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Nitroreductase activable agents offer a personalized and targeted approach to
cancer theranostics by selectively activating prodrugs within the tumor
microenvironment. These agents enable non-invasive tumor imaging, image-
guided drug delivery, and real-time treatment monitoring. By leveraging the
enzymatic action of tumor-specific nitroreductase enzymes, cytotoxic drugs are
delivered directly to cancer cells while minimizing systemic toxicity. This review
highlights the key features, mechanisms of action, diagnostic applications,
therapeutic potentials, and future directions of nitroreductase activable agents
for tumor theranostics. Integration with imaging modalities, advanced drug
delivery systems, immunotherapy combinations, and theranostic biomarkers
shows promise for optimizing treatment outcomes and improving patient
survival in oncology. Continued research and innovation in this field are
crucial for advancing novel theranostic strategies and enhancing patient care.
Nitroreductase activable agents represent a promising avenue for personalized
cancer therapy and have the potential to transform cancer diagnosis and
treatment approaches.
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1 Introduction

Tumor theranostics, which combines therapeutic and diagnostic functions in a single
platform, represents a promising strategy for improving cancer treatment outcomes
(Hapuarachchige and Artemov, 2020; Jiang et al., 2021a; Hu X. et al., 2022; Wu D.
et al., 2022;Wang et al., 2022; Zhao et al., 2022; Zhang et al., 2023a; Bose et al., 2023; Qi et al.,
2024). Nitroreductase activable agents have emerged as a novel approach in tumor
theranostics, harnessing the enzymatic activity of nitroreductases to selectively target
and treat cancer cells while enabling real-time imaging of treatment response (Li et al.,
2024a; Morsby et al., 2024). NTRs are overexpressed in various cancer types, including
colorectal, breast, and liver cancers. The levels of NTR expression in these tumors are
significantly higher than the basal levels found in healthy cells, often by several orders of
magnitude. This differential expression underpins the selective activation of NTR-targeted
therapies, enhancing therapeutic efficacy while minimizing off-target effects (Williams
et al., 2015; Hu X. et al., 2022; Qi et al., 2024).

Nitroreductases are enzymes capable of reducing nitroaromatic compounds, leading to
the generation of cytotoxic intermediates such as nitroso and hydroxylamine species (Qi
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et al., 2020). Nitroreductases are commonly found in bacteria, fungi,
and some mammalian cells, which have the ability to reduce
nitroaromatic compounds to generate reactive intermediates that
are toxic to cells (Qiao et al., 2021; Wu Y. et al., 2022; Geng et al.,
2024; Xiang et al., 2024). Importantly, the expression of
nitroreductases is often elevated in tumor cells compared to
normal tissues, making them attractive targets for cancer therapy
(Jiang et al., 2023a; Xin et al., 2024). By exploiting the differential
expression of nitroreductases, researchers have developed prodrugs
that are activated specifically in tumor cells, allowing for precise
delivery of therapeutic agents and imaging probes (Searle et al., 2004;
Williams et al., 2015; Sharrock et al., 2021).

Nitroreductase activable agents are a class of prodrugs designed
to selectively target and treat cancer cells by exploiting the enzymatic
activity of nitroreductases. The design of nitroreductase activable
agents involves coupling a therapeutic or imaging agent to a
nitroaromatic group that can be selectively activated by
nitroreductase enzymes (Li et al., 2022; Skorjanc et al., 2023;
Wang et al., 2023; Li et al., 2024b; Geng et al., 2024). Upon
enzymatic reduction of the nitro group, the prodrug is cleaved to
release the active therapeutic or imaging moiety specifically within
tumor cells, leading to localized treatment effects. This targeted
activation enhances the therapeutic index of the agents, as they are
designed to exert their effects predominantly in cancerous tissues
while sparing normal cells from toxicity.

