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Background: Ovarian cancer is a highly aggressive malignancy with limited
therapeutic options and a poor prognosis. Deubiquitinating enzymes (DUBs)
have emerged as critical regulators of protein ubiquitination and proteasomal
degradation, influencing various cellular processes relevant to cancer
pathogenesis. In this study, the research progress between ovarian cancer and
DUBswasmapped and visualized using bibliometrics, and the expression patterns
and biological roles of DUBs in ovarian cancer were summarized.

Methods: Studies related to DUBs in ovarian cancer were extracted from theWeb
of Science Core Collection (WoSCC) database. VOSviewer 1.6.20, CiteSpace
6.3.R1, and R4.3.3 were used for bibliometric analysis and visualization.

Results: For analysis 243 articles were included in this study. The number of
publications on DUBs in ovarian cancer has gradually increased each year. China,
the United States, and the United Kingdom are at the center of this field of
research. The Johns Hopkins University, Genentech, and Roche Holding are the
main research institutions. David Komander, Zhihua Liu, and Richard Roden are
the top authors in this field. The top five journals with the largest publication
volumes in this field are Biochemical and Biophysical Research Communications,
Journal of Biological Chemistry, PLOS One, Nature Communications, and
Oncotarget. Keyword burst analysis identified five research areas:
“deubiquitinating enzyme,” “expression,” “activation,” “degradation,” and
“ubiquitin.” In addition, we summarized the expression profiles and biological
roles of DUBs in ovarian cancer, highlighting their roles in tumor initiation,
growth, chemoresistance, and metastasis.

Conclusion: An overview of the research progress is provided in this study on
DUBs in ovarian cancer over the last three decades. It offers insight into the most
cited papers and authors, core journals, and identified new trends.
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Introduction

Ovarian cancer, which is the fifth most prevalent cancer among
women, significantly contributes to global cancer-related mortalities in
women (Siegel et al., 2023). Due to the non-specific or subtle symptoms
associated with this disease, early detection and diagnosis remain

challenging. Consequently, it is frequently diagnosed at advanced
stages, leading to undesirable outcomes. Previous studies have
identified various risk factors for ovarian cancer, including family
history, age, obesity, genetic mutations, and early onset of
menstruation (Wang et al., 2023a; Sung et al., 2023; Sandvei et al.,
2023;Matan et al., 2022; Fortner et al., 2019; Arora et al., 2024). However,

FIGURE 1
Study flowchart.
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more efforts are still required to establish effective screening strategies,
such as protein biomarkers, for the early diagnosis of ovarian cancer.

Post-translational modification plays an important role in
regulating target protein activity, stability, interaction, and/or
localization (Singh and Ostwal, 2019; Lee et al., 2023; Wang et al.,
2022a; Li et al., 2023). Acetylation, sumoylation, ubiquitination, and
phosphorylation are the most common types of protein post-
translational modification (Wang et al., 2014a). Specifically,
ubiquitination is a process in which an ubiquitin (Ub) protein, or a
chain of Ub proteins, is covalently attached to the target substrate,
ultimately leading to the proteasomal degradation or localization
alteration of the target protein (Damgaard, 2021). This process can
be reversed by deubiquitinases (DUBs), which cleave ubiquitin from
targeted proteins (Snyder and Silva, 2021). The dynamic balance

between ubiquitination and deubiquitination plays critical roles in
biological activities, such as cell-signaling transduction, apoptosis,
and drug resistance. To date, six classes of DUBs have been
identified, namely, ovarian tumor proteases (OTUs), ubiquitin-
specific proteases (USPs), ubiquitin C-terminal hydrolases (UCHs),
and Josephin domain-containing proteins, MINDYs, and JAMMs
(Harrigan et al., 2018). Among them, USPs form the largest family
of DUBs. Accumulating evidence suggests that the dysregulation of
USPs is involved in various diseases, including cancer. For example, we
previously found that targeting USP47 could decrease tyrosine kinase
inhibitor resistance and eradicate leukemia stem/progenitor cells in
chronic myelogenous leukemia (Lei et al., 2021a). We and others have
suggested that USP7 plays essential biological roles in the pathogenesis
of multiple myelomas (Jing et al., 2018; Wang et al., 2022b; Chauhan

FIGURE 2
Overview of the main information.

FIGURE 3
Annual number of publications on deubiquitinating enzymes and ovarian cancer.
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et al., 2012). Importantly, USP7 has also been revealed as a promising
target for ovarian cancer treatment (Ma and Yu, 2016; Zhang et al.,
2016; Qin et al., 2016). Thus, DUBs, especially USPs, may serve as
promising biomarkers for the early detection and diagnosis of
ovarian cancer.

In this study, we performed a bibliometric analysis of the scientific
articles published on DUBs in ovarian cancer to evaluate the study

trends on this topic. Although several bibliometric analyses have been
published on various topics in ovarian cancer (Song et al., 2024; Lin
et al., 2024; Meng et al., 2024; Wang et al., 2024; Leng et al., 2023; Giles
et al., 2023; Duan et al., 2023; Liu et al., 2023a), this is the first study to
identify the most influential literature in this field. We also summarized
the expression and biological roles of DUBs in ovarian cancer and
explored their potential as biomarkers.

