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Prostate cancer (PCa) is the second leading cause of cancer-related death among
men in western countries. Evidence has indicated the significant role of the
androgen receptor (AR) as the main driving factor in controlling the development
of PCa, making androgen receptor inhibition (ARI) therapy a pivotal management
approach. In addition, AR independent signaling pathways also contribute to PCa
progression. One such signaling pathway that has garnered our attention is N6-
Methyladenosine (m6A) signaling, which refers to a chemical modification on RNA
with crucial roles in RNAmetabolism and disease progression, including PCa. It is
important to comprehensively summarize the role of each individual m6A
regulator in PCa development and understand its interaction with AR
signaling. This review aims to provide a thorough summary of the involvement
of m6A regulators in PCa development, shedding light on their upstream and
downstream signaling pathways. This summary sets the stage for a
comprehensive review that would benefit the scientific community and
clinical practice by enhancing our understanding of the biology of m6A
regulators in the context of PCa.
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1 Introduction

Prostate cancer (PCa), a malignancy originating from epithelial cells in the
peripheral zone of prostate (Zhou et al., 2023), remains the second commonly
diagnosed adenocarcinoma and the leading cause of cancer related deaths among
men worldwide. The World Cancer Research Fund International survey estimated that
1,467,854 new cases of PCa were reported globally in 2022, resulting in approximately
397,430 deaths (Bray et al., 2024). Epidemiological studies have established that age
(Godtman et al., 2022; Choi et al., 2018), race (Akaza et al., 2011; Jeong et al., 2016) and
genetic factors (Bratt, 2002; Rebbeck, 2017; Thalgott et al., 2018) as the significant risk
factors for PCa. PCa progresses through four stages, as determined by digital rectal
examination (DRE) (Mottet et al., 2017), serum prostate specific antigen (PSA) level
(Mottet et al., 2017) and pathological examination of biopsy samples (Kwon et al.,
2020). Generally, low-grade and early localized PCa patients (PSA ≤10, Gleason
score ≤6, or clinical stage T1-2a) are often managed by either radiotherapy or
surgery. However, approximately 8% of PCa patients are viewed as advanced
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disease at their first diagnosis (Siegel et al., 2022). The cancer cells
may spread from the prostate to other parts of the body,
particularly the bones (Peng et al., 2017) and lymph nodes
(Cai et al., 2011). In advanced stage, it may lead to urinary
difficulty, hematuria, or pelvic pain. Targeting the androgen
receptor (AR) signaling axis with androgen deprivation
therapy (ADT) has been a primary treatment approach,
showing favorable outcome (Dai et al., 2017; Davies et al.,
2021; Guan et al., 2022; Jeon et al., 2023). Unfortunately, ADT
is not curative and most patients will relapse within 2 years
despite the low castrated level of serum testosterone. These
patients are then considered to acquire castration-resistant
PCa (CRPC), a highly lethal disease that accounts for the
main mortality (Shigeta et al., 2019; Cai et al., 2023; Cheng
et al., 2022; Wang et al., 2023a). Increasing evidence suggest
that the reactivation of AR signaling plays a critical role in CRPC
development, leading to the clinical approval of the second-
generation AR antagonists such as enzalutamide (Enz) for
managing this disease (de Bono et al., 2011; Agarwal et al.,
2023; Powles et al., 2022; Wenzel et al., 2022). Despite the
initial responses to this therapy, patients will eventually
become Enz resistance owing to various mechanisms (Bennett
et al., 2024; Liu et al., 2019; Zhang et al., 2020; Zheng et al., 2022).
Additionally, approximately 30% of patients exhibit primary
resistance to Enz treatment. These clinical findings collectively
indicate limitations in the application of Enz.

Although AR is the main driving force for PCa progression,
other signaling pathways, such as m6A signaling, are
also involved in the regulation of PCa carcinogenesis and
therapy resistance (He et al., 2022; Han et al., 2023). This
review aims to comprehensively summarize the current
understanding of the roles of RNA m6A regulators in PCa
development and offer insights for further scientific research
and clinical strategies.

2 Epitranscriptome and RNA m6A
modification

Epitranscriptome, a biochemical modification on RNA, has
received significant attention from scientists due to its critical
roles in determining RNA metabolism as well as disease
progression (Murakami and Jaffrey, 2022; Wang Y. et al., 2014;
He et al., 2018; Bokar et al., 1997; Clancy et al., 2002; Sommer et al.,
1978; Zhong et al., 2008). It is estimated that over 170 types of
biochemical modifications occur in RNAs, with m6A as the major
form (Wiener and Schwartz, 2021). Early identified in 1970s, m6A,
the methyl-nitrogen at the position six of adenylate (Figure 1), has
been reported to be functional (Wei et al., 1976; Desrosiers et al.,
1974). The enzyme responsible for catalyzing RNA m6A
modification, known as “Writer,” includes methyltransferase-like
protein 3 (METTL3), METTL16, METTL5 and zinc finger CCHC
type containing 4 (ZCCHC4) (Jiang et al., 2021). Among them,
METTL3 methyltransferase complex, consisting of METTL3,
METT14, WTAP (Wilms tumor 1 associated protein), Zinc
finger CCCH-type containing 13 (ZC3H13), RNA-binding motif
protein 15 (RBM15) and VIRMA (Vir Like M6A Methyltransferase
Associated), is mainly responsible for the RNAm6Amodification on
the consensus sequence DRACH (D = A/G/U, R = A/G, H = A/C/U)
(Linder et al., 2015; Zaccara et al., 2019; Huang et al., 2022; Raj et al.,
2022; Wei et al., 2022; Ma et al., 2019). It is noting that the m6A
modification is a reversible process and the methyl group can be
removed by demetyltransferase (Eraser) such as obesity-associated
protein (FTO) and Human AlkB homolog H5 (ALKBH5) (He et al.,
2019). Once an RNAmolecule is m6A modified, it becomes prone to
recognition by a variety of proteins (Readers) and undergoes distinct
fate (Zaccara et al., 2019). In general, m6A modification on mRNA
enables to influence its splicing, stability or translation. Recent
advances in this area suggest that m6A regulators play vital roles
in various human cancers, including PCa (Zhu W. et al., 2023).

