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Pyroptosis is a form of inflammatory programmed cell death, and is activated by
pathogen infections or endogenous danger signals. The canonical pyroptosis
process is characterized by the inflammasome (typically NLRP3)-mediated
activation of caspase-1, which in turn cleaves and activates IL-1β and IL-18, as
well as gasdermin D, which is a pore-forming executor protein, leading to cell
membrane rupture, and the release of proinflammatory cytokines and damage-
associated molecular pattern molecules. Pyroptosis is considered a part of the
innate immune response. A certain level of pyroptosis can help eliminate
pathogenic microorganisms, but excessive pyroptosis can lead to persistent
inflammatory responses, and cause tissue damage. In recent years, pyroptosis
has emerged as a crucial contributor to the development of chronic inflammatory
respiratory diseases, such as asthma. The present study reviews the involvement
of pyroptosis in the development of asthma, in terms of its role in different
inflammatory phenotypes of the disease, and its influence on various immune and
non-immune cells in the airway. In addition, the potential therapeutic value of
targeting pyroptosis for the treatment of specific phenotypes of asthma is
discussed.
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Introduction

Based on the type and number of inflammatory cells in induced sputum, asthma is
categorized into four inflammatory phenotypes: eosinophilic, neutrophilic, mixed
granulocytic, and paucigranulocytic asthma. Both eosinophilic and neutrophilic asthma
can involve significant airway inflammation and tissue damage. Eosinophilic asthma is
often sensitive to oral and inhaled glucocorticoids (Hussain et al., 2024), while severe
neutrophilic asthma is resistant to glucocorticoid therapy (Zhang et al., 2022). Thus, the
effectiveness of asthma medications depend on the specific inflammatory phenotype of the
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disease. Understanding the molecular mechanisms that contribute
to the development of different asthma phenotypes is critical
for identifying new therapeutic targets for effective
asthma treatment.

Pyroptosis is a form of inflammatory programmed cell death,
and is activated by pathogen infections or endogenous danger
signals. There are two pathways of pyroptosis: the canonical
inflammasome- and caspase-1-dependent pathway, and the
noncanonical pathway mediated by caspase-4/5/11 (Figure 1)
(Ma et al., 2018). The canonical pathway is initiated by
inflammasome-mediated caspase-1 activation. The activated
caspase-1 in turn cleaves pro-IL-1β and pro-IL-18 into their
active forms. It also cleaves gasdermin D (GSDMD) to generate
the GSDMD-N and GSDMD-C domains. GSDMD-N binds to
acidic lipids in the cell membrane, forming transmembrane pores
that allow IL-1β and IL-18 release, and ion and water influx,
resulting in cell swelling and osmotic lysis (You et al., 2023). The
noncanonical pathway does not require inflammasome formation.
Instead, stimuli such as bacterial lipopolysaccharides (LPS) directly
enter the cell to activate caspase-4/5/11, which cleaves GSDMD, and
induces pyroptosis. In addition, pyroptosis can be induced by
caspase-3-mediated GSDME cleavage, caspase-8-mediated
GSDMC cleavage, and caspase-1/3/6/7- or granzyme A-mediated

GSDMB cleavage (Liang et al., 2024; Feng et al., 2022; Wang et al.,
2017). Although caspase-1 under canonical inflammasome
activation has been considered the primary catalytic enzyme for
the cleavage of pro-IL-1β and pro-IL-18, recent studies have found
that caspase-4, which is a cytosolic receptor for LPS, can also process
pro-IL-18 into its active form under non-canonical inflammasome
activation (Devant et al., 2023; Shi et al., 2023). This expands the
functional significance of caspase-4 in regulating inflammation and
immune responses, especially in conditions that involve intracellular
pathogens. Pyroptosis is considered a part of the innate immune
response that helps eliminate pathogenic microorganisms.
Nonetheless, excessive pyroptosis may lead to continuous
inflammatory reactions, and cause tissue damage. Pyroptosis has
been shown to play a role in the pathogenesis and treatment of a
number of human diseases (Jin et al., 2020). In particular, it has
emerged as a significant contributing factor to the development of
inflammatory respiratory diseases, such as asthma (Feng et al.,
2022). This review discusses the current evidence on the
involvement of pyroptosis in the development of different
inflammatory phenotypes of asthma, the immune and non-
immune cells in the airway involved in or affected by pyroptosis,
and the potential therapeutic value of targeting pyroptosis for the
treatment of specific phenotypes of asthma.