FIGURE 4
Visualization of countries. (A) Publications by country. (B) International collaboration network.
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Methods

Data sources and search strategy

The literature search was conducted to retrieve related articles
from inception to May 2024 from the Web of Science Core
Collection (WoSCC). The search strategy is presented in
Supplementary Table S1. This study included only “articles” and
considered only documents written in English. As all data were
obtained from a public database, ethical declarations or approvals
are not applicable.

Data analysis and visualization

We extracted relevant data from the retrieved literature titles and
used Microsoft Excel 16.0 to identify and calculate bibliometric
parameters. These metrics cover key aspects of publications,
including the number of publications per year, citation frequency,
average citation frequency, journal title, journal impact factor,
country/region of publication, publishing organization, and authors.

The visualization and analysis process involved the use of three
powerful bibliometric analysis tools to fully analyze the academic
data: VOSviewer (version 1.6.20), CiteSpace (version 6.3.R1), and
R4.3.3. VOSviewer is a versatile software tool that plays a key role in
mapping institutional collaborations, co-authorships, citations, and
co-citations (van Eck and Waltman, 2010). It was used for keyword
co-occurrence analysis. CiteSpace 6.3.R1 was used for keyword
emergence detection and co-occurrence analysis, with the
parameters set to time slicing: from January 1996 to May 2024
(research in this field was originally published in 1996). The time
slicing was set to 1 year, and the node types were set to keywords.
When nodes are keywords, the threshold (top N per segment) was
set to 5, and pruning was set to the pathfinder + pruning merged
network. Based on the parameter settings for each node, a visual
analysis was performed to generate a timeline graph of
deubiquitinating enzymes with keywords in the field of ovarian
cancer research.

Results

Overview of the main information

The study flowchart is presented in Figure 1. A total of 243 articles
were identified in this study on DUBs in ovarian cancer over the last
three decades. Our investigation showed that 1,895 authors from
926 institutions across 135 countries contributed to the production of
these 243manuscripts. Theseworkswere published in 152 journals, citing
8,428 references, with an average of 46.44 citations per article (Figure 2).

Annual publication trend

To gain insight into the evolution of related research in this field,
we examined the annual publication trends. The study period
exhibited a discernible upward trajectory in annual publications,
particularly since 2003. The change in cumulative publications over
time follows the trend line equation y = 0.7,862 × −3.4,138, with a
correlation coefficient of 0.8566 and an annual growth rate of 9.59%.
Additionally, 2022 witnessed the highest number of publications,
accounting for 9.88% of the total (Figures 2, 3).

Analysis of countries

The identified publications came from 135 countries, with China
leading in the number of studies (89 publications), constituting 36.62%
of all documents. Other top contributors included the United States of
America (58 publications), the United Kingdom (19 publications),
Korea (12 publications), Japan (8 publications), and Italy
(8 publications) (Figure 4A; Table 1). Despite China having the
highest number of articles, the United States of America, France,
and the United Kingdom had the highest average citations, that is,
96.9, 89.8, and 87.6, respectively. In addition, the collaboration among
countries was visualized using VOSviewer. As shown in Figure 4B, the
United States, the United Kingdom, and Germany were the top three
countries with the strongest international collaboration network.

TABLE 1 Publication and citation profiles of the top 10 countries.

Country Articles Freq MCP_Ratio TP TP_rank TC TC_rank Average citations

China 89 0.366 0.124 302 1 1,595 3 17.9

United States of America 58 0.239 0.276 283 2 5,619 1 96.9

United Kingdom 19 0.078 0.474 40 4 1,664 2 87.6

Korea 12 0.049 0.000 36 5 179 9 14.9

Italy 8 0.033 0.500 46 3 157 10 19.6

Japan 8 0.033 0.375 33 6 234 8 29.2

Canada 6 0.025 0.833 26 9 237 7 39.5

Germany 6 0.025 0.333 30 7 70 13 11.7

India 6 0.025 0.000 22 10 86 12 14.3

Australia 5 0.021 0.600 29 8 284 6 56.8

Note(s): Articles, publications of corresponding authors only; Freq, frequency of total publications; MCP_Ratio, proportion of multiple country publications; TP, total publications; TP_rank,

rank of total publications; TC, total citations; TC_rank, rank of total citations; Average citations, average number of citations per publication.
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Analysis of institutions

Publications related to research on DUBs in ovarian cancer
involved 926 institutions. The three institutions with the most
publications were Johns Hopkins University (United States,
33 publications), Genentech (United States, 21 publications),
and Roche Holding (United States, 21 publications)

(Figure 5A). Institutions with at least two publications were
included in the analysis of collaborative networks, which were
visualized using VOSviewer. The clusters were arranged in
different colors based on the frequency of collaboration
between institutions (Figure 5B). Johns Hopkins University
had the largest node, indicating the highest level of
collaboration with other institutions.