FIGURE 1
The general role of each individual m6A regulator in RNA metabolism.
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TABLE 1 The m6A targets in PCa.

Regulators Target m6A site Reader Biological consequence

METTLE3 c-Myc NA NA Increase c-Myc mRNA transcription

USP4 3′-UTR YTHDF2 Increase USP4 mRNA degradation

LEF1 NA IGF2BP2 Increase LEF1 protein level

Gli NA NA Increase Gli protein level

KIF3C NA IGF2BP1 Increase KIF3C mRNA stability

ITGB1 NA NA Increase ITGB1 mRNA stability

CTNNB1 3′-UTR NA Decrease CTNNB1 mRNA stability

NAP1L2 NA HNRNPC Increase NAP1L2 mRNA stability

HRAS 3′-UTR IGF2BP2 Increase mRNA stability

MEK2 5′-UTR IGF2BP2 Promote protein transcription

AR 3′-UTR YTHDF3 Regulate AR spling

CLIC4 3′-UTR NA Increase CLIC4 mRNA stability

ERG2 NA NA Increase ERG2 mRNA stability

PLK1 3′-URT YTHDF1 Increase PLK1 mRNA transcripotion

LHPP NA YTHDF2 Increase LHPP mRNA degradation

NKX3-1 NA YTHDF2 Increase NKX3-1 mRNA degradation

PRMT6 NA NA Stability

SIAH1 NA NA Increase SIAH1 mRNA degradation

ARHGDIA NA NA Increase ARHGDIA mRNA stability by regulating ELAVL1 expression

PCAT6 NA IGF2BP2 Increase PCAT6 mRNA stability

lncRNA SNHG7 NA NA Increase SNHG7 RNA stability

lncRNA NEAT1 5′-UTR 3′UTR NA Increase NEAT1 RNA stability

lncR MALAT1 NA NA Increase MALATI RNA stability

lncR PVT1 NA NA Increase PVT1 RNA stability

miR-139-5p NA NA Increase miR-139-5p RNA stability

pre-miR-25 NA HNRNPA2B1 Promote pre-miR-25 maturation

pre-miR-93 NA HNRNPA2B1 Promote pre-miR-93 maturation

miR-148-3p NA NA Promote pre-miR-148-3p maturation

circDDIT4 3′-UTR
5′-UTR

NA Promote circDDIT4 circularization

circABCC4 NA IG2BP2 Increae circABCC4 RNA stability

circRBM33 NA NA NA

METTL14 THBS1 NA YTHDF2 Increase THBS1 mRNA degradatiom

FTO CLIC4 3′-UTR NA Increase CLIC4 mRNA stability

MC4R 3′-UTR NA Increase MC4R mRNA degradation

ERG2 NA NA Increase ERG2 mRNA stability

miR-139-5p NA NA Increase miR-139-5p stability

DDIT4 3′-UTR IGFBP2/3 Increase DDIT4 mRNA stability

ZFHX3 NA — Increase the stability of ZFHX3 transcripts

(Continued on following page)
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Studies have demonstrated that m6A level in PCa is disease stage
dependent and m6A regulators are causally related to PCa growth,
metastasis and targeted therapy resistance (Lothion-Roy et al.,
2022). Therefore, there is a need to comprehensively summarize
the molecular basis of m6A regulator mediated PCa carcinogenesis,
which will definitely provide valuable insights for future scientific
investigations and clinical applications.

2.1 METTL3/METTL14 m6A writer in PCa

METTL3/METTL14 methyltransferase complex is primarily
responsible for the m6A modification of RNAs (Wang P. et al.,
2016; Wang X. et al., 2016; Śledź and Jinek, 2016; Choe et al., 2018;
Geula et al., 2015; Lin et al., 2016). Several studies have
demonstrated that the expression levels of METTL3 and
METTL14 are elevated in PCa as compared to normal tissues,
acting as tumor promoting driver (Xu and Ge, 2022).
Additionally, castration resistance perpetuates the increased
expression levels of these two proteins (Wu et al., 2021).
Supported by in vitro and in vivo evidence, METT3 complex
promotes PCa growth and metastasis via catalyzing m6A
modification of various mRNAs and non-coding RNAs (ncRNAs).

2.1.1 The targets and biological functions of
METTL3 in PCa

Advance in this field has led to the identification of a wide range
of m6A targets. To date, mRNAs including c-Myc (Liu et al., 2022),

USP4 (Chen et al., 2021a), LEF1 (Ma et al., 2020), DDIT4 (Zhao Y.
et al., 2024), PRSS8 (Zhao X. et al., 2024), ZFHX3 (Hu et al., 2024)
and others have been viewed as m6A targets in PCa (Table 1). In
addition, ncRNAs, a class of RNAs without protein coding potential
but proven to be physiologically and pathologically functional in a
variety of disease models, are also potential targets of
METTL3 complex in PCa. Specifically, lncRNAs (NEAT1 (Wen
et al., 2020), MALAT1 (Mao et al., 2022), SNHG7 (Liu et al., 2022),
PVT1 (Chen B. et al., 2023)), miRNAs (miR-139-5p (Azhati et al.,
2023), pre-miR-25 (Qi et al., 2023), pre-miR-93 (Qi et al., 2023),
miR-148-3p (Li G. et al., 2023)) and circRNAs (circDDIT4 (Kong
et al., 2023), circABCC4 (Huang C. et al., 2023), circRBM33 (Zhong
et al., 2023) and hsa_circ_0003258 (Yu et al., 2022)) have been
reported as the substrates of METTL3. The m6A modification site,
the RNA fate, the specific reader and the biological consequence of
each individual RNAmolecule are summarized and listed in Table 1.
The literature illustrate a high expression level of METTL3 in PCa,
implying it may contribute to PCa development. Indeed, by
catalyzing m6A modifications of RNAs, METTL3 promotes PCa
survival, metastasis and therapy resistance. For example, ubiquitin-
specific protease 4 (USP4) was identified by Chen et al. as one target
of METTL3 by the m6A-RIP (RNA immunoprecipitation) qPCR.
Upon being m6A modified at the A2696, USP4 mRNA is recognized
by YTH N (6)-Methyladenosine RNA Binding Protein 2 (YTHDF2)
and undergoes degradation, subsequently leading to the protein
degradation of ELAV like RNA-binding protein 1 (ELAV1). As a
consequence, METTL3 mediated ELAV1 degradation increases
ARHGDIA expression and promotes PCa growth and metastasis.