FIGURE 1
Schematic diagramof the pyroptosis pathways. Classical pyroptosis pathway: PAMPs andDAMPs activate inflammasomes and caspase-1. Caspase-1
cleaves GSDMD and pro-IL-1β/18. N-GSDMD perforates the cell membrane by forming nonselective pores, causing cell lysis and death. IL-1β/18 are
released through the pores formed by N-GSDMD. Non-classical pyroptosis pathway: LPS derived from bacteria recognizes and activates caspase-11/4/5,
leading to GSDMD cleavage, and triggering pyroptosis. In addition, caspase-4 also processes IL-18. GSDMC/E/B pathway: GSDMC: TNF-α induces
the activation of caspase-8, which in turn cleaves GSDMD and GSDMC, triggering pyroptosis. GSDME: GzmB and caspase-3 cleave GSDME, triggering
pyroptosis. GSDMB: GzmA and caspase-1/3/6/7 cleave GSDMB. In addition, the full length GSDMB enhances the caspase-4-mediated GSDMD cleavage
to induce pyroptosis. Notes: ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain; PAMP, pathogen-associated
molecular pattern; DAMP, damage-associated molecular pattern; IL, interleukin; LPS, lipopolysaccharide; TNF-α, tumor necrosis factor-α; GzmA,
granzyme A; GzmB, granzyme B.
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Immune response to allergens in asthma

Atopic asthma (also known as allergic asthma) is a common type
of asthma that is triggered by exposure to allergens, such as dust
mites, pollen, or pet dander. It is mostly a type 2 immune disorder
characterized by high levels of immunoglobulin E (IgE), and the
activation of Th2 cells, mast cells, eosinophils and basophils, as well
as non-immune cells, such as airway epithelial cells. The type
2 responses in asthma are regulated by various Th2 cytokines,
including IL-4, IL-5, IL-9 and IL-13. Th2 cell-derived IL-4 has
been considered to promote IgE production through B cells to
specific allergens, which binds to high-affinity FC-ε receptor 1
(FCεR1) on basophils and mast cells. Non-atopic asthma (also
known as non-allergic asthma) is less common than atopic
asthma. It is triggered by various non-allergic factors, such as air
pollution, exercise, infections and stress, and is characterized by the
absence of serum IgE, and more involvement of innate immune
cells, such as group 2 innate lymphoid cells (ILC2s), basophils and
eosinophils. Non-atopic asthma can be triggered by allergenic
proteases, which cause a Th2-independent response (Bao et al.,
2017; Kubo, 2017; Abu et al., 2020; Jacquet, 2011). Both atopic and
non-atopic asthma are characterized by airway inflammation that
involve non-immune cells, such as airway epithelial cells (AECs),
and immune cells, such as macrophages. Excessive inflammation
causes cell death and lung tissue damage that can exacerbate airway
inflammation and remodeling. In recent years, accumulating
evidence has highlighted the roles of certain types of
programmed cell death, such as apoptosis, autophagy and
pyroptosis, in the pathogenesis of asthma (Liu et al., 2023a).
Pyroptosis, in particular, is an inflammatory form of
programmed cell death that can occur in immune and non-
immune cells in the inflammatory airway. This article focuses on
the involvement of pyroptosis in the pathogenesis and immune
response of asthma.