In conclusion, nitroreductase activable agents represent a
promising strategy in tumor theranostics, offering a multifaceted
approach to cancer treatment that combines targeted therapy with
real-time imaging capabilities. The development of these agents
holds great potential for advancing personalized cancer care and
improving clinical outcomes for patients. This comprehensive
review aims to elucidate the current state of research in this field
and highlight the future directions and opportunities for utilizing
nitroreductase activable agents in cancer theranostics.

2 Distinct advantages of nitroreductase
activable agents

The concept of nitroreductase activable agents for tumor
theranostic purposes encompasses two main components:
therapeutic agents and diagnostic probes. Therapeutic agents,
such as chemotherapeutic drugs or cytotoxic compounds, are
conjugated to a nitroreductase-sensitive moiety that is cleaved
upon enzymatic activation within tumor cells (Jiang et al., 2021b;
Jiang et al., 2023a; Jiang et al., 2023b; Zhang et al., 2023b; Zhao et al.,
2023). This targeted release of active therapeutics enhances the
efficacy of cancer treatment while minimizing systemic toxicity
(Knox et al., 1995; Güngör et al., 2019; Güngör et al., 2020;
Tokay et al., 2020). In parallel, diagnostic probes, including
fluorescent dyes, imaging agents, or nanoparticles, can be
incorporated into the prodrug structure to enable real-time
monitoring of drug activation and tumor response to therapy
(McNerney et al., 2021; Rajapaksha et al., 2024; Yin et al., 2024).

The therapeutic potential of nitroreductase activable agents lies
in their ability to selectively target tumor cells, bypassing the
inherent heterogeneity and drug resistance commonly observed
in cancer. By exploiting the tumor-specific expression of

nitroreductases, these agents offer a precision medicine approach
to cancer treatment, tailoring therapy to individual patient
characteristics. Additionally, the integration of diagnostic
components allows for the non-invasive monitoring of treatment
response, enabling clinicians to adapt therapeutic strategies and
optimize patient outcomes.

Overall, nitroreductase activable agents represent a versatile and
promising approach in tumor theranostics, offering a combination
of targeted therapy and diagnostic capabilities for cancer treatment.
The specific activation of these agents within tumor cells allows for
precise drug delivery and imaging, enhancing the therapeutic
outcomes and patient care in oncology. Continued research and
development in this field hold great potential for advancing
personalized cancer therapy and improving clinical outcomes for
cancer patients.

3 Examples of nitroreductase activable
agents for tumor theranostic

Nitroreductase activable agents for tumor theranostics can be
broadly categorized into two main types: small molecule theranostic
agents and integrated delivery systems.

3.1 Single small molecule theranostic agents

This approach involves the fusion of therapeutic and diagnostic
moieties within a single small molecule or nanoplatform. These
agents are designed to be selectively activated by nitroreductase
enzymes within the tumor microenvironment, thereby releasing
their therapeutic and diagnostic functions specifically at
the tumor site.

Peng’s group in 2019 developed a hypoxia-activated near-
infrared (NIR) photosensitizer, ICy-N, for in vivo cancer
treatment (Xu et al., 2019). ICy-N was non-fluorescent and low
in singlet oxygen production in normal tissues but was activated by
nitroreductase in tumor regions, producing strong fluorescence and
singlet oxygen for photodynamic therapy (PDT). The reduced
product, ICy-OH, localized in mitochondria, efficiently induced
cell apoptosis under 660 nm light (Figure 1A). In vivo studies in
Balb/c mice demonstrated precise tumor hypoxia imaging and
effective tumor growth inhibition, highlighting the critical role of
nitroreductase in theranostics. Furthermore, such PDT therapy
coupled with fluorescent imaging tactic for tumor theranostic has
also been witnessed in several other studies. However, the delivery
efficiency of ICy-N could be improved, as some tumors may exhibit
varying levels of hypoxia, affecting the activation and therapeutic
outcome. Zheng et al. (2020) developed a nitroreductase-activatable
near-infrared theranostic photosensitizer, CYNT-1, for PDT.
Nitroreductase activated CYNT-1 in mildly hypoxic tumor
regions, causing fluorescence and singlet oxygen production,
enabling precise imaging and efficient PDT (Figure 1B). This
enhanced treatment specificity and minimized side effects,
showing great clinical potential. Notably, CYNT-1 faces
challenges in maintaining a high signal-to-noise ratio of imaging
signals under varying tumor microenvironments. Li et al. (2021)
developed a nitroreductase-responsive NIR phototheranostic probe,
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HCN, for in vivo imaging and PDT of tiny tumors. Nitroreductase
catalyzed the reduction of the probe’s nitro group to an amino
group, activating its fluorescence and photosensitizing properties.
This enabled precise imaging of tumors as small as 6 mm³ and
effective PDT under hypoxic conditions. Furthermore, the stability
of the NIR phototheranostic probe HCN under physiological
conditions needs further optimization for prolonged circulation