FIGURE 5
Visualization of institutions. (A) Publications by institution. (B) Collaborative networks of institutions.
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Analysis of journals and co-cited journals

Research on DUBs in ovarian cancer prominently features in
152 journals. Biochemical and Biophysical Research
Communications leads with nine publications, accounting for
3.70% of the total, followed by the Journal of Biological
Chemistry and PLOS One, each with seven papers, accounting for
2.88% each (Table 2). Co-citation analysis revealed that the five key
journals with the highest total link strength were the Journal of
Biological Chemistry (56), Proceedings of the National Academy of
Sciences of the United States of America (54), PLOS One (48), Cell
(47), and EMBO Reports (40) (Figure 6A). Bibliographic coupling
analysis indicated that the five key journals with the highest total link

strength were PLOS One (1,110), Proceedings of the National
Academy of Sciences of the United States of America (1,053),
Journal of Biological Chemistry (1,049), EMBO Journal (901), and
Nature Communications (818) (Figure 6B).

Analysis of authors and collaborations

The 243 articles were contributed by 1,895 authors. The distribution
of authors was relatively concentrated, and a high degree of
collaboration strength was observed. David Komander, Zhihua Liu,
and Richard Roden contributed the highest number of publications,
with total citations of 939, 198, and 263, respectively (Table 3). Using

TABLE 2 Top 20 productive journals related to DUBs in ovarian cancer.

Journal IF
(2023)

JCR_Quartile H_index PY_start TP TP_rank TC TC_rank g-index m-index

Biochemical and
Biophysical Research
Communications

2.5 Q3 6 2005 9 1 59 36 9 0.300

Journal of Biological
Chemistry

4 Q2 6 2003 7 2 527 1 7 0.273

Nature Communications 14.7 Q1 6 2013 6 4 153 11 6 0.500

Oncotarget N/A N/A 6 2014 6 5 N/A N/A 6 0.545

Cell Death and
Differentiation

13.7 Q1 5 2016 5 6 64 32 5 0.556

Journal of Virology 4 Q2 5 2010 5 8 193 8 5 0.333

PLOS One 2.9 Q1 5 2010 7 3 146 12 7 0.333

Proceedings of the
National Academy of
Sciences of the
United States of America

9.4 Q1 5 2011 5 10 287 5 5 0.357

International Journal of
Oncology

4.5 Q1 4 2004 5 7 N/A N/A 5 0.190

Oncogene 6.9 Q1 4 1998 5 9 178 9 5 0.148

Science Advances 11.7 Q1 4 2018 5 11 N/A N/A 5 0.571

Biochemical Journal 4.4 Q2 3 2004 4 12 86 22 4 0.143

Cell Death and Disease 8.1 Q1 3 2022 3 13 50 40 3 1.000

EMBO Journal 9.4 Q1 3 2012 3 14 230 6 3 0.231

Genes Chromosomes and
Cancer

3.1 Q2 3 2008 3 15 N/A N/A 3 0.176

Journal of Experimental
and Clinical Cancer
Research

11.4 Q1 3 2019 3 17 N/A N/A 3 0.500

Molecular Cell 14.5 Q1 3 2009 3 18 383 3 3 0.188

Nature 50.5 Q1 3 2004 3 19 486 2 3 0.143

Oncology Reports 3.8 Q2 3 2015 3 20 43 50 3 0.300

Biochemistry 2.9 Q3 2 2016 2 22 N/A N/A 2 0.222

Note(s): H_index, h-index of the journal, which measures both the productivity and citation impact of the publications; IF, impact factor, indicating the average number of citations to recent

articles published in the journal; JCR_Quartile, quartile ranking of the journal in the Journal Citation Reports, indicating the journal ranking relative to others in the same field (Q1: top 25%, Q2:

25%–50%, Q3: 50%–75%, and Q4: bottom 25%); TP, total publications; TP_rank, rank of total publications; TC, total citations; TC_rank, rank of total citations; Average citations, average

number of citations per publication; PY_start, publication year start, indicating the year the journal started publication; g_index, g-index of the journal, which provides more weight to highly

cited articles; m_index, m-index of the journal, which is the h-index divided by the number of years since the first published paper; N/A, not applicable.
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FIGURE 6
Co-citation and bibliographic coupling analysis. (A) Co-occurrence networks: journal link strength in co-occurrence networks measures the
frequency with which two journals are cited together within the same articles or references. This metric reflects how often the publications from two
different journals are associated in the bibliographies of scholarly articles. High link strength implies that the journals are often cited in tandem, indicating a
thematic or topical connection between the research they publish. (B) Coupling networks: journal link strength in coupling networks assesses the
extent to which journals are linked based on the common references cited in their articles. This metric captures the degree to which the research
published in two different journals relies on the same body of prior work. Strong link strength in this context signifies that the journals share a substantial
number of references, highlighting a shared intellectual foundation or research focus.

