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Background: Acute kidney injury (AKI) requiring continuous renal replacement
therapy is common in critically ill patients. The ADVanced Organ Support
(ADVOS) system is a novel hemodialysis machine that uses albumin enriched
dialysate which allows the removal of protein-bound toxins and drugs. To date,
data on antimicrobial removal under ADVOS has not yet been reported.

Methods: An in vitro study was conducted using whole porcine blood and
continuous infusions of different antimicrobial agents to investigate the effect
of ADVOS on drug exposure. Drugs with varying protein binding, molecular
weights and renal clearances, anidulafungin, cefotaxime, daptomycin,
fluconazole, ganciclovir, linezolid, meropenem and piperacillin were studied.

Results: All studied drugs were removed during the in vitro ADVOS experiment.
Clearance under ADVOS (CLADVOS) for low protein-bound drugs, such as cefotaxime,
fluconazole, ganciclovir, linezolid, meropenem and piperacillin ranged from 2.74 to
3.4 L/h at a blood flowof 100mL/min.With a doubling of flow rate CL for these drugs
increased. Although efficiently removed, this effect was not seen for CLADVOS in high
protein-bound substances suchasdaptomycin (1.36 L/h) and anidulafungin (0.84 L/h).

Conclusion: The ADVOS system effectively removed protein-bound and unbound
antimicrobials to a significant extent indicating that dose adjustments are required.
Further, clinical studies are necessary to comprehensively assess the impact of
ADVOS on antimicrobial drug removal. Until clinical data are available, therapeutic
drug monitoring should guide antimicrobial dosing under ADVOS.
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1 Introduction

Patients in the intensive care unit (ICU) who suffer from acute organ failure often
require extracorporeal therapies to support failing organ systems (Huber and Ruiz de
Garibay, 2020).

Moreover, infections are common in these patients and may trigger and/or worsen
the progressive failure of one or more organ systems (Bajaj et al., 2014). Renal
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replacement therapy (RRT) for acute kidney injury (AKI),
albumin dialysis, or plasma exchange for acute-on-chronic
liver failure (ACLF) or acute liver failure (ALF) can be used to
temporarily support failing organs. In RRT molecular size,
protein binding, renal excreted fraction and volume of
distribution are key determinants of drug removal, impacting
under- or overdosing with risking adverse patient outcomes
(Kollef et al., 2021). Additonally, studies have demonstrated
that achieving appropriate antimicrobial exposure is crucial
for reducing mortality rates in critically ill patients (Pai
Mangalore et al., 2022; Roberts et al., 2014; Gatti et al., 2024).
To guide antimicrobial dosing, in vitro studies (Roehr et al., 2015)
as well as clinical trials investigating antimicrobial dosing under
RRTs in critically ill patients (Roberts et al., 2020) have
been published.

Among the profusion of extracorporeal organ replacement
devices, the ADVanced Organ Support (ADVOS) albumin
hemodialysis system (ADVITOS GmbH, Munich, Germany)
has recently reported promising results in observational trials
and is gaining attention for critically ill patients (Acharya et al.,
2022; Sommerfeld et al., 2023). ADVOS is intended to remove
water-soluble toxic substances, protein-bound toxic substances,
to normalize or improve the composition of blood in case of e.g.,
electrolyte or acid-base disturbances (e.g., metabolic acidosis or
respiratory acidosis). Additionally, it removes fluids in case of
fluid overload in patients with acute, chronic and acute-on-
chronic liver failure and/or renal failure and/or acidosis.

However, studies investigating drug elimination under
ADVOS have not been carried out systematically yet. Thus,
understanding mechanistic and clinical factors that influence
drug elimination is of major importance to attain appropriate
drug exposure. Therefore, the present study employed a
standardized in vitro blood model to assess the ability of
ADVOS to remove a range of antimicrobial substances widely
used in the ICU. Moreover, we aimed to quantify the amount of
drug elimination to translate this information in clinical
dosing regimens.