in vivo. The probe demonstrated high sensitivity and selectivity
to nitroreductase, allowing for the dynamic monitoring of tumor
hypoxia and significantly improving treatment specificity and
minimizing side effects. In Liu and colleges’ design in 2019, the
nitroreductase activated the theranostic molecule under mild
hypoxia via a photoinduced electron transfer mechanism,
enhancing fluorescence and photodynamic therapy (PDT)

FIGURE 1
(A) ICy-N strategy designed for hypoxia detection and cancer treatment. Adapted with modification from Ref (Xu et al., 2019). © 2019 Wiley-VCH
GmbH. (B) Structures of CYNT-1 and CYNT, including their mechanisms for sensing and PDT activation. Adapted withmodification from Ref (Zheng et al.,
2020). © 2020 Wiley-VCH GmbH. (C) Diagram of the NTR-responsive photosensitizer that turns on fluorescence for imaging lysosomes and performing
PDT. Adapted with modification from Ref (Wang et al., 2024). © 2024 Elsevier. (D) Activation mechanism of IR1048-MZ by NTR, accompanied by the
frontier molecular orbitals of IR1048-MZ and IR1048-MZH (Meng et al., 2018). (E) Enzyme-catalyzed activation process of NR-NO2 mediated by NTR.
Adapted with modification from Ref (Karan et al., 2023). © 2023 American Chemical Society.

Frontiers in Pharmacology frontiersin.org03

Shang et al. 10.3389/fphar.2024.1451517

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1451517


efficiency (Liu et al., 2019). This process involved reducing nitro
groups to amines, activating singlet oxygen production, which
disrupted lysosomes and improved tumor imaging and treatment.
It is worth mentioning that, the photoinduced electron transfer
mechanism of the theranostic molecule may result in inconsistent
therapeutic outcomes under different hypoxic conditions. Digby and
coworkers in 2022 synthesized a NTR activated theranostic agent,
which could reduce the nitro group to an amine, triggering
chemiluminescence resonance energy transfer (CRET) and the
production of singlet oxygen of the prodrug (Digby et al., 2022).
Notably, in this study, NTR enabled a light-independent activation
of the photosensitizer, overcoming the limitations of light
penetration in traditional PDT. However, the CRET mechanism
could suffer from reduced efficiency in deep tissue imaging due to
limited light penetration. In Wang’s study in 2024, NTR was used as
a biomarker to assess tumor hypoxia (Wang et al., 2024). The
designed probe, M-TPE-P, targeted lysosomes, showing high
selectivity and sensitivity towards NTR (Figure 1C). Upon NTR
detection, the probe became fluorescent, enabling the imaging of
lysosomal NTR activity. Additionally, M-TPE-P effectively
generated ROS under NIR light, enhancing its potential for PDT
in cancer treatment. Notably, the M-TPE-P probe’s selectivity
towards lysosomes requires further validation in diverse cancer
models to confirm its broad applicability.

