based on the
labels with majority votes. It offers an advantage by exhibiting
reduced bias towards the base models as its effect is mitigated by
the count of majority votes, ensuring a more balanced and robust
prediction. Moreover, if the majority of the base models favor a
particular event, it may result in the dominance of that event in the
ensemble model. Thus, it was hypothesized that the performance of
the ensemble model based on the majority voting of base learners
would surpass the performance of the deep learning ensemble
models (Ju et al., 2018).

Despite all the advantages our model offers, there are some
shortcomings associated with the studies. For instance, ensemble
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training can improve the predictive accuracy and robustness of the
model, but it may also increase the computational complexity and
resource demands. Training and implementation of an ensemble
model containing both ML and DL can be time-consuming, which
could be impractical in all settings. Despite performing extensive
benchmarkmodeling and validating the model by 20% of test data, it
would be preferable to validate our model with an external data set.
However, it was not feasible due to the limited availability of data,
especially in an instance of DL to require large data for efficient
training of the model. Data type and quality are critical
considerations while dealing with ML models. Similar base
models may not perform well on datasets of different diseases, as
the performance of any model depends significantly on the type and
characteristics of data used for training. In addition, a different DL
model should be selected as the base model for evaluating this
ensemble strategy against other diseases depending on the type of
data. The performance of the ensemble model critically depends on
the effectiveness of its base models, emphasizing the need for their
optimization before training the ensemble model. Data imbalance
can lead to a biased model, potentially affecting the learning process
and reducing the model’s ability to accurately predict the minority
class, impacting the overall performance of the model (Kulkarni
et al., 2020). Although, our dataset was slightly imbalanced but still
we got efficient predictive performance. Addressing the issue of this
imbalance could potentially lead to an even better model with
enhanced performance.

Conclusion

Improving the predictive performance of models built on
chemical and drug-induced hepatotoxicity is essential for the
safety and efficacy of new pharmaceuticals and for accelerating the
drug approval process. Each model gathers distinct data points,
leading to different correlations with the endpoints and produces
varying results. Our proposed ensemble model utilizes varying
information generated from different data end points of individual
models and makes stable predictions with higher performance than
any single individual model. Robust in silicomodels hold the potential
to replace animal tests, serving as an initial step in recognizing
potential adverse effects of drugs on the target organ.
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