2 Materials and methods

2.1 In vitro model and blood preparation

Fresh porcine blood (Münchner Schlachthof Betriebs GmbH,
Munich, Germany) was diluted with modified Ringer’s solution to
achieve a hematocrit of 36%, standard electrolyte concentrations,
and normal blood gas values. Porcine blood was mixed with human
albumin (Albunorm 20%, Octapharma GmbH, Langenfeld,
Germany) to obtain a human albumin level of 35 g/L. To
prevent coagulation, 30,000 IU/L of heparin (Ratiopharm, Ulm,
Germany) was added. The blood was maintained at a constant
temperature of 37°C while continuously being stirred at 130 rpm.
Drugs listed in Table 1 were individually added to attain initial
concentrations as reported in Table 2.

TABLE 1 Study drugs including pharmacokinetic properties.

Drug Manufacturer Solvent Protein
binding

[%]

Half-
live
[h]

Vd

[L/kg BW]
CLhealthy
[L/h]

Molecular
size [Da]

Planed initial
concentration

[mg/L]

Anidulafungin Pfizer, New York City,
New York, US

R: SWFI
D: 0.9%
NaCl

99 40 0.5 1.08 1,140 8

Cefotaxime Fresenius Kabi
Deutschland GmbH,
Bad Homburg, DE

R: SWFI
D: 0.9%
NaCl

33 1 0.3 16.54 455 100

Daptomycin ratiopharm GmbH,
Ulm, DE

R: 0.9%
NaCl

90 8 0.1 0.61 1,620 140

Fluconazole Fresenius Kabi
Deutschland GmbH,
Bad Homburg, DE

RTA 10 30 0.6 1.13 306 60

Ganciclovir Hexal AG,
Holzkirchen, DE

R: SWFI
D: 0.9%
NaCl

2 3 0.7 8.43 255 30

Linezolid Fresenius Kabi
Deutschland GmbH,
Bad Homburg, DE

RTA 31 5 0.6 6.62 337 30

Meropenem Fresenius Kabi
Deutschland GmbH,
Bad Homburg, DE

R: SWFI
D: 0.9%
NaCl

2 1 0.25 12.99 383 60

Piperacillin Fresenius Kabi
Deutschland GmbH,
Bad Homburg, DE

R: SWFI
D: 0.9%
NaCl

16 1 0.25 12.99 518 164

SWFI: sterile water for infusion, NaCL: sodium chloride, RTA: ready to administer, R: reconstitution, D: dilution, Pharmacokinetic information is based on the prescribing information of each

drug. Molecular sizes were taken from the PubChem Database.

Frontiers in Pharmacology frontiersin.org02

König et al. 10.3389/fphar.2024.1447511

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1447511


2.2 ADVOS hemodialysis system

The ADVOS multi hemodialysis system (ADVITOS GmbH,
Munich, Germany) utilizes three circuits (Figure 1) with two ELISIO
19H dialyzers (Nipro D. Med Germany GmbH, Hamburg,
Germany) in a concurrent extracorporeal circuit. Blood flow rates
(BFR) ranging from 100 to 500 mL/min are used with recirculating,
albumin enriched (200 mL, 20% human albumin) dialysate at a flow
rate of 800 mL/min (dialysate circuit) which employs acidic (Acid)
and alkaline concentrates (Base) along with water for
pH adjustments.

The dialysate is subsequently divided into an acidic and an
alkaline path (ADVOS multi circuit). Herein, protein-bound and
water-soluble toxins separate from the albumin dialysate through
pH adjustment and convection. This arrangement effectively
removes protein-bound molecules by inducing conformational
changes in albumin, releasing bound molecules which are then
removed through convection via two filters (ELISIO 11 H, Nipro
D. Med Germany GmbH, Hamburg, Germany). Thereafter, the
unloaded albumin dialysate is reintroduced into the dialysate circuit
at a customized pH (Acharya et al., 2022). This conformation allows
a continuous and efficient removal of protein-bound molecules as

TABLE 2 Drug concentrations and clearance results.