Meng and coworkers in 2018 developed a hypoxia-triggered and
nitroreductase-responsive single molecule probe, IR1048-MZ, for
high-contrast near-infrared (NIR II) and photoacoustic (PA) tumor
imaging and photothermal therapy (PTT) (Meng et al., 2018). The
probe was activated by NTR in hypoxic tumors, emitting strong NIR
II fluorescence and PA signals, enabling precise tumor imaging and
deep tissue penetration (Figure 1D). Additionally, IR1048-MZ
exhibited significant temperature increases during PTT,
effectively ablating tumors without recurrence. This research
highlighted the critical role of NTR in theranostics and its
promising clinical applications. However, the hypoxia-triggered
probe IR1048-MZ may exhibit variable activation efficiency in
tumors with heterogeneous hypoxic regions, potentially affecting
imaging and therapy accuracy.

In Karan and coworkers’ study in 2023, the NTR-activable
prodrug NR-NO2 was developed for the theranostic imaging and
treatment of cancer and bacterial infections (Karan et al., 2023). The
prodrug comprised an antibiotic (norfloxacin), a chemotherapeutic
agent, and a fluorescent dye (Figure 1E). Upon activation by NTR,
which is overexpressed in hypoxic tumor environments, NR-NO2

exhibited a significant fluorescence “turn-on” effect, allowing real-
time monitoring of drug release. It selectively accumulated in
tumors, providing enhanced antibacterial and anticancer activity.
This innovation demonstrated a promising approach for targeted
cancer therapy, leveraging NTR’s role in activating the prodrug
under hypoxic conditions, thus enhancing therapeutic efficacy while
enabling precise imaging. Furthermore, this prodrug’s fluorescence
“turn-on” effect needs enhancement to improve sensitivity and
reduce false positives in complex tumor environments. In Chan’s
design in 2023, NTR was utilized to activate fluoroquinolone
prodrugs, masking the β-ketoacid group to reduce off-target
effects (Chan et al., 2023). The NTR-responsive prodrugs
selectively released the parent drug in hypoxic tumor
environments, minimizing systemic toxicity. This strategy

enhanced the antibacterial and anticancer efficacy of
fluoroquinolones while preventing Achilles tendon rupture
caused by magnesium ion chelation. But the hydrolysis-resistant
fluoroquinolone prodrugs require further investigation to minimize
potential off-target effects in non-hypoxic tissues. Generally, the
innovative design of hydrolysis-resistant prodrugs showed
promising therapeutic outcomes by enabling targeted activation
in hypoxic conditions, offering a potential advancement in cancer
treatment and reducing adverse effects.

3.2 Integrated delivery systems

The second approach focuses on developing complex delivery
systems that incorporate both therapeutic and diagnostic agents into
a single platform but as separate entities. These systems can be
designed as nanoparticles, micelles, or other nanocarriers that
encapsulate the active agents separately but within the same
delivery vehicle.

Sukumar and colleges in 2020 developed a nanoplatform for
tumor theranostic. NTR played a critical role in the theranostic
approach for treating hepatocellular carcinoma (HCC) by activating
the prodrug CB1954 to produce cytotoxic metabolites (Kumar et al.,
2023). The engineered SP94-targeted triblock copolymer
nanoparticles efficiently delivered a triple therapeutic gene
(thymidine kinase (TK), p53, and NTR) to tumor cells
(Figure 2A). This approach restored p53 function, enhanced
cancer cell apoptosis, and improved the therapeutic efficacy
against both wild-type and mutant p53 HCC cells. Imaging was
crucial in evaluating therapeutic efficacy and gene delivery. NTR
activated the fluorescent substrate CytoCy5S, emitting red
fluorescence upon activation, enabling real-time tracking and
visualization of NTR expression within tumor cells. This imaging
capability allowed for precise localization and quantification of
therapeutic gene delivery in vivo, facilitating accurate monitoring
of treatment distribution, gene expression levels, and therapeutic
outcomes. The innovative combination of targeted delivery and
triple gene therapy demonstrated significant tumor reduction,
highlighting its potential for effective and targeted cancer
treatment. However, this SP94-targeted triblock copolymer
nanoparticles face challenges in achieving consistent gene
delivery efficiency across different tumor types.