TABLE 1 (Continued) The m6A targets in PCa.

Regulators Target m6A site Reader Biological consequence

ALKBH5 SIAH1 NA NA Increase SIAH1 mRNA degradation

PRMT6 NA NA Suppress PRMT6 level

IGF2BP1/2/3 LEF1 NA — Increase LEF1 protein level

LDHA 3′-UTR — Increase LDHA mRNA stability

IGF1R NA — Icrease IGF1R mRNA stability via PCAT6/IGF2BP2 complex

HMGCS1 NA — Increase HMGCS1 mRNA stability

HDAC4 NA — Increase HDAC4 mRNA stability

YTHDF1 PLK1 3′-UTR — Increase PLK1 mRNA transcripotion

TRIM44 NA — Increase TRIM44 level

YTHDF2 USP4 3′-UTR — Increase USP4 mRNA degradation

MOB3B NA — Increase MOB3B mRNA degradation

LHPP NA — Increase LHPP mRNA degradation

NKX3-1 NA — Increase NKX3-1 mRNA degradation

PRSS8 NA — Increase PSRR8 mRNA degradation

YTHDC1 CD44 NA — Increase CD44 splicing

HOBX13 NA — Increase HOBX13 mRNA stability

HNRNPA2B1 miR-93-5p NA — Promote pre-miR-93 maturation

miR-25-3p NA — Promote pre-miR-25 maturation
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Thus, targeting METTL3 by shRNAs powerfully attenuated PCa
development in vitro and in vivo (Chen et al., 2021a).

METTL3 has also been implicated in the regulation of glycolysis
in PCa by adding methyl groups to lncRNA SNHG7, thereby
enhancing its stability. Consequently, SNHG7 interacts with
SRSF1 to promote the expression of c-Myc, a transcription factor
related to glycolysis by regulating the expression of various genes
(Liu et al., 2022). Furthermore, Li et al. observed an increased level of
METTL3 in enzalutamide resistant PCa cells, implying it may be a
causal factor determining enzalutamide resistance. Indeed,
METTL3 could activate MAPK signaling via catalyzing the m6A
modifications of HRAS and MEK2 mRNAs to bypass AR inhibition
therapy (Li Y. et al., 2023). Based on this, we can envision a potential
combined therapy involving enzalutamide and a specific
METTL3 inhibitor for the treatment of CRPC patients.

To summarize, METTL3 plays a tumor promoting role in PCa
progression and targeted therapy resistance at least by catalyzing
some oncogenes (c-Myc) (Liu et al., 2022) and core component of
multiple signaling pathways including WNT signaling (CTNNB1)
(Zhang S. et al., 2023), Hedgehog signaling (Gli) (Cai et al., 2019),
MAPK signaling (HRAS, MEK2) (Li Y. et al., 2023). Whether
METTL3 has an impact on other signaling pathways that
influence PCa remains to be further explored through the
continuous identification of its targets.

2.1.2 The role of METTL14 in PCa
As a critical component of METTL3 complex (Liu et al., 2014),

METTL14 is also clinically correlated to PCa prognosis.
Functionally, METT14 increases PCa proliferation in vitro and
in vivo, largely through its regulation of thrombospondin 1
(THBS1) mRNA based on the analysis of RNA-seq and MeRIP
(Methylated RNA Immunoprecipitation)-seq. Mechanistically, the
m6A mark of THBS1 mRNA in the presence of METTL14 is
recognized by YTHDF2, predisposing THBS1 mRNA to degrade
(Wang Y. et al., 2022). However, in our opinion, the observed
phenotype caused by METTL14 knockdown may be
METTL3 complex dependent since the main role of METTL14 is
to enhance METTL3 activity. It is anticipated that
METTL14 deficiency severely impairs the enzymatic activity of
METTL3 complex, leading to abnormal m6A modifications and
impeding PCa growth. Nevertheless, it is plausible that
METTL14 may have a METTL3 complex independent role in
PCa, and this hypothesis can be tested by proposing experiments
in METTL13-KO cells.

2.1.3 Other m6A writers in PCa
METTL16, another methyltransferase responsible for the m6A

modifications of snRNAs and some lncRNAs (Pendleton et al., 2017;
Shima et al., 2017; Warda et al., 2017), has not been investigated in
PCa yet. It is noteworthy that the splicing events in PCa, especially
CRPC, are highly active, leading to the generation of splicing
products such as androgen receptor variant 7 (ARv7). Given the
facts that 1) METTL16 is a m6A writer of MALAT1 (Ruszkowska
et al., 2018); 2) MALAT1 mediated ARv7 signaling contribute to
enzalutamide resistance (Wang et al., 2017), it would be interesting
enough to explore the potential connections of METTL16 with anti-
androgen resistance. Besides, whether METTL5 and ZCCHC4, the
enzymes adding methyl group to ribosome RNAs (rRNAs), play

contributing roles in PCa development is worthy of future
investigations (van Tran et al., 2019).

2.2 M6A eraser

As mentioned above, it is important to note that m6A
modification is a reversible process. FTO and ALKBH5 are the
two well-known demethylases responsible for the removal of m6A in
RNA molecule.