Drug Infusion
rate (mg/h)

Added
drug
(mg)

Eliminated
drug (mg/9 h)

Drug
removal

(%)

CLADVOS [L/h] CLCRRT
[L/h]

BFR 100 mL/min
CFR 160 mL/min
DFR 800 mL/min

BFR 200 mL/min
CFR 320 mL/min
DFR 800 mL/min

BFR
200 mL/h
DFR 2 L/h

Anidulafungin 5.1 63 38 61 0.84 0.84 0.02

Cefotaxime 74.9 849 787 93 2.74 4.77 1.34

Daptomycin 74 1,004 787 78 1.04 1.36 0.10

Fluconazole 56 576 540 94 3.39 6.20 1.80

Ganciclovir 23.7 262 246 94 2.91 5.88 1.98

Linezolid 26.8 281 258 92 2.79 4.65 1.38

Meropenem 59.2 595 556 93 3.40 6.08 1.96

Piperacillin 164 1784 1,667 93 3.18 5.61 1.56

Residual CL (renal + non-renal) is neglected for calculation purposes. CRRT, clearance was calculated assuming a dialysate flow rate of 2 L/h. BFR: blood flow rate; CFR: concentrate flow rate;

CL: clearance; CRRT: continuous renal replacement therapy; DFR: dialysate flow rate; grey shaded rows indicate drug with protein binding >90%.

FIGURE 1
Schematic presentation of the ADVOS multi hemodialysis system. Adapted from https://advitos.com/wp-content/uploads/2023/07/20220630_
ADVOS_kreislauf_poster_EN.pdf.
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reported previously (Acharya et al., 2022; Sommerfeld et al., 2023;
Huber et al., 2017; Falkensteiner et al., 2021). The concentrate flow
rate (CFR) can range between 160 and 320 mL/min, determining
both the quantity of dialysate cleaned via convective transport and
the amount of fresh concentrate pumped into the system in the
ADVOS multi circuit.

2.3 Experimental setup

The experiment comprised various consecutive phases designed
to facilitate pharmacokinetic profiling of each drug during ADVOS
treatments (Figure 2). A 4-L blood beaker containing 35 g/L albumin
(Albunorm 20%, Octapharma GmbH, Langenfeld, Germany) was
spiked with each individual drug (Table 2). The initial drug
concentrations were set to mimic physiological peak
concentrations (Roehr et al., 2015).

In phase one, ADVOS multi was started with a BFR, CFR and
dialysate flow rate (DFR) of 100, 160, and 800 mL/min, respectively.
Sampling from the beaker stated at the beginning (T0) to assess
starting concentrations with an additional sample at 2 h (T2).

Phase two was initiated by the start of continuous infusions for
3 h as outlined in Table 2 with subsequent sampling at 5 h (T5).

For phase three, BFR and CFR were doubled to 200 mL/min and
320 mL/min, respectively while DFR remained fixed (800 mL/min).
Sampling was performed after 1 h (T6) followed by phase four,
where continuous infusion was resumed and ceased with a final
sample at T9.

Additional blood samples were collected from the tubing system
of themachine (pre and post the two parallel dialyzers) at T0, T2, T5,
T6 and T9 h.

2.3.1 Drug quantification
The blood samples were centrifuged (4,000 rpm, 10 min), and

the resulting serum supernatant separated into aliquots, which
were stored at −80°C until further analysis. To obtain protein-free
ultrafiltrate 800 µL serum was added to a Centrifree® tube

(Ultrafiltration device with Ultracel® regenerated cellulose
membrane, Merck KGaA, Germany) and spun at 1,000 × g,
30 min, 37°C. Subsequent quantification for both serum and
ultrafiltrate was conducted using validated high performance
liquid chromatography (HPLC) methods with UV detection.
The methods already demonstrated linearity, with a relative
standard deviation (SD) for intra- and inter-day precision and
accuracy <10% at high, medium and low concentrations
(Zimmer et al., 2021).

2.4 Pharmacokinetic calculations

Pharmacokinetic parameters of each drug were calculated
through a non-compartmental analysis, assuming first-order
kinetics and a volume of distribution of 4 L (beaker volume),
utilizing Microsoft Excel 365 (Microsoft Corp., Redmond, WA,
United States). A dialysate flow rate of 2 L/h was assumed for
the calculation of CLCRRT (Equation 2). This is based on a dialysis
dose of 25 mL/kg/h for an 80 kg patient, as suggested by the KDIGO
2012 clinical practice guideline for patients with AKI requiring
CRRT (Khwaja, 2012). ADVOS clearance (CLADVOS) (Equation
1) and protein binding (PB) (Equation 3) were calculated as follows:

CLADVOS L/h[ ] � drug dose mg
24 h[ ]

concentration in serum mg
L[ ]*24 h (1)

CLCRRT L/h[ ] � dialysate flow rate
L
h
[ ]* 1 − protein binding( )

(2)

PB %[ ] � 100% − concentration in ultrafiltrate mg
L[ ]

total concentration in serum mg
L[ ] × 100 (3)

Dose (D) adjustments (Equation 5) were calculated using the
Dettli equation (Equation 4) which determines the individual
clearance (CLindividual) based on the underlying renal function
and the non-renal elimination fraction (Q0) (Dettli, 1974).

FIGURE 2
Consecutive phases of the experiment. BFR: Blood flow rate, CFR: Concentrate flow rate, DFR: Dialysate flow rate.
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Remaining renal function was set to either a creatinine clearance
(CrCL) of 25 mL/min or anuria (CrCL = 0 mL/min). CLindividual
resembles the endogenous CL as it combines non-renal and residual
renal elimination based on CrCL.

CLindividual L/h[ ] � Q0 +
creatinine clearance of the patient ml

min[ ]
100 ml

min

* 1 − Q0( )*CLhealthy L
h
[ ] (4)

The individually required dose (D) without ADVOS was
calculated by proportionally adjusting CLindividual to CLhealthy, as
reported in the literature (see Table 1), and multiplying it by the
standard licensed dose.

D mg/24h[ ] � CLindividual
L
h[ ]

CLhealthy
L
h[ ] *standard dose

mg
24h
[ ] (5)

The required dose using ADVOS (DADVOS) was calculated by
adding the CLADVOS from our experiments to CLindividual
(Equation 6).

DADVOS mg/24h[ ]�CLindividual
L
h[ ]+CLADVOS

L
h[ ]

CLdrug
L
h[ ] *standarddose

mg
24h
[ ]

(6)
Visualization and statistical evaluation were performed using

linear or non-linear regression methods included in Prism 9
(GraphPad Software, San Diego, CA, United States).

3 Results

3.1 Protein binding in vitro

Protein binding were comparable to those found in the literature
(Figure 3). As the free fraction of ganciclovir was below the limit of
quantification (LLOQ) protein binding was calculated using ½
of the LLOQ.

3.2 Observed drug concentrations and
clearance during ADVOS treatments

All drugs showed a decline in concentrations (Figure 4). At a
BFR of 100 mL/min, low protein-bound drugs with a low molecular
weight, such as cefotaxime, fluconazole, ganciclovir, linezolid,
meropenem and piperacillin showed a CLADVOS ranging from
2.74 to 3.4 L/h. An increase in the BFR to 200 mL/min resulted
in a doubling of CLADVOS for all the aforementioned drugs.

For the two drugs with the largest molecular weight and highest
protein binding daptomycin and anidulafungin CLADVOS at a BFR of
100 mL/min were 0.84 and 1.06 L/h, respectively. Doubling the BFR
resulted in a moderate increase in CLADVOS only for daptomycin
(1.36 L/h).

3.3 Calculated dose adjustment for ADVOS
treatments in patients with impaired
renal function

Dose calculations based on the CLCRRT and on the CLADVOS
under the two different settings of ADVOS therapy are shown in
Table 3. Drugs with a high protein binding ≥90% such as
anidulafungin and daptomycin as well as linezolid with a
moderate protein binding revealed an extended CLADVOS in the
in vitro experiment (Table 2) resulting in increased daily dosages
when compared to the licensed maintenance dosages for patients
with CrCL >60 mL/min. In contrast, the low protein-bound (<35%)
beta-lactam antibiotics such as cefotaxime, meropenem and
piperacillin as well as the antiviral agent ganciclovir showed a
significantly lower CLADVOS (Table 2), compared to patients with
normal renal function (CLhealthy, Table 1). Thus, lower
recommended doses were calculated since the cumulated
CLindividual at CrCL ≤25 mL/min and CLADVOS was not as high
as CLhealthy for those drugs. In the case of fluconazole, at a blood flow
of 100 mL/min CLADVOS triplicates (Table 2) the CLhealthy (Table 1),
which results in higher required doses during ADVOS treatments
(Table 3). Finally, the calculated dosages under CRRT were lower
than under ADVOS for each of the drugs (Table 3).