In Hu’s study in 2022, NTR enabled a traceless bioorthogonal
ligation strategy to activate a prodrug for cancer-specific imaging
and therapy (Hu L. et al., 2022). The prodrug system involved the
reduction of nitroaromatic substrates to arylamines by NTR in
hypoxic tumor environments, followed by bioorthogonal
imination with aldehydes to produce the anticancer agent aza-
RSV (Figure 2B). This process generated a specific “turn-on”
fluorescence signal, facilitating precise imaging of cancer cells.
The innovative approach demonstrated significant anticancer
activity under hypoxia with minimal impact on normal cells,
highlighting its potential for targeted cancer therapy by providing
effective imaging and therapeutic outcomes with high specificity.
Notably, the bioorthogonal ligation strategy for activating the
prodrug may encounter stability issues under physiological
conditions, affecting its therapeutic performance. Alternatively, a
nanoplatform responsive to NTR and glutathione (GSH) was
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FIGURE 2
(A)Diagram showing the design of TK−p53−NTR triple-gene-loaded PLGA−PEG−PEI nanoparticles functionalized with SP94, their targeted delivery
to HCC cells, the sequence of events upon cellular uptake, and their use in bioluminescence imaging of nude mice with HepG2 tumor xenografts.
Adapted with modification from Ref (Kumar et al., 2023). © 2020 American Chemical Society. (B) Schematic overview of the activation of the aza-RSV
prodrug via NTR-induced bioorthogonal ligation, detailing: (A) the formation of aza-RSV 3a through the condensation of aldehyde 1a and amine 2′,
derived from nitro substrate 2 in the presence of NTR and NADH; (B) depiction of cancer-specific imaging and apoptosis using this prodrug approach.
Adapted with modification from Ref (Hu L. et al., 2022). © 2022Elsevier. (C) Illustration of a nanoplatform responsive to both NTR and GSH for gene
delivery and fluorescence imaging. Adapted with modification from Ref (Liang et al., 2020). © 2020 Royal Society of Chemistry. (D) Fabrication process of
Dox-MVs through the cooperative assembly of BCP-grafted MFNs, and their application for hypoxia-triggered release of Dox and O2 within tumors.
Adapted with modification from Ref (Yang et al., 2021). © 2021 Wiley-VCH GmbH.
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developed for gene delivery and near-infrared fluorescence imaging
in tumors in 2021 (Liang et al., 2020). The platform integrated
indocyanine green analogs and an arginine-rich dendritic peptide,
forming assemblies that responded to NTR and GSH by
disassembling and releasing their cargo (Figure 2C). NTR
triggered a specific fluorescence “turn-on” effect, facilitating real-
time imaging of gene delivery. However, the responsiveness of the
nanoplatform to both NTR and GSH may lead to premature cargo
release, reducing the overall therapeutic efficacy. This system
demonstrated high gene transfection efficiency and low
cytotoxicity, outperforming commercial reagents. In vivo, the
platform enabled precise gene expression localization and
efficient tumor imaging, showcasing its potential for targeted
cancer theranostics.