Frontiers in Pharmacology frontiersin.org08

Qiu et al. 10.3389/fphar.2024.1445037

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1445037


VOSviewer, a collaborative network analysis was conducted on authors
with publication volumes of three or more. Among the 170 authors
involved in international collaborations, Richard Roden had the highest
number of collaborations with other countries (total link strength = 48),
followed by Ravik Anchoori (total link strength = 35) and David
Komander (total link strength = 27) (Figure 7).

Analysis of research hotspots and frontiers

Keywords succinctly encapsulate the fundamental concepts of a
paper, outlining the key areas of research interest. A comprehensive
keyword analysis of the selected 243 articles related to DUBs was
performed using “Author Keywords” from the Biblioshiny
application and “Keywords Plus” provided by the VOSviewer
application. In total, 566 keywords were identified. A network
visualization map demonstrating the connections among these
keyword co-occurrences was generated using VOSviewer. The
sizes of the circles correspond to the frequency of occurrence of
the keywords. A co-word analysis revealed that “deubiquitinating
enzyme,” “degradation,” “expression,” “activation,” and “ubiquitin”
were the most frequently co-occurring keywords (Figure 8). The top
20 co-occurring keywords are given in Table 4.

Figure 9 presents the top 20 keywords with the highest burst
strengths. The most significant citation burst belongs to
“deubiquitinating enzyme.” Particularly noteworthy is the
concentration of keywords such as “cancer,” “growth,”
“specificity,” “mechanism,” “ubiquitin,” “pathway,” “ovarian
cancer,” “resistance,” and “enzymes” since 2020, indicating
promising developments.

Discussion

Since 1996, studies on DUBs in ovarian cancer have
experienced rapid growth, particularly after 2002, driven by
their pivotal biological roles in cancer research. It is evident
that DUBs have gradually emerged as a hotspot in ovarian cancer,
indicated by an average citation of 47.41 per article. Additionally,
the number of articles on DUBs in ovarian cancer has steadily
increased, with an annual growth rate of 8.57%. Since 2020,
keyword concentrations have focused on “cancer,” “growth,”
“specificity,” “mechanism,” “ubiquitin,” “pathway,” “ovarian
cancer,” “resistance,” and “enzymes,” highlighting future
research directions for DUBs in ovarian cancer. Additionally,
the most frequently co-occurring keywords are “deubiquitinating

TABLE 3 Publication and citation profiles of the top 20 authors.

Authors H_index g-index m-index PY_start TP TP_Frac TP_rank TC TC_rank

Komander David 6 7 0.35 2008 7 1.20 1 939 1

Liu Zhihua 5 5 0.71 2018 5 0.74 4 198 20

Roden Richard B. S 5 7 0.42 2013 7 0.62 2 263 15

Anchoori Ravi K 4 5 0.33 2013 5 0.40 3 164 23

Anderson Lee 4 4 0.24 2008 4 0.49 6 113 33

Fejzo Marlena S 4 4 0.24 2008 4 0.49 8 113 33

Ovaa Huib 4 5 0.33 2013 5 0.41 5 599 7

Pegan Scott D 4 4 0.29 2011 4 0.65 11 116 32

Slamon Dennis J 4 4 0.24 2008 4 0.49 12 113 33

Snijder Eric J 4 4 0.22 2007 4 0.51 13 617 6

Ahel Ivan 3 3 0.75 2021 3 0.42 14 112 37

Akutsu Masato 3 3 0.21 2011 3 0.34 15 653 3

Anchoori Ravi 3 3 0.27 2014 3 0.35 16 118 31

Baek Kwang-Hyun 3 3 0.20 2010 3 0.89 17 35 46

Bazzaro Martina 3 4 0.27 2014 4 0.45 7 135 25

Bergeron Eric 3 3 0.20 2010 3 0.48 18 126 29

Ding Fang 3 3 0.43 2018 3 0.37 19 176 22

Dixit vishva M 3 3 0.17 2007 3 0.18 20 736 2

Frias-Staheli Natalia 3 3 0.17 2007 3 0.34 21 484 12

Fu Hongyong 3 4 0.27 2014 4 0.68 9 69 43

Note(s): H_index, h-index of the journal, which measures both the productivity and citation impact of the publications; g_index, g-index of the journal, which provides more weight to highly-

cited articles; m_index, m-index of the journal, which is the h-index divided by the number of years since the first published paper; TP, total publications; TP_rank, rank of total publications; TC,

total citations; TC_rank, rank of total citations; Average citations, average number of citations per publication; PY_start, publication year start, indicating the year the journal started publication.
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enzyme,” “degradation,” “expression,” “activation,” and
“ubiquitin,” indicating that a deep understanding of the
mechanisms of DUBs in ovarian cancer is a critical medical
need. Interestingly, these keywords are centered around the
critical regulatory functions of DUBs, suggesting that DUBs
are widely entangled with the classic signaling pathways that
have been well understood in ovarian cancer development. These
findings highlight that DUBs may be of equal importance as the
key regulatory proteins in cell division, growth, and proliferation,
encouraging research workers to include DUBs as a part of the
cellular regulatory network rather than as a simple tool for
protein degradation and recycling. Therefore, based on this
bibliometric analysis, studies of DUBs on ovarian cancer are
likely to continue advancing by understanding their roles in
cancer development and their potential as therapeutic targets.