4 Discussion

To date, several cohort studies as well as data from a patient
registry (Fuhrmann et al., 2021; Fuhrmann et al., 2020) demonstrate
effective removal of water-soluble and protein-bound substances
with ADVOS (Huber et al., 2017; Falkensteiner et al., 2021; Kaps
et al., 2021). Although each of these reports describes the therapy as
feasible and safe, data regarding pharmacokinetics of anti-infective
agents were not presented. Our study is the first to systematically
investigate the effect of ADVOS on the elimination of
antimicrobials. The results highlight that all tested drugs were
efficiently removed by the ADVOS system. Moreover, blood and
concentrate flows played a role in the removal of small water-soluble
drugs as CLADVOS for these drugs doubled with doubling of flow
rates. Small molecules with low protein binding (<35%) showed
pronounced removal, with CLADVOS ranging from 2.74 L/h
(cefotaxime) up to 3.4 L/h (meropenem) at a BFR of 100 mL/

FIGURE 3
Protein binding (PB) in vitro vs. literature.
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min, CFR of 160 mL/min and a fixed DFR of 800 mL/min. The
doubling of the CLADVOS for low protein-bound drugs with a
twofold increase in the BFR (200 mL/min) and CFR (320 mL/
min) during the experiment strengthens this assumption. These data
correlate well with CLADVOS (6.3 L/h at BFR 250 mL/min) published
in a clinical case report (König et al., 2021).

Our data showed that, assuming a standard dialysate flow of
2 L/h for CRRT, CLADVOS surpassed calculated CLCRRT for all

tested anti-infective agents (Table 2). Moreover, CLADVOS was
higher than previously reported clinical total body clearances for
patients receiving different types of CRRT. For instance,
meropenem CLADVOS was up to 6.08 L/h, whereas studies
report lower total body clearances under CRRT (4.1 L/h
(Varghese et al., 2015); 3.5 L/h (Bilgrami et al., 2010); 1.9 L/h
(Jamal et al., 2015)). The same trend was observed for linezolid
(CLADVOS 4.65 vs. 2.3 L/h (Meyer et al., 2005)) and piperacillin

FIGURE 4
Concentration profiles over time.

TABLE 3 Dose calculations based on in vitro CLADVOS and calculated CLCRRT.

Treatment No extracorporeal support ADVOS CRRT

Settings BFR 100 mL/
min CFR

160 mL/min
DFR

800 mL/min

BFR 200 mL/min
CFR 320 mL/min
DFR 800mL/min

BFR 200 mL/h
DFR 2 L/h

CrCL (mL/min) >60 25 0 25 0 25 0 25 0

Dose calculations (mg/24 h) Standard licensed dose

Anidulafungin 100 100 100 180 180 180 180 100 100

Cefotaxime 6,000 3,080 2,100 4,070 3,090 4,810 3,830 3,560 2,590

Daptomycin 700 440 360 1,630 1,550 2000 1920 550 470

Fluconazole 800 380 240 2,780 2,640 4,770 4,630 1,660 1,520

Ganciclovir 800 260 80 540 360 820 640 450 270

Linezolid 1,200 930 840 1,440 1,350 1770 1,680 1,180 1,090

Meropenem 3,000 1,310 750 2,100 1,540 2,720 2,150 1770 1,200

Piperacillin 12,000 6,420 4,050 8,640 6,540 10,880 8,780 7,150 5,040

CrCL: creatinine clearance; BFR: blood flow rate; CFR: concentrate flow rate; DFR: dialysate flow rate; grey shaded rows depict drugs requiring higher dosages under ADVOS, compared to