Immune response to viruses in asthma

People with asthma, especially those with a severe disease, are
more susceptible to respiratory viral infections and virus-induced
cell cytotoxicity (Sharma et al., 2022; Kim, 2022). Conversely,
infections with respiratory viruses, such as influenza, respiratory
syncytial virus, and SARS-CoV-2 virus, are a common cause of
asthma exacerbation (Yamaya, 2012; Agondi et al., 2022). Factors
that lead to increased susceptibility to viral infection in the asthmatic
population include impaired airway epithelial barrier function,
altered innate immune response, and decreased circulating
antibody concentration. AECs are the initial platform of innate
immunity against respiratory virus invasion (Kim, 2022). Altered
innate immunity of asthmatic AECs is associated with excessive
immune response to respiratory infections, causing airway damage
and disease aggravation (Kim, 2022). Virus-induced asthma
exacerbation may be caused by ineffective virus clearance in
asthma patients, leading to persistent infection (Hayashi et al.,
2022; Binns et al., 2022). The impaired virus clearance in asthma
patients is considered to be caused by altered antiviral immunity that
involve eosinophils, Th2 cytokines (e.g., IFN-β and IL-33), and
neutrophil extracellular traps (NETs) (Kumar et al., 2020). Given the

influence of respiratory viral infection in asthma development and
exacerbation, the interaction between viral infection and asthma has
become a critical topic in asthma research.

Pyroptosis in asthma

Increasing evidence has implicated pyroptosis in the
development of asthma (Liu et al., 2023a). Single nucleotide
polymorphisms (SNPs) in NLRP3 inflammasome and caspase-1
have been linked to the increase in childhood asthma susceptibility
(Queiroz et al., 2020). Elevated NLRP3 and caspase-1/4/5 levels have
been detected in induced sputum in patients with neutrophilic
asthma (Simpson et al., 2014). Mice with ovalbumin (OVA)-
induced asthma presented with increased pulmonary NLRP3,
caspase-1 and IL-1β expression, while the blockage of the
NLRP3/caspase-1/IL-1β pathway attenuated bronchial
inflammation in asthmatic mice (Chen et al., 2022). Similarly,
NLRP3 inhibition attenuated bronchial inflammation and
hyperresponsiveness in asthma mouse models induced by house
dust mite (HDM) or toluene diisocyanate (TDI) (Ma et al., 2021;
Zhuang et al., 2020). In addition, mice with deficient NLRP3-
mediated IL-1β release (NLRP3−/−/ASC−/−/IL-1R1−/−) exhibited
reduced bronchial cell infiltration, lung inflammation, and airway
hypersensitivity after OVA stimulation (Ritter et al., 2014). Notably,
NLRP3-mediated pyroptosis appears to be more prominent in
glucocorticoid-resistant, severe, and neutrophilic asthma in
humans (Rossios et al., 2018; Kim et al., 2017). These findings
indicate that pyroptosis is associated with certain phenotypes of
asthma, and the severity of the disease. Thus, pyroptosis inhibitors
may provide precision medicine for the personalized treatment
of asthma.

Pyroptosis and non-immune/immune cells
in asthma

Pyroptosis in asthma involves and affects various non-immune
and immune cells in the airway (Figure 2) (Feng et al., 2022; Sun and
Li, 2022; Xiao et al., 2023; Cai et al., 2024). This section reviews how
pyroptosis involves/affects different cell types in the airway, and
contributes to the development of various inflammatory phenotypes
of asthma.

Pyroptosis of AECs in asthma

The bronchial epithelium primarily functions as a physical
barrier, preventing harmful substances, such as pathogens and
pollutants, from entering the lungs. It also senses invading
substances in the airway, and secrets cytokines and other
mediators to boost innate and adaptive immune responses (Cai
et al., 2024). AECs express pattern recognition receptors (PRRs),
such as toll-like receptors and inflammasomes, which recognize
pathogen-associated molecular patterns (PAMPs) from inhaled
microbes/allergens, and damage-associated molecular patterns
(DAMPs) from damaged cells. Upon PAMP or DAMP
recognition, PRRs trigger the release of various proinflammatory
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cytokines/chemokines, initiating a cascade of immune responses
that help eliminate the invading substances and damaged lung cells.
However, the pathogens/allergens themselves, and excessive
immune response in the airway can injure AECs, and cause
epithelial disruption, leading to impaired barrier function, and
increased mucus secretion. This contributes to airway
hypersensitivity and inflammation in asthma (Frey et al., 2020).
Notably, the AECs of asthma patients are genetically predisposed to
an increased barrier permeability (Heijink et al., 2020).