The countries with the highest publication volume are
primarily China, the United States, and the United Kingdom.
China ranks the first in terms of publication quantity, whereas the
United States and the United Kingdom have the highest average
citations (all higher than 100) and intermediary centrality,
highlighting their active and prominent roles in this field.
However, the average citation frequency per paper in China is
low, indicating that Chinese authors have lower citation
frequencies, highlighting the need of high-quality paper
publication. Notably, the top three institutions contributing to
the publication volume were all from the United States,
indicating a pioneering role in driving DUB-related research
in ovarian cancer. Johns Hopkins University, Roche Holding,

and Genentech had the highest intermediary centrality, serving
as crucial contributors to fundamental DUB research in this
disease. The top three cited articles had 1,509, 573, and
429 citations, respectively, and were published in Nature
(impact factor = 50.5), Oncogene (impact factor = 6.9), and
Cell (impact factor = 45.5) (Wertz et al., 2004; Jensen et al.,
1998; Mevissen et al., 2013). All three articles focused on the
mechanism of DUBs, highlighting the critical need of the
mechanical analysis of this malignant disease.

We summarized the expression profile and biological roles of
DUBs in ovarian cancer. Specifically, the following terms were
used for the database search without language and regional
restrictions: “ovarian cancer” or “ovarian neoplasms” AND
“deubiquitinating enzymes” or “deubiquitinases” or “ovarian
tumor proteases” or “ubiquitin-specific proteases” or
“ubiquitin C-terminal hydrolases” or “Josephin domain-
containing proteins” or “motif interacting with Ubcontaining
novel DUB family” or “JAB1/MPN/Mov34 metalloenzyme.”
Other eligible studies were also reviewed from the references
of each article. As we retrieved zero results for Josephin domain-
containing proteins in ovarian cancer, we mainly focused on the
expression and functional role of OTUs, USPs, and UCHs in
ovarian cancer (Table 5). Research workers may utilize this
information to develop treatments against important
molecular targets, such as mutant p53 and PTEN, or explore
DUBs as potential therapeutic targets. For instance, USP7 is one
of the representative DUBs that have been widely studied in
cancer research. It exerts fine-tuned control over diverse protein

FIGURE 7
Visualization map depicting the collaboration among different authors. Nodes represent authors, with size indicating the publication count. Links
represent co-authorships, with thickness showing collaboration strength. Colors indicate different research clusters. The total link strength in
collaboration networks measures the frequency of co-authorship between authors, indicating the level of collaborative research.

Frontiers in Pharmacology frontiersin.org10

Qiu et al. 10.3389/fphar.2024.1445037

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1445037


FIGURE 8
Visualization of keyword co-occurrence. This network visualization displays the co-occurrence of keywords in selected literature. Each node represents a
keyword, with size indicating its frequency of occurrence. Links between nodes represent co-occurrence in the same documents, with thicker lines showing
stronger associations. Colors reflect the average publication year of the articles, as indicated by the color gradient at the bottom right.

FIGURE 9
Top 20 keywords with the strongest citation bursts.
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levels and functions, impacting cell fate decisions and
maintaining cellular homeostasis. USP7 is a critical regulator
of many cancer-related proteins, including p53, MDM2, PTEN,
and FOXO4. Zhang et al. (2016) suggested that USP7 expression
is associated with poor prognosis in ovarian cancer, supported
by cellular experiments. Ma and Yu (2016) found that USP7 is
highly expressed in epithelial ovarian cancer patients, positively
correlated with lymphatic invasion, and independently
associated with poor overall survival. They concluded that the
modulation of USP7 expression could affect ovarian cancer cell
viability and invasion (Ma and Yu, 2016). Wang et al. (2017)
reported that the inhibition of USP7 could induce cell death in
ovarian cancers, regardless of the P53 status. This finding is
consistent with that of previous research, showing that USP7 was
highly expressed in ovarian cancer and inversely correlated with
the differentiation level, and that inhibition of USP7 could lead
to cell apoptosis (Qin et al., 2016). Furthermore, Wang et al.
(2023b) found that USP7 deubiquitinases TRAF4, and the
knockdown of USP7 suppressed ovarian cancer both in vitro
and in vivo. A recent meta-analysis concluded that
USP7 promotes ovarian cancer progression and predicts
unfavorable clinical outcomes (Kisaï and Koji, 2021). These
findings suggest that USP7 may act as an oncoprotein highly
expressed in ovarian cancer cells and patients, and may be