2.2.1 FTO in PCa
FTO was initially viewed as a demethylase of methylated DNAs

(Gerken et al., 2007). However, subsequent studies have unraveled
its preference for selecting RNAs, especially snRNAs (small nuclear
RNAs), as substrates. Specifically, FTO recognizes m6Am (N6,2′-O-
dimethyladenosine) in snRNAs and removes the methyl base (Wei
et al., 2018; Mauer et al., 2017; Mauer et al., 2019) (Figure 2).
Nevertheless, upcoming evidence suggests that FTO also holds a
weak activity towards m6A, indicating its abnormal expression may
impair the mRNAs metabolism (Li Y. et al., 2022).

FTO is expressed at a lower level in PCa as compared to normal
prostate tissues (Zhu et al., 2021). Moreover, PCa patients with low
FTO expression often experience advanced disease and poor
survival, suggesting that it acts as a tumor suppressor during PCa
development (Wang Z. et al., 2022). Indeed, FTO depletion
remarkably facilitates PCa malignancy in vitro and in vivo by
increasing the total m6A level. Mechanistically, the loss of FTO
increases the m6A levels of chloride intracellular channel 4(CLIC4)
and ERG2, which are two tumor suppressors in PCa, accelerating
their degradation (Zou et al., 2022). Moreover, melanocortin
4 receptor (MC4R), identified as another substrate of FTO in
PCa, exhibits a high expression level owing to its abundant m6A
mark resulting from FTO loss (Li and Cao, 2022). A recent literature
has also demonstrated that FTO enables to decrease Zinc Finger
Protein (ZNF217) expression by stabilizing miR-139-5p level via an
m6A dependent manner. Consequently, FTO mediated
ZNF217 reduction inactivates PI3K/AKT/mTOR signaling,
impeding PCa progression. Collectively, these results suggest that
FTO exerts a tumor-suppressing role in PCa progression via altering
the m6A level of a specific RNA population (Figure 2). Intriguingly,
the biological function of FTO is cancer context dependent. For
instance, in renal cell carcinoma (Zhang et al., 2022), bladder cancer
(Tao et al., 2021), breast cancer (Xu et al., 2020) and leukemia (Li
et al., 2017), FTO functions as a tumor promoting factor. We
postulate that the targets of FTO in different cancer models vary
and determine the its functional identity. Therefore, it will be
necessary to devote more efforts to identify the substrates of FTO
in order to fully understand its biology in PCa.

2.2.2 ALKBH5 in PCa
ALKBH5, a member of the ALKB Family, specifically catalyzes

the removal of the m6A modification on small nuclear RNAs
(Figure 2). In contrast to FTO, ALKBH5 does not exhibit activity
towards m6Am (Mauer et al., 2017; Mauer et al., 2019; Koh et al.,
2019). Despite appearing to be an oncogene in cancer development
due to its reported induction by hypoxia (Dong et al., 2021;
Thalhammer et al., 2011), ALKBH5 actually functions to
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attenuate PCa growth. A study by Li et al. revealed that ALKBH5 has
a marginal expression in PCa tissues and its overexpression
apparently suppresses PCa cell growth and cell invasion via
reducing the expression level of protein arginine
methyltransferase 6 (PRMT6) via an m6A dependent manner (Li
X. et al., 2023) (Figure 2). Similarly, Xia et al. (2022) observed a
reduction of ALKBH5 in PCa cells with androgen deprivation.
Consequently, SIAH1 mRNA is degraded due to the elevated
m6A level resulted from the reduction of ALKBH5. Being a target
of SIAH1, cleavage and polyadenylation specificity factor 1 (CPSF1)
evades the proteosomal degradation and binds to the enriched
AAUAAA sequence in the CE3 (cryptic exon 3) region of the
AR premature mRNA, thereby facilitating its splicing to ARv7, a
potent AR variant playing a critical role in castration resistance
(Figure 2). These evidence suggest that ALKBH5 is a tumor
suppressor in PCa. Again, the identification of ALKBH5 targets
should be pursued if we want to fully understand its PCa associated
biology. Potentially, an ALKBH5 agonist, if available in the future,
may offer clinical benefits for PCa patients.

2.3 M6A readers

2.3.1 YTHDF family proteins
The YTHDF family consists of YTHDF1, YTHDF2 and

YTHDF3 (Patil et al., 2018). Although sharing similar identity at
the amino acid sequence, they have distinct biological effects on their

targets (Patil et al., 2018; Chen L. et al., 2023). An early study has
demonstrated that YTHDF1 binds to the m6A modified 3′-UTR of
mRNAs, enhancing their translation (Wang et al., 2015; Wang X.
et al., 2014). In contrast, YTHDF2 binds to its targets, leading to
their instability and degradation (Li et al., 2020).While YTHDF3 has
the capacity to influence both translation and stability of its bound
targets (Shi et al., 2017).

Li et al. (2021) demonstrated that YTHDF1 exhibits high
expressionin in PCa and its level is correlated with disease
prognosis. Knockdown of YTHDF1 significantly represses PCa
survival, migration and invasion by regulating tripartite motif
containing 44 (TRIM44) (Figure 3). Agreeably, another literature
also suggested that YTHDF1, which is transcriptionally controlled
by ELK1, facilitates PCa development in vitro and in vivo by
activating polo-like kinase1 (PLK1) mediated PI3K-AKT
signaling. Mechanistically, YTHDF1 binds to the m6A modified
3′-UTR of PLK1 mRNA and enhances its translation (Li P. et al.,
2022) (Figure 3). YTHDF2 is also increased in PCa and its high
expression indicates a poor overall survival. YTHDF2 exerts its
oncogenic effect at least by mediating the instability and degradation
of Phospholysine Phosphohistidine Inorganic Pyrophosphate
Phosphatase (LHPP) and Homeobox Protein NK-3 Homolog A
(NKX3–1) mRNAs, leading to the activation of AKT signaling and
PCa progression (Li et al., 2020) (Figure 3). Therefore, upregulation
of YTHDF2 via Lysine Demethylase 5A (KDM5A) mediated miR-
495 reduction could drive PCa progression in vitro and in vivo (Du
et al., 2020) (Figure 3). As another YTHDF family protein,

FIGURE 2
The molecular basis of FTO and ALKB5 in PCa.
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YTHDF3 has not been functionally characterized in PCa. A recent
literature has illustrated that YTHDF3 can bind the m6A modified
AR mRNA and increase its translation in PCa cells (Somasekharan
et al., 2022) (Figure 3). Given the significance of AR in PCa, it is
tempting to hypothesize that YTHDF3 may act as an oncogenic
protein to facilitate PCa growth, although this hypothesis requires
experimental supports.