Many studies have implicated AEC pyroptosis in the
pathogenesis of asthma. NLRP3 was found to be upregulated in
AECs in mice with severe asthma induced by Chlamydia/
Haemophilus respiratory infection combined with OVA challenge
(Kim et al., 2017). Particulate matter 10 μm (PM10) can induce
NLRP3 inflammasome activation in AECs, leading to cytokine
production, dendritic cell activation, and neutrophil recruitment
in the lungs (Hirota et al., 2015). Der f1 is an allergen of
Dermatophagoides farina, which causes pyroptosis in cultured
human AECs by activating the NLRP3/caspase-1 pathway (Tsai

et al., 2018). In TDI-induced asthmatic mice, TDI induced NLRP3/
caspase-1/GSDMD-mediated AEC pyroptosis, and the inhibition of
the NLRP3 inflammasome reduced AEC pyroptosis, and attenuated
airway inflammation and hyper-responsiveness (Zhuang et al.,
2020). In addition, NLRP3-mediated AEC pyroptosis was found
to be upregulated in obese asthmatic mice, when compared to
control asthmatic mice, contributing to the exacerbation of lung
inflammation associated with obesity (Liu F. et al., 2023). Notably,
GSDMB is upregulated in the bronchial epithelium of asthma
patients, and its overexpression in mice induces airway
hyperresponsiveness and remodeling (Das et al., 2016).
Furthermore, GSDMB SNPs and expression in AECs correlate to
human asthma severity and exacerbations (Li et al., 2021). In vitro
studies have revealed that GSDMB is cleaved by inflammatory
caspase-1 to induce potent AEC pyroptosis (Panganiban et al.,
2018). These findings support that GSDMB-mediated bronchial
epithelium pyroptosis plays an important role in the pathogenesis
of asthma. Thus, the inhibition of NLRP3- or GSDMB-mediated
pyroptosis in AECs may reduce asthma severity and exacerbations.

FIGURE 2
Pyroptosis and the role of immune and non-immune cells in asthma. Airway epithelial cells: Allergens or PM10 activate the NLRP3/caspase-1/
GSDMD signaling pathway, triggering pyroptosis. Certain stimuli can activate GSDMB-mediated pyroptosis. Macrophages: Schisandrin B induces
TLR4 and IFN-β, leading to the activation of caspase-1 and caspase-4/11, respectively. PGE2 prevents IFN-β induction, and inhibits pyroptosis.
Perfluoroalkyl triggers AIM2 inflammasome-mediated pyroptosis through caspase-1. HDM/Curdian triggers pyroptosis through caspase-4/11.
Neutrophils: Certain stimuli and LPS/bacteria can trigger caspase-1- or caspase-11/GSDMD-mediated pyroptosis. Dendritic cells and T cells: Caspase-1/
GSDMD-mediated pyroptosis. Eosinophils: Caspase-1/GSDMD-mediated pyroptosis.
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Pyroptosis of macrophages in asthma

Lung macrophages are the key orchestrators in asthma
pathogenesis, in terms of immune cell recruitment, and airway
inflammation and remodeling (Britt et al., 2023; Yunna et al.,
2020). Exposure to pathogens can induce the polarization of
alveolar macrophages into M1 and M2 macrophages. M1 cells
express high levels of pro-inflammatory cytokines, such as IL-1β,
IL-6 and TNF-α, causing inflammation; and resisting invading
pathogens. M2 cells predominantly produce allergic cytokines IL-
4, IL-5, IL-9 and IL-13, promoting the migration and infiltration of
eosinophils and mast cells, and driving allergic reactions (Jiang and
Zhu, 2016). In mouse models of HDM-induced asthma,
macrophage pyroptosis mediated by caspase-11/4 stimulated
chemokine secretion, and exacerbated airway neutrophil
inflammation (Cai et al., 2024; Abu Khweek et al., 2021). In
perfluorooctane sulfonate-induced asthmatic mice, macrophage
pyroptosis was mediated by the AIM2 inflammasome, rather
than the NLRP3 that exacerbates asthmatic lung inflammation
through IL-1β (Wang et al., 2021). Prostaglandin E2 (PGE2)
inhibited caspase-11-mediated pyroptosis in murine and human
macrophages, and suppressed the experimental allergic bronchial
inflammation triggered by OVA or HDM (Abu Khweek et al., 2021;
Zaslona et al., 2020). Notably, blocking NLRP3/caspase-1/GSDMD-
mediated macrophage pyroptosis with Schisandrin B attenuated
bronchial inflammation and remodeling in OVA-induced asthmatic
rats (Chen et al., 2021). These findings support macrophage
pyroptosis as a key contributing factor to the development of
asthma, and that blocking this process may provide therapeutic
benefits to asthma patients.