associated with poor clinical outcomes. In addition,
USP14 may be another promising target in ovarian cancer
treatment, with the earliest research traced back to 2007
(Yang et al., 2007). Subsequent studies have revealed the
critical involvement of USP14 in various pathways, especially
in tumor proliferation and chemoresistance (Wang et al., 2015;
Wada et al., 2009; Shen et al., 2020; Huang et al., 2017; Luo et al.,
2019; Ji et al., 2023). It can thus be hypothesized that targeting
USP14 may be an effective strategy for second- and third-line
therapies, during which chemoresistance is the major challenge.
Moreover, UCHL1 is another interesting target for its broad
implications in various ovarian cancer cell lines, as well as
animal models and patient samples (Tangri et al., 2021;
Okochi-Takada et al., 2006; Jin et al., 2013). Understanding
its roles in different cell lines and signaling pathways may reveal
common mechanisms in ovarian cancer development. It should
be emphasized that although most DUBs are not direct executers
in signaling pathways, they may be equally important as they
essentially modulate the concentrations of the key regulators.
This can be utilized to create novel therapeutic strategies against
certain oncoproteins, especially against those with various
mutations or thought to be “undruggable” (Lei et al., 2021b).
For example, KRAS mutation is known to promote ovarian
cancer development (Therachiyil et al., 2022), yet only a few
drugs are proven effective against certain mutations of KRAS.
Instead of directly inhibiting KRAS, inducing KRAS degradation
by activating its DUB(s) may be a promising approach;
furthermore, this strategy may be a “one-size-fits-all” solution
that is robust against various KRAS mutations (Fraile et al.,
2017), which may also be extended to other critical targets in
cancer therapy.

Keywords reflect the primary content of publications and
encapsulate the main topics covered in the literature. Analyzing
keywords can offer insights into current study hotspots and
future directions in the research field. By examining the
frequency and co-occurrence of keywords, research workers
can identify prevailing themes and emerging trends that shape
the field trajectory. In this study, “deubiquitinating enzyme,”
“degradation,” “expression,” and “activation” were the most
frequently co-occurring keywords. These keywords highlight
the central themes of current research, emphasizing the role of
DUBs in cellular processes. DUBs are known for their ability to
remove ubiquitin from target proteins, thereby preventing their
degradation. This stabilization affects the activation and
localization of various proteins, triggering cascades of
biological processes that are crucial for maintaining cellular
homeostasis and function. A timeline viewer for keyword
analysis reveals the evolution of hotspots in the field over
time, showing how the focus within the field has shifted and
expanded. This tool helps visualize the progression of key
research topics and provides a historical perspective on how
the field has developed. For instance, the consistent appearance
of terms like “degradation,” “expression,” and “activation”
underscores the ongoing interest in understanding the
fundamental mechanisms of DUBs and their broader
biological implications. Regarding keywords with the strongest
citation bursts, “cancer,” “ubiquitin,” “resistance,” and
“enzymes” have been the latest hotspots in ovarian cancer

TABLE 4 Top 20 keyword co-occurrence network analysis.

id Keyword Occurrences Total link
strength

208 Deubiquitinating
enzyme

34 136

15 Activation 35 129

304 Expression 40 127

200 Degradation 29 110

890 Ubiquitin 27 76

425 Inhibition 20 74

100 Cancer 26 74

688 Protein 24 71

129 Cells 21 69

567 nf-kappa-b 17 68

622 Pathway 19 66

595 Ovarian cancer 21 62

181 Cysteine proteases 14 62

71 Binding 14 58

812 Structural basis 17 56

235 Domain 12 54

172 Crystal structure 10 49

314 Family 11 48

910 Ubiquitination 12 48

283 Enzyme 10 47
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TABLE 5 Summary of DUB biological function in ovarian cancer.

Family DUBs Author Year Source Target Mechanism

Ovarian tumor
protease (OTU)

OTUB1 Wang et al. (2016) 2016 A2780, SKOV3, CAOV3, and ovarian cancer patients FOXM1 Tumor progression and prognosis

Wu et al. (2021) 2021 HeLa and SW620 / Chemoresistance

Maresca et al. (2015) 2015 Ovarian cancer tissue / Tumorigenesis

OTUD3 Johnson et al. (2020) 2020 Bioinformatics analysis, OVSAHO, PEO1, and
OVCAR5

PTEN and RIPK Necroptosis

ALG13 Wang (2021) 2021 Bioinformatics analysis / Prognosis

A20 Lin et al. (2016) 2016 SKOV3 CYLD Chronic inflammation, apoptotic
resistance, and invasion

OTUD7A Tavares et al. (2021) 2021 Bioinformatics analysis / /

Ubiquitin-specific
proteases (USPs)

USP1 Sonego et al. (2019) 2019 MDAH-2774, TOV-21G, OV-90, SKOV3, OVCAR3,
OVCAR4, OVCAR8, OVSAHO, KURAMOCH, and
ovarian cancer tissue

Snail Platinum resistance and metastasis

Simoneau et al. (2023) 2023 BRCA1/2 mutant and wild-type tumor PCNA Apoptosis

Song et al. (2022) 2022 OVCAR8, EFO21, and bioinformatics analysis S phase Cell cycle

USP2 Yang et al. (2007) 2007 Ovarian cancer tissue / /

USP5 Du et al. (2019) 2019 Ovarian serous carcinoma specimen, OVCAR3,
A2780, HO-8910, CAOV3, SKOV3, and xenograft
model