2.3.2 YTHDC1 and YTHDC2 in PCa
Primarily localized in the nucleus (Hartmann et al., 1999),

YTHDC1 has been reported to regulate the splicing and nuclear
export of the targets with m6A modification (Widagdo et al., 2022;
Roundtree et al., 2017). The splicing activity of YTHDC1 is
attributed to its association with serine and arginine-rich splicing
factor 3 (SRSF3), an important splicing factor that regulates exon
inclusion (Xiao et al., 2016). A recent study by Cheng et al. (2021)
reported that YTHDC1 undergoes phase separation to control gene
expression via various means, suggesting its diverse biological
functions. In PCa, YTHDC1 interacts with the oncogene protein
MTDH (Metadherin), facilitating the generation of splicing product
CD44v5 and promoting PCa malignancy (Luxton et al., 2019)
(Figure 3). In addition, YTHDC1 can also complex with
SLC12A5 (a neuron-specific potassium-chloride co-transporter)
and enhance its oncogenic function. As a result, YTHDC1-
SLC12A5 complex promotes PCa progression, castration
resistance and neuroendocrine differentiation by recognizing and
stabilizing m6A modified Homeobox B13 (HOXB13) mRNA (Yuan
et al., 2023) (Figure 3). Considering the highly active splicing process

during the progression of PCa to an advanced stage, we surmise that
YTHDC1 may hold a fundamental role in the development of PCa
by regulating the amount of various splicing products in an m6A
dependent manner.

Although YTHDC2 is not ubiquitously expressed and its high
abundance is observed in testes (Bailey et al., 2017; Hsu et al., 2017;
Jain et al., 2018), it does not exclude the possible causal involvement
of YTHDC2 into the development of other diseases. Notably, a high
expression of YTHDC2 is observed in PCa as compared to BPH
(Benign prostatic hyperplasia) and normal prostate tissues.
Experimental results have shown that YTHDC2 induction
substantially promotes PCa cell growth and invasion (Song et al.,
2023). Nevertheless, the underlying mechanism by which
YTHDC2 drives PCa progression has not been investigated, and
the exploration of the downstream targets of YTHDC2 in PCa
remains an open area. Since the early claim suggested that
YTHDC2 exhibits a very weak affinity towards m6A motif
(Wojtas et al., 2017), it is reasonable to speculate that
YTHDC2 may have non-m6A targets.

2.3.3 IGF2BP family proteins
IGF2BP proteins enable to recognize m6A targets or non m6A

targets and to increase their stabilities (Jiang et al., 2021; Huang et al.,
2018; Lan et al., 2021), thus having a great impact on PCa
development. A literature has demonstrated an increase of
IGF2BP1 expression in prostate cancer stem cells (PCSCs),
contributing to cabazitaxel resistance. Thus targeting CXCR4
(C-X-C chemokine receptor type 4)/let-7 mediated

FIGURE 3
The molecular basis of YTH family protein in PCa.
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IGF2BP1 induction in PCSCs by Berbamine could restore PCa
response to cabazitaxel treatment (Wang et al., 2024). Similarly,
IGF2BP2 has been reported to recognize m6A labeled circABCC
(circular ATP Binding Cassette Subfamily C Member), a
prerequisite for stabilizing Cell Division Cycle And Apoptosis
Regulator 1 (CCAR1) mRNA, expanding PCSCs population
(Huang C. et al., 2023) (Figure 4). Besides, IGF2BP2 exerts a
tumor promoting role in altering PCa metabolism, bone
metastasis and targeted therapy resistance. A study from Jiang
et al. unraveled that IGF2BP2 increases its binding affinity to
Lactate dehydrogenase A (LDHA) mRNA in the presence of
circARHGAP29 (circular Rho GTPase Activating Protein 29),
thereby enhancing glycolytic metabolism (Jiang et al., 2022)
(Figure 4). Another study demonstrated that IGF2BP2 is
recruited by m6A modified lncRNA PCAT6 (Prostate Cancer
Associated Transcript 6) to interact with IGF1R (Insulin-Like
Growth Factor I Receptor) mRNA, resulting in its stabilization
and the promotion of PCa bone metastasis (Lang et al., 2021)
(Figure 4). Moreover, IGF2BP2 can confer enzalutamide
resistance via binding to and stabilizing 3-Hydroxy-3-
Methylglutaryl-CoA Synthase 1 (HMGCS1) mRNA in the
presence of lncRNA VIM-AS1 (VIM Antisense RNA 1) (Shi
et al., 2023) (Figure 4). IGF2BP3 also serves as an oncogene in
PCa, as a study illustrated its ability to combine with hsa_circ_
0003258 to directly enhance the stability of histone deacetylase 4
(HDAC4) mRNA, consequently activating ERK signaling pathway
to drive PCa metastasis (Yu et al., 2022) (Figure 4).

Together, these evidences suggest that IGF2BP proteins support
PCa survival and hasten its malignancy via stabilizing a wide range
of mRNAs. Furthermore, it is evident that the impact of IGF2BP
proteins on mRNA stabilization is m6A and non-m6A dependent,
suggesting that classifying and identifying the targets of IGF2BP
proteins based on the m6A status may aid in comprehending their
biologies in PCa.