In another study, a NTR-responsive polymeric micelle system
was developed for targeted intracellular release of doxorubicin
(DOX) in cancer therapy in 2021 (Sun et al., 2021). The
amphiphilic polymer TNP, containing a 4-nitrobenzyl group and
aggregation-induced emission (AIE) moieties, self-assembled into
micelles encapsulating DOX. NTR, overexpressed in tumor cells,
catalyzed the reduction of the 4-nitrobenzyl group, triggering
micelle decomposition and DOX release. This process also
activated the AIE fluorescence, enabling real-time imaging of
drug release. However, the NTR-responsive polymeric micelles
may have limited stability in the bloodstream, affecting the
controlled release of doxorubicin. The TNP@DOX micelles
exhibited high selectivity for cancer cells, minimal toxicity to
normal cells, and efficient gene transfection, demonstrating
significant potential for precise cancer theranostics with
controlled drug release and imaging capabilities. Yang et al. have
developed hypoxia-responsive nanovesicles using manganese ferrite
nanoparticles (MFNs) for enhanced cancer treatment (Yang et al.,
2021). These nanovesicles, loaded with doxorubicin, dissociated
under tumor hypoxia, releasing the drug and alleviating hypoxia
by decomposing endogenous H2O2 (Figure 2D). This improved the
efficacy of αPD-L1-mediated checkpoint blockade therapy,
significantly suppressing tumor growth and preventing
recurrence. The innovation lay in combining drug delivery with
hypoxia alleviation, enhancing chemotherapy and immunotherapy
effectiveness for long-term tumor control. It is worth mentioning
that, the hypoxia-responsive nanovesicles need further optimization
to improve their dissociation efficiency under tumor hypoxia and
enhance their therapeutic outcomes.

In conclusion, nitroreductase activable agents for tumor
theranostics represent a highly promising and innovative
approach in cancer diagnosis and treatment. These agents
leverage the enzymatic activity of nitroreductases to achieve
targeted therapy and diagnostic imaging within the tumor
microenvironment, providing a non-invasive and precise method
for monitoring and treating tumors. Besides the summarized
examples above, dual-locked (NTR and another cancer
biomarker) activatable theranostics have also been reported and
widely used, offering new diagnostic methods (Luo et al., 2022; Wei
et al., 2022). By selectively activating prodrugs in tumor cells, these
agents enhance therapeutic efficacy while minimizing systemic
toxicity. The integration of diagnostic and therapeutic functions
enables real-time imaging and image-guided treatment, optimizing
patient outcomes. Continued research and clinical development in

this field hold significant potential for advancing personalized
cancer therapy and improving survival rates.

4 Future directions in the development
of nitroreductase activable agents for
tumor theranostics

The field of nitroreductase activable agents for tumor theranostics
is rapidly evolving, with ongoing research focusing on advancing the
design, development, and clinical translation of these innovative
agents. Several exciting future directions are emerging in this area,
which hold great promise for improving cancer therapy and patient
outcomes. Here are some key aspects of future directions in the
development of nitroreductase activable agents for tumor theranostics.

4.1 Enhanced drug delivery systems

Future research efforts will focus on developing advanced drug
delivery systems that can improve the tumor-specific accumulation
and activation of nitroreductase activable agents. Strategies such as
nanoparticle-based drug delivery, targeted drug conjugates, and
stimuli-responsive drug release systems will be explored to
enhance drug delivery efficiency, increase intratumoral drug
concentrations, and minimize off-target effects. By optimizing
drug formulation and delivery mechanisms, researchers aim to
enhance the therapeutic efficacy and safety of nitroreductase
activable agents in cancer treatment.

4.2 Multifunctional prodrugs

The development of multifunctional prodrugs that combine
multiple therapeutic and diagnostic components within a single
agent represents a promising future direction in nitroreductase
activable agents. By incorporating imaging agents, targeting
ligands, and therapeutic payloads in a single molecular entity,
researchers can achieve synergistic effects, improved tumor
targeting, and enhanced theranostic capabilities. Multifunctional
prodrugs offer a versatile platform for personalized cancer
therapy, enabling tailored treatment strategies based on
individual patient characteristics and tumor biology.