Pyroptosis and neutrophils in asthma

Neutrophilic inflammation is a pathological hallmark of
neutrophilic and mixed granulocytic asthma. Elevated
NLRP3 and caspase 1/4/5 levels were detected in the induced
sputum of patients with neutrophilic asthma, when compared to
patients with eosinophilic asthma (Simpson et al., 2014). The
inhibition of the NLRP3 inflammasome can prevent the severe
bronchial neutrophilic inflammation triggered by fungal allergen
Alternaria alternata in mice (Killian et al., 2023). These findings
indicate that inflammasome activation is involved in neutrophilic
inflammation in asthma. Neutrophil extracellular traps (NETs) are a
network of extracellular DNA strips and proteins released from
activated or dying neutrophils. These are present in the airway of
asthma patients, and help to eliminate invading pathogens.
However, excessive NET formation (NETosis) can cause airway
damage, accelerating asthma progression (Poto et al., 2022). Indeed,
high NETs in induced sputum is a marker of severe asthma and
inflammasome activation (Lachowicz-Scroggins et al., 2019). Studies
have revealed that caspase 11-driven and GSDMD-dependent
neutrophil pyroptosis is responsible for NETosis, in response to
LPS stimulation or bacterial infection (Chen et al., 2018). Thus,
blocking the GSDMD cleavage can prevent the neutrophil
pyroptosis and NETosis triggered by phorbol 12-myristate 13-
acetate (PMA) (Sollberger et al., 2018). Notably, the activation of
the NLRP3/caspase-1/GSDMD signaling pathway in neutrophils, in

response to adenosine triphosphate (ATP) or microbial toxin
pneumolysin, can lead to IL-1β secretion, without inducing
pyroptosis (Mankan et al., 2012; Karmakar et al., 2016; Karmakar
et al., 2020; Karmakar et al., 2015). Similarly, the activation of
NLRC4/caspase-1 signaling in neutrophils after Salmonella infection
can drive IL-1β production, but not pyroptosis (Chen et al., 2014).
This resistance to pyroptotic cell death keeps neutrophils alive to
continuously produce IL-1β, and sustain neutrophilic inflammation,
which may function as a mechanism that drives the progression of
severe, glucocorticoid-resistant neutrophilic asthma (Kim
et al., 2017).

Pyroptosis and dendritic cells (DCs)
in asthma

As dominant antigen-presenting cells, DCs play a central role in
initiating and sustaining Th2 immune responses in the airways of
asthma patients (Morianos and Semitekolou, 2020). There have
been few studies on the pyroptosis of DCs in the development of
asthma. DCs can undergo pyroptosis in antiviral defense or allergic
inflammation. For example, immune-complexed adenovirus can
engage the DNA PRR AIM2 to induce caspase-1/GSDMD-
dependent pyroptosis in human DCs (Eichholz et al., 2016).
Furthermore, OVA/HDM stimulation can induce NLRP3/
GSDMD-mediated pyroptosis in DCs in vitro, affecting
CD4+ T cell differentiation, and causing Th1/Th2/Th17 cell
imbalance in a co-culture system (Qiao et al., 2023). In mice
with OVA-induced allergic rhinitis, it was found that DCs, but
not mast cells or basophils, underwent GSDMD-mediated
pyroptosis. Blocking the GSDMD-mediated pyroptosis can
prevent Th1/Th2/Th17 imbalance, and alleviate OVA-induced
inflammatory responses, while the adoptive transfer of OVA-
stimulated DCs would exacerbate OVA-induced inflammation
(Qiao et al., 2023). Intriguingly, inflammasome activation in
conventional type 2 DCs (DC2) does not activate pyroptosis, but
instead induces the secretion of IL-12 family cytokines and IL-1β,
which in turn activates potent Th1 and Th17 responses (Hatscher
et al., 2021). In contrast, inflammasome activation in type 3 DCs
(DC3) causes pyroptotic cell death. Thus, the ability of DC2 to
circumvent pyroptosis upon inflammasome activation renders
DC2 greater potency, when compared to DC3, in inducing Th1/
Th17 response (Hatscher et al., 2023). These in vitro findings suggest
that DC subsets may contribute in different ways to the development
of asthma due to its varying susceptibility to pyroptosis.