HDAC2 Apoptosis

USP7 Zhang et al. (2016) 2016 Primary serous ovarian cancer specimen and SKOV3 March7 Cell proliferation, invasion

Ma and Yu (2016) 2016 Primary serous ovarian cancer specimen, SKOV3,
and OVCAR3

/ Overall survival, lymph node metastasis,
cell viability, and invasion

Wang et al. (2017) 2017 HeyA8 and OVCAR8 / Cell death and autophagy

Qin et al. (2016) 2016 Ovarian cancer tissue array, SKOV3, HO-8910
OVCAR3, A2780, A2780/CP70, HeyC2, and
xenograft model

Mdm2, Mdmx, and
UHRF1

Cell death

Wang et al. (2023b) 2023 Ovarian cancer tissue, CAOV-3, SKOV3, and
xenograft model

TRAF4 Proliferation, migration, and invasion

Kisaï and Koji (2021) 2021 Meta-analysis / Cancer progression and prognosis

USP8 Corno et al. (2022) 2022 IGROV-1, A2780, PEO1, PEO4, PEO6, IGROV-1/
Pt1, A2780/CP, A2780/BBR, and advanced ovarian
cancer patients

/ Drug resistance and apoptosis

USP9X Hunter et al. (2015) 2015 Low-grade serous ovarian tumor specimen / Tumorigenesis

Habata et al. (2016) 2016 AMOC2, ES2, and primary ovarian cancer specimens Mcl-1 Chemoresistance

USP10 Han et al. (2019) 2019 Epithelial ovarian cancer tissue microarray / Prognosis

Gao et al. (2022) 2022 Bioinformatics analysis Immune infiltration Prognosis

Li et al. (2022a) 2022 Ovarian cancer tissue array, OVCAR3, ES2, A2780,
SKOV3, and IGROV1

G3BP1 Cancer progression and metastasis

USP11 Wang et al. (2019a) 2019 Ovarian cancer tissues, OVCAR-3, and SKOV3 Snail Epithelial-to-mesenchymal transition

Zhu et al. (2021) 2021 Ovarian cancer specimen, ES2, and 3AO BIP Chemoresistance

Guo et al. (2022) and Stiff
et al. (1994)

2022,
1994

Refractory ovarian cancer patients / /

USP13 Han et al. (2016) 2016 Ovarian cancer specimens, CAOV3, OVCAR3,
HeyA8, OVCAR8, and SKOV3

PIK3CA Cancer metabolism

Zhang et al. (2018) 2018 SW-1573, TOV-21G, xenograft model, and ovarian
cancer specimen

MCL1 Proliferation

Li et al. (2017) 2017 OVCAR3, SKOV3, A2780, FU-OV-1, EFO-27, and
xenograft model

RAP80-BRCA1 DNA damage

Kwon et al. (2022a) 2022 Xenograft model and primary ovarian specimen / Cancer development and metastasis

Kwon et al. (2022b) 2022 HeyA8 and COV318 / Proliferation

USP14 Yang et al. (2007) 2007 Ovarian cancer tissue / /

(Continued on following page)
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TABLE 5 (Continued) Summary of DUB biological function in ovarian cancer.

Family DUBs Author Year Source Target Mechanism

Wang et al. (2015) 2015 Epithelial ovarian cancer tissue and SKOV3 / Proliferation, prognosis

Wada et al. (2009) 2009 SHIN-3 / Tumorigenesis

Shen et al. (2020) 2020 A2780, COC1, A2780/CP, and COC1/CP BCL6 Chemoresistance

Huang et al. (2017) 2017 A2780, SKOV3, and xenograft model / Proliferation and tumor growth

Luo et al. (2019) 2019 A2780 and A2780/CDDP Connexin 32 Chemoresistance

Ji et al. (2023) 2023 A2780, OVCAR8 BACH1 Heme metabolism and invasion

USP15 Xu et al. (2009) 2009 HeLa Caspase-3 Apoptosis

Eichhorn et al. (2012) 2012 / TβR-I Tumorigenesis

Padmanabhan et al. (2018) 2018 SKOV3, SK-BR-3, YK-Nu, OVCAR3, OVCA420,
S1GODL, MDAH2774, COV362, and TOV-112D

p53-R175H Cell death

USP17 Yildirim et al. (2019) 2019 High-grade, advanced-staged serous ovarian cancer
biopsy

/ Epithelial-to-mesenchymal transition

USP18 Liu et al. (2022) 2022 A2780, SKOV3, and bioinformatics analysis AKT/mTOR Proliferation and migration

Li et al. (2022b) 2022 A2780 and OVCAR8 FBXO6 Tumorigenesis

USP19 Kang et al. (2021) 2021 Advanced-stage high-grade serous ovarian
carcinoma specimen

/ Prognosis

USP22 Ji et al. (2015) 2015 SKOV3, OVCAR3, epithelial ovarian cancer
specimen, and xenograft model