2.3.4 HnRNP family proteins
Accumulating evidence have demonstrated that the

heterogeneous nuclear ribonucleoproteins (HnRNP) such as
HnRNPC, HnRNPG and HNRNPA2B1 are direct or indirect
readers of m6A labeled RNAs, especially miRNAs (Wang et al.,
2020; Liu et al., 2015; Spitale et al., 2015; Liu et al., 2017; Wu et al.,
2018). In PCa, elevated HnRNPC expression is closely correlated
with tumor stage, tumor grade and the overall survival (Wang et al.,
2021). Functionally, HnRNPC promotes PCa proliferation and
metastasis (Cheng et al., 2023). Moreover, a high level of
HNRNPA2B1 is also examined in PCa. HNRNPA2B1 binds to
the m6A marks in several miRNA precursors (miR-93-5p (Qi
et al., 2023; Sun et al., 2023), miR-25-3p (Qi et al., 2023)) and
facilitates their processing and maturation via recruiting DGCR8
(DiGeorge syndrome critical region gene 8) (Sun et al., 2023),
driving PCa development (Figure 4). For this point of view,
molecules enabling to regulate HNRNPA2B1 expression is
supposed to have a considerable impact on PCa survival and
metastasis. As expected, casein kinase 1 delta (CSNK1D)
phosphorylates and stabilizes HNRNPA2B1 protein, exacerbating
PCa malignancy (Qi et al., 2023) (Figure 4). The lncRNA
PCAT6 also has capacity to increase HNRNPA2B1 expression via
acting as sponge of miR-326 to facilitate PCa neuroendocrine
differentiation (Liu B. et al., 2021) (Figure 4). However, the role
of another m6A reader, HnRNPG, has not been investigated in PCa.

3 The upstream signaling pathways
regulating m6A regulators

A literature suggest that the total m6A levels are gradually
increased as PCa progresses from the localized mass to the
metastatic disease (Wan et al., 2022), indicating the existence of a
molecular network upstream of m6A regulators in PCa.

FIGURE 4
The molecular basis of IGF2BP and HnRNP family proteins in PCa.
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Understanding this network may provide insight into novel
strategies to improve the efficacy of current therapies. A
fascinating study by Zhang et al. demonstrated that FTO-IT1
(FTO intronic transcript 1), a lncRNA transcribed from the
intron 8 of FTO gene focus, downregulates the transcript levels
of several p53 targeting genes such as FAS (Fas Cell Surface Death
Receptor), TP53INP1 (Tumor protein p53-inducible nuclear
protein 1), SESN2 (Sestrin2), and MDM2 (Mouse double minute
2 homolog), thereby recapitulating p53 inactivation. Results from
RNA pull down and subsequent mass spectrum analysis illustrated
that FTO-IT1 directly interacts with RBM15 but not other m6A
regulator to inhibit the methyltransferase activity of
METTL3 complex. As a sequence specific RNA binding protein,
RBM15 fails to bind p53 targeting transcripts for m6A modification
in the presence of FTO-IT1, leading to their failure to be recognized
by IGF2BP proteins. Thus, FTO-IT1 knock-out specifically boosts
the m6A levels of p53 targeting transcripts by releasing
RBM15 mediated m6A “writer” activity and caused PCa cell
growth arrest (Zhang J. et al., 2023) (Figure 5). Another study by
Wang et al. also documented that RBM15 can be regulated by
AZGP1P2, a pseudogene of AZGP2. According to the data,
AZGP1P2 binds and recruits UBA1 (Ubiquitin Like Modifier
Activating Enzyme 1) as a E1 conjugating enzyme for
RBM15 degradation. As a result, the m6A of RBM15 recognized
TPM1 mRNA (tropomyosin 1) at its coding region is erased and
TPM1 mRNA is stabilized. TPM1 induction by AZGP1P2 functions
as a tumor suppressor to sensitize PCa cells to docetaxel therapy via
eradicating the population of prostate cancer stem cells (PCSCs)
(Wang et al., 2023b) (Figure 5).

WTAP, a known m6A regulator, is reportedly regulated by
circPDE5A, a circular form of exon 2 and exon 3 of PDE5A
(Phosphodiesterase 5A). CircPDE5A binds WTAP and disrupts
its mediated m6A modification of eukaryotic translation initiation
factor 3c (EIF3C) (Figure 5). Therefore, circPDE5A inactivation in
CRPC leads to an m6A increase of EIF3C mRNA, which is
subsequently recognized by YTHDF1 and has an enhanced
translation efficiency, eventually promoting PCa metastasis (Ding
et al., 2022). Moreover, it has been documented that the m6A
“eraser” ALKBH5 is a direct target of miR-141-3p (Li X. et al.,
2023) (Figure 5). In the future, we can anticipate the identification of
more upstream molecules that affect m6A regulators. Armed with
this knowledge, we can effectively silence m6A signaling by targeting
these upstream molecules.

4 The cross-talk between RNA m6A
modification and AR signaling

Androgen receptor (AR), a member of steroid hormone
receptors, has been acknowledged as the key driving factor
determining PCa development for decades (Tang et al., 2021).
Structurally consisting of N-terminal, DNA binding domain,
Hinge region and Ligand binding domain, AR responds to
dihydrotestosterone (DHT) and translocates into nucleus as
dimer to regulate the transcription of numerous genes (Tan
et al., 2015). Owing to the significant role of AR in PCa
development, for a long time, AR signaling inhibition has been
the main strategy for PCa management.

FIGURE 5
The upstream signaling molecules regulating m6A regulator in PCa.
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Androgen deprivation therapy (ADT) has been utilized as the
golden mean to treat PCa for many decades, with promising
clinical outcomes. Li et al. have uncovered a direct link between
RNA m6A modification and androgen receptor (AR) signaling.
Their research showed that ADT with enzalutamide treatment
leads to an increase in METTL3 expression and the total m6A
levels, suggesting METTL3 mediated m6A modification may
contribute to the acquired Enz resistance (Figure 6). By
performing MeRIP-seq and RNA-seq, the authors identified
that METTL3 directly mediates m6A modifications of HRAS
and MEK2 mRNAs. Mechanistically, HRAS mRNA with m6A
at its 3′-UTR is much more stable, and MEK2 mRNA with m6A at
5′-UTR has a higher translation potential as compared to the
corresponding non-modified controls. As a result, MAPK
signaling is activated and bypasses AR signaling inhibition to
promote PCa growth (Li Y. et al., 2023) (Figure 6). Therefore,
activation of m6A signaling serves as a self-protective mechanism
in response to AR inhibition, providing a non-AR survival source
for PCa growth. Given the fact that enzalutamide is an anti-
androgen drug specifically preventing the transcription activity

of AR, it will be intriguing to explore whether AR enables to
control the expression of m6A regulators at the chromatin level,
thus affecting the m6A signaling.