Pyroptosis and eosinophils in asthma

Eosinophils play an essential role in the key clinical
manifestations of asthma, from airway hyperresponsiveness and
inflammation, to mucus hypersecretion (McBrien and Menzies-
Gow, 2017). Caspase-1- or NLRP3-deficient mice exposed to
HDM exhibited enhanced eosinophil recruitment, and
exacerbated airway inflammation (Madouri et al., 2015),
suggesting that the NLPR3/caspase-1 axis restrain eosinophilic
inflammation in asthma. However, the blockade of the NLRP3/
caspase-1 axis attenuated the bronchial neutrophilic inflammation
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in mice exposed to toluene diisocyanate (TDI) (Chen et al., 2019),
implying that the NLPR3/caspase-1 signaling promotes neutrophilic
inflammation in asthma. Thus, the role of NLRP3/caspase-
1 signaling in asthma appears to depend on the inflammatory
phenotype of asthma. There have been few studies on the
pyroptosis of eosinophils in asthma. Necrotic liver injury can
induce massive eosinophilia, accompanied by caspase-1-mediated
eosinophil pyroptosis, degranulation, and IL-1β/IL-18 secretion
(Palacios-Macapagal et al., 2017). IL-1β and IL-18 contribute to
the development of allergic inflammatory diseases by activating
eosinophil recruitment, and stimulating mast cell degranulation
(Sanders and Mishra, 2016; Wan et al., 2015; Ge et al., 2021;
Wang Y. et al., 2024). It is possible that in the development of
asthma, the IL-1β and IL-18 secreted from eosinophils that undergo
pyroptosis help drive the progression of airway hypersensitivity and
inflammation. Further investigations are needed to confirm this
hypothesis.

Pyroptosis and T cells in asthma

CD4+ T cells are the main determinant of the inflammatory
phenotype of asthma. Th2, Th9 and Tfh cells drive the development
of eosinophilic asthma, while Th1 and Th17 cells control the
progression of neutrophilic asthma (Jeong and Lee, 2021). There
have been few studies on T cell pyroptosis in the development of
asthma. The massive IL-18 and IL-1β release from pyroptotic AECs
and macrophages may influence the differentiation, proliferation
and function of CD4+ T cells, and determine the course of asthma
progression (Huber et al., 1996; Ben-Sasson et al., 2009; Smith,
2011). IL-18 can induce FasL expression in natural killer and
cytotoxic T cells, promoting Fas-mediated epithelial apoptosis
and tissue damage during inflammatory responses (Dinarello,
1998). Furthermore, IL-18 can promote IL-4-independent IgE
production mediated by CD4+ T cells (Hoshino et al., 2000). In
mice with allergic asthma, it was found that intrapulmonary IL-18
administration can increase Th2 cytokine levels, IgE production,
eosinophil influx, and airway mucus secretion (Wild et al., 2000).
Small molecule inhibitors of dipeptidyl peptidases 8 and 9 can
activate CARD8 and NLRP1 inflammasomes in T cells, causing
caspase-1-GSDMD-mediated pyroptosis (Johnson et al., 2020;
Linder et al., 2020; Linder and Hornung, 2022). However, it
remains to be determined whether T cells undergo pyroptosis
during the development of asthma.