TGFβ1 Proliferation, prognosis and cell cycle

Gennaro et al. (2018) 2018 / / Tumorigenesis, cell cycle

USP28 Ito et al. (2018) 2018 TU-OC-1, KOC7c, RMG-1, RMG-2, TOV-21G, ES2,
and SKOV-3

Claspin Cell viability

Shen et al. (2023) 2023 OVCAR3, A2780, and ovarian cancer patients β-catenin Proliferation

Aziz et al. (2018) 2018 High-grade serous ovarian cancer specimens Cyclin E1 Prognosis

USP32 Nakae et al. (2021) 2021 SKOV3, OVCAR3, A2780, high-grade serous ovarian
cancer specimen, and xenograft model

FDFT1 Progression and prognosis

USP34 Zhao et al. (2023) 2023 Bioinformatics analysis / Prognosis and immunemicroenvironment

USP35 Zhang et al. (2021) 2021 Ovarian cancer tissue, VCAR3, SKOV3, VCAR-5,
ID8, and xenograft model

STING Prognosis, immune infiltration, and
chemoresistance

USP36 Li et al. (2008) 2008 A2780, Caov-3, and ovarian cancer tissue / /

Yan et al. (2020) 2020 OVCAR8, SKOV3, OV-90, OVCAR10, IGROV1,
OVKATE, OV-56, PEO1, and ovarian cancer
specimen

PrimPol DNA replication and chemoresistance

USP39 Wang et al. (2021) 2021 Primary ovarian cancer patients, A2780, SKOV3,
OVCAR3, OVCAR8, CAOV3, ID8, and xenograft
model

HMGA2 Malignancy

Wang et al. (2019b) 2019 SKOV3, ES2, and xenograft model / Malignancy and chemoresistance

Yan et al. (2019) 2019 HO8910, SKOV3, and xenograft model p53/p21 Proliferation and epithelial-to-
mesenchymal transition

USP44 Lu et al. (2014) 2014 T80 and SKOV3ip1 / Cell cycle progression and proliferation

Tserpeli et al. (2021) 2021 Advanced high-grade serous ovarian cancer / /

USP45 Liu et al. (2023b) 2023 SKOV3, OVCAR3, serous ovarian cancer specimen,
and xenograft model

Snail Tumorigenesis, progression, and
chemoresistance

USP46 Xu et al. (2021) 2021 Ovarian cancer specimen, SKOV3, and SKOV3/DDP Bcl-2/caspase-
3 and ATK

Proliferation, apoptosis, and
chemoresistance

USP47 Hu et al. (2019) 2019 SKOV3, TOV-112D, and ovarian cancer specimen / Proliferation

USP48 Lei et al. (2020) 2020 ES2, 3AO, A2780, ovarian cancer specimen, and
xenograft model

/ Chemoresistance and metastasis

USP51 Zou et al. (2015) 2015 Bioinformatics analysis, SKOV3, SKOV3/DDP,
A2780, and A2780/DDP

/ /

(Continued on following page)
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research since 2020, and the focus on “ubiquitin” and “resistance”
as future directions highlights the need for more research into
how ubiquitin signaling pathways contribute to cancer
progression and treatment outcomes. Understanding these
pathways could lead to the development of novel interventions
that target specific DUBs or their substrates, potentially
overcoming resistance to current therapies and improving
patient outcomes.

This bibliometric analysis provides a comprehensive and visual
analysis of DUBs in ovarian cancer; however, several limitations should
be acknowledged. This study only included articles indexed in the
WoSCC, and the language was restricted to English. Therefore,
publications in other databases or languages were not included in
the analysis. Nevertheless, the WoSCC is a well-recognized database,
and given its prominence, the impact of such omissions on the overall
findings is expected to be low. Further studies are needed to include
additional databases and languages to provide a more accurate and
comprehensive analysis. Based on the narrative review and the
bibliometric analysis, future studies may need to focus on the
potential of DUBs as drug targets for the treatment and
management of this disease.

Conclusion and outlook

In summary, a visual analysis of DUBs is presented in this study
in the field of ovarian cancer research, facilitated by the use of
CiteSpace, VOSviewer, and R4.3.3. The essential functions of DUBs

in ovarian cancer biology include DNA repair, cell cycle regulation,
apoptosis, oncogenic signaling, chemotherapy response, and
chemoresistance. However, the precise functions and mechanisms
of DUBs in ovarian cancer remain largely unexplored. Moreover, the
expression levels and functions of some DUBs are still under debate;
whether these DUBs serve as oncogenic proteins, tumor
suppressors, or double-edged swords in ovarian cancer requires
further investigation. Understanding the intricate interplay between
DUBs and ovarian cancer biology offers promising prospects for
developing innovative and more effective treatment strategies,
ultimately improving outcomes for patients with this challenging
disease. Future efforts are expected to decipher the specific roles of
individual DUBs in ovarian cancer, identify potential therapeutic
targets, and explore the feasibility of targeting DUBs as a novel
approach to treating ovarian cancer.
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