Reciprocally, m6A signaling also has a great impact on AR
signaling. Evidence from Haigh et al. suggested that
METTL3 inhibition by siRNAs could substantially impair
androgen regulated transcriptome in PCa (Haigh et al., 2022).
Additionally, in early 2022, Somasekharan et al. (2022)
discovered that AR mRNA is a direct target of METTL3 and
its translation is potentiated with the m6A modification at 8953A
(Figure 6). By connecting these two findings, we speculate that
METTL3 may affect androgen regulated transcriptome via
directly methylating AR mRNA. Given that CRPC expresses
more abundant AR protein than primary PCa, it is
hypothesized that METTL3-mediated AR mRNA translation at
least partially accounts for this phenomenon (Wu et al., 2021).
Therefore, targeting METTL3 may alleviate the reactivation of
AR signaling and aid in overcoming CRPC progression. In
summary, there exists a reciprocal regulation between AR
signaling and m6A signaling in PCa.

FIGURE 6
The crosstalk between m6A signaling and AR signaling in PCa.
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5 Clinical implications of RNA m6A
modification in PCa and future
perspectives

The clinical significance of RNA m6A modification should be
acknowledged owing to its close relationship with PCa
initiation, progression and therapy resistance. METTL3 and
METTL14, the main components of m6A “writer,” elevate
their expression when prostate epithelial cells become
malignant (Xu and Ge, 2022) (Table 2). A continual rise in
METTL3 and METTL14 expression is observed in CRPC disease
(Wu et al., 2021). Conversely, the expression levels of m6A
“eraser,” FTO and ALKBH5, display an opposite trend (Fang
et al., 2022). In line with this, Lu et al. found that m6A
modification levels are elevated in metastatic PCa as
compared to the primary control, as evidenced by MeRIP-seq
and RNA-seq on 4 metastatic PCa, 4 primary PCa tumors and
4 benign prostate hyperplasia (BPH). Importantly, they also
reported that PCa patients with high m6A-modified mRNA
(MMM) score experience shorter biochemical recurrence free
survival and have a poor response to androgen signaling
inhibition therapy as compared to the patients with a low
MMM score, suggesting m6A modification status is a poor
prognostic factor for predicting disease development and
therapy resistance. However, their findings also exhibited that
the primary PCa harbors a paucity of m6A modified mRNAs as
compared to the BPH, implying hypo m6A modification of
mRNAs contributes to PCa initiation In this context, a
discrepancy is found between the expression pattern of m6A
regulators and the m6A levels when the comparison was made
between BPH and primary PCa (Lu et al., 2023). We hypothesize

that the activities of m6A regulators are inhibited by some
proteins so that a hypo m6A levels are observed in PCa.

According to this information, total m6A levels may serve as a
diagnostic biomarker to predict disease status of PCa, and the
elimination of m6A levels by METTL3/METTL14 inhibitor or
others holds promise as a therapeutic strategy to prevent PCa
progression. In 2021, Yankova et al identified a small molecule
STM2457 as a potent METTL3 inhibitor to suppress acute myeloid
leukaemia (AML), opening a new avenue of METTL3 targeted
therapy. Additionally, Storm Therapeutics Company has screened
another METTL3 inhibitor STC-15, which displays anti-tumor
activity across different AML models and is currently being
investigated in a clinical trail (NCT05584111) (Yankova et al.,
2021). Although currently not available, it would be promising to
test the efficacy of METTL3 inhibitors in PCa models and PCa
patients. It is noting that some small molecules including curcumin
(Chen et al., 2021b), quercetin (Zhu J. et al., 2023), epigallocatechin
gallate (EGCG) (Wu et al., 2005) and simvastatin (Chen et al., 2020),
have been reported to influence m6A signaling. However, in our
opinion, they are not specific for interrupting m6A levels and their
contributions to cancer prevention may not be solely due to the m6A
alteration. Therefore, the continuous screening of METTL3-specific
and potent inhibitors remains a priority for scientists and
pharmacologists.

6 Conclusion

PCa is a male carcinoma and its mortality is continuously rising.
Despite of the initial response, ADT treatment will lead to the
emergence of recurrent tumor, suggesting other signaling pathways

TABLE 2 The clinical value of each individual m6A regulator in PCa.

Name PCa/
N

CRPC/
PCa

Means Prognosis References

METTL3 High High MeRIP-qPCR
RT-qPCR

Western Bloting, IHC

Poor Cai et al. (2019), Yuan et al. (2020), Chen et al. (2021a), Ma et al. (2020), Li et al.
(2020), Haigh et al. (2022), Mao et al. (2022), Li et al. (2023a), Cotter et al. (2021), Li

et al. (2023b), Lothion-Roy et al. (2023)

METTL14 High High IHC Poor Wang et al. (2022a), Li et al. (2023b), Lothion-Roy et al. (2023)

FTO Low NA IHC,RT-qPCR
Western Bloting

Good Wang et al. (2022b), Zou et al. (2022), Li et al. (2022b), Azhati et al. (2023)
Zhu et al. (2021)

ALKBH5 Low NA RT-qPCR, Western
Bloting

Good Li et al. (2023c)

YTHDF1 High NA IHC,Western
Bloting,RT-qPCR

Poor Li et al. (2021), Li et al. (2022b), Nie et al. (2023)