4.3 Immunotherapy combinations

Future studies will explore the integration of nitroreductase
activable agents with immunotherapy approaches, such as
immune checkpoint inhibitors and chimeric antigen receptor
(CAR) T cell therapy, to enhance the anti-tumor immune
response. By combining the immunomodulatory effects of
immunotherapies with the targeted cytotoxicity of nitroreductase
activable agents, researchers aim to boost the immune-mediated
tumor killing, overcome treatment resistance, and improve overall
treatment outcomes in patients with cancer. Immunotherapy
combinations hold great promise for achieving durable responses
and long-term survival benefits in cancer therapy.
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4.4 Theranostic biomarkers

Future research will focus on identifying and validating
theranostic biomarkers that can predict treatment response,
monitor disease progression, and guide treatment decisions in
patients receiving nitroreductase activable agents. Biomarkers
such as tumor-specific nitroreductase expression, drug activation
levels, and imaging signals can serve as predictive indicators of
treatment efficacy and patient outcomes. By incorporating
theranostic biomarkers into clinical practice, clinicians can
personalize treatment regimens, optimize therapy outcomes, and
improve patient care in oncology.

4.5 Clinical translation and regulatory
approval

An important future direction in the field of nitroreductase
activable agents is the translation of preclinical research findings
into clinical applications and regulatory approval for clinical use.
Clinical trials will be conducted to evaluate the safety, efficacy, and
pharmacokinetics of nitroreductase activable agents in cancer
patients, with the goal of obtaining regulatory approval for their
use in clinical practice. By advancing the clinical translation of these
innovative agents, researchers aim to bring novel theranostic
approaches to the bedside and improve patient access to
advanced cancer therapies.

Generally, the future directions in the development of
nitroreductase activable agents for tumor theranostics hold great
promise for advancing cancer therapy, personalized medicine, and
patient care. Continued research and innovation in this field will
drive the development of novel theranostic strategies, optimize
treatment outcomes, and ultimately improve the quality of life
and survival rates for cancer patients.

5 Conclusion

The use of nitroreductase activable agents for tumor
theranostics represents a promising and innovative approach
in the field of cancer diagnosis and treatment. These agents offer
a unique platform for combining diagnostic imaging with
targeted therapy, enabling non-invasive tumor monitoring,
image-guided treatment, and personalized medicine in
oncology. Through the selective activation of prodrugs by
tumor-specific nitroreductase enzymes, these agents provide a
powerful tool for delivering cytotoxic drugs specifically to cancer
cells while sparing normal tissues, thus minimizing toxicity and
maximizing therapeutic efficacy.

In this review, we have highlighted the key features, mechanisms
of action, diagnostic applications, therapeutic potentials, and future
directions of nitroreductase activable agents for tumor theranostics.
The ability of these agents to selectively activate prodrugs within the
tumor microenvironment offers several advantages, including
enhanced tumor targeting, reduced systemic toxicity, and
improved treatment responses. By utilizing imaging modalities
such as PET, MRI, and fluorescence imaging, clinicians can non-
invasively visualize drug activation, monitor treatment responses,

assess tumor heterogeneity, and guide treatment decisions in
real-time.

Nitroreductase activable agents have shown great promise in
preclinical studies and early-phase clinical trials as effective
theranostic tools for various types of cancer, including solid
tumors and hematological malignancies. The integration of these
agents with conventional chemotherapy, radiotherapy, and
immunotherapy approaches has the potential to enhance
treatment outcomes, overcome treatment resistance, and improve
patient survival rates. By developing advanced drug delivery
systems, multifunctional prodrugs, immunotherapy combinations,
and theranostic biomarkers, researchers aim to further optimize the
therapeutic efficacy and clinical utility of nitroreductase activable
agents in cancer therapy.

In conclusion, nitroreductase activable agents hold great
potential for revolutionizing cancer theranostics by providing
a personalized, targeted, and image-guided approach to cancer
diagnosis and treatment. Continued research, innovation, and
clinical translation in this field are essential for advancing
the development of novel theranostic strategies, enhancing
treatment outcomes, and improving patient outcomes in
oncology. By leveraging the unique properties of
nitroreductase activable agents, clinicians can tailor treatment
regimens to individual patient needs, optimize therapy
responses, and ultimately improve the quality of life and
survival rates for cancer patients.
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