Pyroptosis and intercellular communication
in asthmatic inflammation

Asthmatic inflammation involves both the sequential and intricate
interactions of non-immune and immune cells that contribute to the
initiation and propagation of an inflammatory cascade. Pyroptosis is a
component of this complex cascade, which leads to clinical
manifestations associated with the disease. Inhaled allergens,
pathogens, and pollutants can directly activate the pyroptosis of
AECs and immune cells in the airway, resulting in the release of IL-
1β, IL-18, and high mobility group box 1 (HMGB1). IL-1β plays an
important role in asthmatic inflammation, contributing to eosinophilia,

IgE switching, and Th2 inflammation (Linder and Hornung, 2022). IL-
18 can induce the infiltration of neutrophils and eosinophils in the lungs,
causing airway hyperresponsiveness (Sawada et al., 2013). IL-18 can also
exacerbate airway inflammation by promoting Th1 and Th2 cell
activation, and IFN-γ and IgE production (Sawada et al., 2013; Lu
et al., 2024; Xu et al., 2023). HMGB1 can promote NF-κB activation and
the consequent recruitment of effector T cells, causing the aggregation of
CD8+ T cells in the airway epithelium (Frey et al., 2020). Meanwhile,
immune cell-derived inflammatory factors, such as TNF-α, can enhance
the pyroptosis of AECs, creating a positive feedback loop that amplifies
the inflammatory cascade. Figure 3 illustrates the crosstalk between non-
immune and immune cells bridged by pyroptosis in asthmatic
inflammation. At present, the research in this field remains rather
limited, and there are various gaps in current knowledge, especially
in how immune cell-derived factors affect non-immune cell pyroptosis.
Future studies are needed to fill these gaps.

Pyroptosis and asthma treatment

Inhaled corticosteroids are the preferred medication for treating
asthma. However, some patients, especially patients with
neutrophilic asthma, may develop glucocorticoid resistance. In
recent years, a number of biologics and small molecules that
target pyroptosis pathways have presented with therapeutic
benefits in in vitro and in vivo models of asthma (Table 1).
JT002, which is a small molecule inhibitor of the
NLRP3 inflammasome, inhibited pyroptosis, and alleviated
airway hyperresponsiveness and neutrophilia in a mouse model
of IL-17-dependent neutrophilic asthma (Ambrus-Aikelin et al.,
2023). Schisandrin B, which is a bioactive biphenycloctadine isolated
from Schisandra chinensis, exhibits diverse antioxidant and anti-
inflammatory properties (Nasser et al., 2020). Furthermore,
Schisandrin B reduced bronchial inflammation and remodeling
in asthmatic rats (Chen et al., 2021). Mechanistically, Schisandrin
B inhibited NLRP3 activation, and reduced pyroptosis in asthmatic
rats and LPS-stimulated rat alveolar macrophages via the miR-135a-
5p/TRPC1/STAT3/NF-κB axis (Chen et al., 2021). The C-terminal
subunit of mucin 1 (MUC1-CT) was found to inhibit NLRP3-
dependent pyroptosis by downregulating the TLR4/MyD88/NF-
κB signaling, thereby reducing bronchial neutrophilic
inflammation in OVA/LPS-stimulated asthmatic mice (Liu et al.,
2023c). Nootkatone, which is an antioxidant sesquiterpenoid
identified in a number of Citrus species, alleviated bronchial
inflammation and mucus hypersecretion in mice with OVA-
induced asthma (Gai et al., 2023) Mechanistically, Nootkatone
mitigated the ROS-mediated NLRP3 activation and pyroptosis in
asthmatic mice, and in IL-13-stimulated human AECs (Gai et al.,
2023). Substance P activated the PI3K/Akt/NF-κB signaling to
promote inflammation and NLRP3/caspase-1-dependent
pyroptosis in cultured human AECs and asthmatic mice in vitro
and in vivo, and aggravated bronchial asthma in OVA-induced mice
(Li et al., 2022). Blocking substance P receptor neurokinin-1
receptor (NK1R), PI3K, or NF-κB can protect against substance
P-induced AEC inflammation and pyroptosis (Linder et al., 2020).
Yanghe Pingchuan granules (YPG) are a traditional Chinese herbal
medicine preparation used to treat bronchial asthma in China (Li
et al., 2022). YPG inhibits airway smooth muscle cell pyroptosis, and
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alleviates bronchial asthma by downregulating the TLR4/NF-κB/
NRLP3 signaling (Pan et al., 2022). Protopine, which is an anti-
inflammatory isoquinoline alkaloid obtained from plants,
ameliorates OVA-induced asthma by downregulating the TLR4/
MyD88/NF-κB signaling, and reducing NLRP3-mediated pyroptosis
(Yang et al., 2024). These results support that medications that target
inflammasomes and pyroptosis may provide novel treatments for
asthma, especially severe, glucocorticoid-resistant asthma.