YTHDF2 High NA Western Bloting,RT-
qPCR,IHC

Poor Du et al. (2020)
Li et al. (2020)

YTHDC1 NA NA NA NA NA

YTHDC2 High NA IHC,Western Bloting Poor Song et al. (2023), Ding et al. (2022)

IGF2BP1/
2/3

NA NA NA NA NA

WTAP High NA IHC,Western Bloting NA Lothion-Roy et al. (2023), Zhao et al. (2024)

HnRNP High NA RT-qPCR, IHC Poor Wang et al. (2021), Cheng et al. (2023), Qi et al. (2023), Quan et al. (2023), Cheng
et al. (2023)
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actively respond in order to bypass AR inhibition. As a type of
epitranscriptomal modifications, m6A is now received much
attention and it is indeed implicated into a variety of biological
processes including tumorigenesis. Particularly in PCa, abnormal
expression levels of m6A regulators are frequently observed by many
researchers. The experimental evidence suggest that m6A writers,
m6A erasers and m6A readers all contribute to PCa survival and
malignancy. Additional evidence also suggest that the total m6A
levels and METTL3 are closely related to enzalutamide resistance.
These findings provide a strong rationale to propose a therapy using
m6A inhibitor, alone or with anti-androgen, to treat CRPC patients.

Although numerous RNAs has been identified to be m6A
modified, the blueprint of m6A signaling remains incomplete. In
the clinical setting, a comprehensive understanding of m6A targets
and their related signaling pathways can guide the discovery of novel
targeted therapies to overcome PCa development. To this end,
scientists should exert significant efforts to identify functional
m6A targets during PCa evolution.

Although FTO inhibitors such as bisisantrene (Su et al., 2020),
brequinar (Su et al., 2020), and Dac51 (Wu et al., 2023; Yang and Al-
Hendy, 2023; Huang Y. et al., 2023; Liu Y. et al., 2021) have shown
potency against several solid tumors, including renal carcinoma,
bladder cancer, they may not be the ideal choice for the treatment of
PCa model as researchers have confirmed the tumor suppressing
role of FTO in PCa models. Alternatively, researchers should
consider screening specific inhibitors of m6A readers, as they are
positively implicated in PCa development. YTH family proteins,
IGF2BP proteins, and other m6A readers have been proven to be
oncogenic factors driving PCa progression. From our perspective,
m6A reader inhibitors may be more specific than
METTL3 inhibitors in suppressing a small population of RNA.
While METTL3 has a variety of targets, each m6A reader has its
uniquely recognized RNA population. Indeed, IGF2BP1 inhibitors
(AVJ16 (Singh et al., 2024), BTYNB (Müller et al., 2020; Mahapatra
et al., 2017; Jamal et al., 2023; Hagemann et al., 2023; Xiao et al.,
2023; Wang JJ. et al., 2023), and 7773 (Singh et al., 2024)),
IGF2BP2 inhibitor CWI1-2 (Weng et al., 2022), and YTHDF
proteins inhibitor ebselen (Micaelli et al., 2022) all show
promising anti-cancer activity in preclinical models. However,

the identification of m6A reader inhibitors is still in the
preliminary stage and requires intensive dedication.
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Glossary

ARv7 Androgen receptor variant 7

EGR-2 Early growth response protein 2

MeRIP Methylated RNA Immunoprecipitation

ADT Androgen deprivation therapy

FTO Fat mass and obesity-associated

ALKBH5 Human Alk B homolog 5

c-MYC c-Myelocytomatosis

USP4 Ubiquitin specific protease 4

LEF1 Lymphoid Enhancer Binding Factor 1

PRSS8 Serine protease 8

ZFHX3 Zinc-Finger Homeobox 3

NEAT1 Nuclear paraspeckle assembly transcript 1

MALAT1 Metastasis Associated Lung Adenocarcinoma Transcript 1

PVT1 Plasmacytoma variant translocation 1

DDIT4 DNA damage-inducible transcript 4

ABCC4 ATP binding cassette subfamily C member 4

RBM33 RNA Binding Motif Protein 33

YTHDF2 YTH N6-Methyladenosine RNA Binding Protein F2

ARHGDIA Rho GDP Dissociation Inhibitor Alpha

SNHG7 Small nucleolar RNA hostgene 7

SRSF1 Serine And Arginine Rich Splicing Factor 1

MAPK Mitogen activated protein kinase

MEK2 MAP kinase kinase 2

MALAT1 Metastasis associated in lung denocarcinoma transcript 1

ZNF217 Zinc Finger Protein 217

SIAH1 Siah E3 Ubiquitin Protein Ligase 1

TRIM44 Tripartite motif-containing 44

ELK1 ETS Transcription Factor 1

PLK1 Polo-like Kinase 1

NKX3-1 Neurokinin-3 Homeobox 1

KDM5A Lysine-specific demethylase 5A

YTHDC1 YTH N6-Methyladenosine RNA Binding Protein C1

CD44v5 CD44 Vriant 5

SLC12A5 Solute Carrier Family 12 Member 5

HOXBI3 Homeobox B 13

IGF2BPs Insulin-like growth factor 2 mRNA-binding proteins

CXCR4 Chemokine receptor type 4

CCAR1 Cell-cycle and apoptosis regulator 1

LDHA Lactate Dehydrogenase A

ARHGAP29 Rho GTPase activating protein 29

PCAT6 Prostate cancer associated transcript 6

IGF1R Insulin-like growth factor 1 receptor

VIM-AS1 Vimentin antisense RNA 1

HDAC4 Histone deacetylase 4

ERK Extracellular regulated protein kinases

FAS Fas cell surface death receptor

TP53INP1 Tumor Protein P53 Inducible Nuclear Protein 1

SESN2 Sestrin2

MDM2 Murine double minute2

RBM15 RNA Binding Motif Protein 15

AZGP1P2 Zinc-alpha 2-glycoprotein pseudogene 2

PDE5A Phosphodiesterase 5A

MeRIP-seq Methylated RNA Immunoprecipitation sequencing
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