standard licensed drug regimens.
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(CLADVOS 5.61 vs. 2.1 L/h (Sharrock et al., 2023) or 3.9 L/h
(Awissi et al., 2015)). Moreover, Muhl et al. reported total
fluconazole clearance under CRRT of 2.57 L/h (Muhl, 2005),
which was well exceeded when using ADVOS (CLADVOS up to
6.2 L/h). For ganciclovir, a similar pattern was seen with a
reported total body clearance under CRRT of 2.71 L/h
(Horvatits et al., 2014), in comparison to a CLADVOS of
5.88 L/h. Interestingly, this effect was not as pronounced for
cefotaxime, which showed CRRT clearance of 5.8 L/h (Koedijk
et al., 2016), whereas CLADVOS was up to 4.77 L/h. Overall, the
high removal rates are in line with using two parallel dialyzers
(total surface area 3.8 m2) in combination with high CFR
(160–320 mL/min) which can explain the high CLADVOS

observed for antimicrobials with low protein binding.
For larger molecules with protein binding >90% such as

daptomycin or anidulafungin, minor or no changes in CLADVOS
were observed with increased flows. Daptomycin showed low
clearance (0.56 L/h (Xu et al., 2017)) with negligible changes in
pharmacokinetics and clearances in patients undergoing CRRT (CL
1.1 L/h) (Bellmann and Smuszkiewicz, 2017) whereas CLADVOS is
more than twice as high (1.36 L/h). Anidulafungin presented with an
in vitroCLADVOS of 0.84 L/h (Table 2), which is almost the non-renal
excretion capacity of healthy volunteers (Wasmann et al., 2018). In
this scenario, the total clearance under ADVOS is twice as high as in
healthy volunteers (CLhealthy, Table 1). Therefore, highly protein-
bound drugs would require higher maintenance dosages under
ADVOS to achieve optimal targets (Table 3). In this experiment,
the removal of high protein-bound antimicrobials is likely due to the
utilization of an albumin primed dialysate, which is continuously
regenerated (ADVOS multi circuit). However, the recirculation of
the dialysate might hinder a complete removal of circulating
substances.

There are certain limitations that need to be discussed. We
report an in vitro experiment designed to investigate the
elimination capacity of the ADVOS hemodialysis system, as
reported previously (Roehr et al., 2015; Konig et al., 2019;
Wenzler et al., 2022). Herein, similar to other studies
characterizing drug removal by extracorporeal support we
substituted human with porcine blood (Schneider et al., 2021).
Yet, its results cannot be translated into direct clinical practice as
pathophysiological changes affecting antimicrobial exposure in
critical illness were absent in this approach. In critically ill
patients, metabolic and biochemical changes, such as
hypoalbuminemia, can alter drug ionization and protein
binding (Wong et al., 2018). Furthermore, resuscitation
strategies and vasoactive medications can induce a
hyperdynamic state, increasing blood flow to major organs
and affecting hepatic metabolism and renal excretion (Roberts
et al., 2011). Due to the frequent use of multiple medications in
critically ill patients, drug-drug interactions further influence
metabolism and pharmacokinetic exposure [ (Koeck et al., 2021).
These factors contribute to both inter- and intra-patient
variability in drug pharmacokinetics, making drug response
difficult to predict in this population (Roberts and Lipman,
2009). Moreover, our experiment did only simulate for a
single dosing interval and conducted over a limited time
course (9h). Therefore, reduced ADVOS effectiveness over the
course of therapy (24h) cannot be ruled out. Thus, these data can

be used to guide future clinical studies to identify appropriate
dosing regimens whilst using ADVOS. Extrapolation to other
substance classes often used in critical illness settings should be
used cautiously but might help to inform clinicians to closely
monitor therapies in terms of efficacy. Further studies are
warranted to investigate and validate the findings of this in
vitro experiment. In the meantime, therapeutic drug
monitoring (TDM) of antimicrobials is highly recommended
to guide and optimize treatment in critically ill patients
undergoing ADVOS treatment.

5 Conclusion

Our study shows for the first time that the ADVOS hemodialysis
system can efficiently remove antimicrobials. In comparison to CRRT,
low protein-bound drugs follow a similar removal mechanism under
ADVOS, which is dependent on BFR and dialysis dose (i.e., concentrate
flow). However, the CLADVOS appeared higher than CL calculated and/
or reported under CRRT. Moreover, in contrast to CRRT, ADVOS
removed protein-bound antimicrobials (e.g. anidulafungin,
daptomycin) with clearances comparable to those in healthy
volunteers. Until clinical data are available, individualized dosing
and TDM are recommended to guide effective and safe
concentrations under ADVOS treatments.
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