Emerging evidence has implicated the E3 ligase TRIM29 in the
regulation of virus-induced pyroptosis of intestinal epithelial cells

(IECs). TRIM29 suppresses rotavirus and encephalomyocarditis
virus-induced pyroptosis of human IECs by targeting the
NLRP6 and NLRP9b inflammasomes for ubiquitination-mediated
degradation (Wang et al., 2024b). Furthermore, TRIM29 can
promote the virus-induced pyroptosis of porcine IECs through
protein kinase RNA-like endoplasmic reticulum kinase (PERK)-
mediated endoplasmic reticulum (ER) stress (Ma et al., 2024; Wang
et al., 2024c). Moreover, it was found that the RNA helicase DEAH-
box helicase 15 (DHX15) activates the NLRP6 inflammasome and
IL-18 production during viral infection in mouse IECs (Xing et al.,

FIGURE 3
Pyroptosis and its intercellular communication in asthmatic inflammation. Allergens, pathogens, and pollutants induce the pyroptosis of AECs and
airway macrophages, leading to the release of IL-1β and IL-18, which in turn promotes eosinophil and neutrophil infiltration, Th1 and Th2 inflammation,
INF-γ and IgE production, and NF-κB activation, contributing to the clinical manifestations of asthma. Meanwhile, immune cell-derived inflammatory
factors, such as TNF-α, enhance the pyroptosis of AECs, creating a positive feedback loop that amplifies the inflammatory cascade.

TABLE 1 Biologics and small molecules that mitigate asthma by targeting pyroptosis.

Biologics and small
molecules

Targets Animal models of
asthma

Efficacy References

JT002 NLRP3 Mouse model of neutrophilic
asthma

Reduced airway hyperresponsiveness and
airway neutrophilia

Ambrus-Aikelin et al.
(2023)

Schisandrin B NLRP3 OVA/acetylcholine chloride-
induced asthmatic rats

Alleviated airway inflammation and
remodeling

Chen et al. (2021)

MUC1-CT TLR4/MyD88/NF-
κB/NLRP3

OVA/LPS-stimulated asthmatic
mice

Reduced neutrophilic airway inflammation Liu et al. (2023c)

Nootkatone NLRP3 OVA-induced asthmatic mice Mitigated oxidative stress and airway
inflammation

Gai et al. (2023)

L732138 NK1R OVA/Substance P-induced
asthmatic mice

Suppressed pro-inflammatory cytokine
secretion

Li et al. (2022)

YPG TLR4/NF-κB/NRLP3 OVA-induced asthmatic rats Alleviated lung inflammation Pan et al. (2022)

Protopine TLR4/MyD88/NF-
κB/NLRP3

OVA-induced asthmatic rats Ameliorated inflammation and pathological
changes in the lungs

Yang et al. (2024)
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2021). Given the important roles of AECs and respiratory viral
infection in asthma development and exacerbation, TRIM29 and
DHX15 modulators may mitigate asthma by influencing AEC
pyroptosis and immune response during viral infection.

Conclusion

Accumulating evidence has indicated that pyroptosis contribute
to the pathogenesis of asthma. During the development of asthma,
both non-immune cells, such as AECs, and immune cells, such as
macrophages, neutrophils, eosinophils and T cells, may undergo
pyroptosis through the inflammasome-mediated, caspase-1-
dependent canonical pathway or caspase-4/5/11-dependent
noncanonical pathway, resulting in the secretion of
proinflammatory cytokines and DAMP molecules. This helps to
initiate and sustain inflammatory responses, such as immune cell
infiltration, T cell differentiation and activation, and airway mucus
hypersecretion, influencing the progression of asthma. Present
evidence supports that medications that target inflammasomes
and pyroptosis may provide novel treatments for asthma,
especially severe, glucocorticoid-resistant asthma.
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