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Introduction: The Precision Medicine Program (PMP) at the University of Florida
(UF) focuses on advancing pharmacogenomics (PGx) to improve patient care.

Methods: The UF PMP, in collaboration with the UF Health Pathology Laboratory
(UFHPL), utilized Health Level Seven (HL7) standards to integrate PGx data into
Epic’s Genomic Module to enhance the management and utilization of PGx data
in clinical practice.

Results: A key feature of the Genomic Module is the introduction of genomic
indicators—innovative tools that flag actionable genetic information directly
within the electronic health record (EHR). These indicators enable the
effective presentation of phenotypic information and, when leveraged with
existing clinical decision support (CDS) alerts, help provide timely and
informed therapeutic decisions based on genomic data.

Discussion: This advancement represents a significant shift in the utilization of
genetic data, moving beyond traditional PDF reports to provide a comprehensive
understanding of PGx data. Ultimately, this integration empowers healthcare
providers with genomics-guided recommendations, enhancing precision and
personalization in patient care, contributing significantly to the advancement of
personalized medicine.
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1 Introduction

The integration of genomic information into healthcare systems can revolutionize
patient care by providing personalized insights based on an individual’s genetic makeup
(Manolio et al., 2013). Since 2011, the University of Florida has been at the forefront of this
revolution through its PMP, with a particular focus on PGx (Weitzel et al., 2014; Cavallari
et al., 2017). The UFHPL conducts the majority of PGx tests internally, offering both single
gene tests (e.g., CYP2C19, CYP2D6, TPMT, NUDT15) and a comprehensive panel,
GatorPGx, which analyzes eight genes (CYP2C19, CYP2D6, CYP2C9, CYP3A5, CYP4F2,
CYP2C cluster, SLCO1B1, VKORC1) crucial for drug metabolism and response.
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A key principle of UF’s PMP has been the incorporation of
health information technology into the EHR including the
development of CDS tools to guide prescribing decisions based
on drug-gene interactions (Lemke et al., 2023). Initially, these PGx-
CDS tools were limited to providing interruptive alerts when
relevant medications were ordered. While Epic has long
supported CDS tools, genomic indicators are a key innovation
introduced with the Genomic Module to enhance how genomic
data is handled within the EHR. It introduces a new master file, the
VAR (variant) database, designed to accommodate various types of
genetic variants, including single nucleotide polymorphisms (SNPs),
insertions/deletions (indels), and structural variants. This expanded
capacity allows for more comprehensive storage, retrieval, and
analysis of genomic data. Building on the enhanced data
management capabilities of the VAR database, Epic also
introduced genomic indicators within the Genomics Module to
further improve the accessibility and interpretation of this
information. The PGx genomic indicators offer several valuable
features, including interpretation language tailored for both
providers and patients, potential drug-gene interaction warnings
with actionable recommendations, and a link to corresponding lab
results. The Genomic Module can link genomic indicators to
decision support tools that guide physicians through complex
clinical choices. For example, if a patient has a genetic variant
affecting drug metabolism, PGx indicators may be used as
triggering criteria to alert clinicians helping them to avoid
adverse drug reactions or select more effective therapies.
Recognizing the need for more sophisticated genomic data
management, UF Health decided in 2021 to implement Epic’s
Genomic Module.

The integration of such complex genomic data presents unique
challenges, particularly regarding data entry and interpretation. To
address these challenges, UF utilized health informatics to develop a
solution that streamlines PGx data interpretation and generates
standardized information in HL7 format, compatible with the
genomic module. HL7 is an international set of standards for
transferring clinical and administrative data between healthcare
software applications, ensuring consistent and structured data
exchange while reducing the risk of misinterpretation or data
loss. The standard HL7 message format consists of a message
header obtained from the EHR. This header incorporates various
components such as MSH (Message Header), PID (Patient
Identification), ORC (Common Order), OBR (Observation/Order
Request), OBX (Observation/Result), and NTE (Notes and
Comments). Each of these components plays a specific role in
organizing and conveying information within the HL7 message
structure. The implementation of HL7 messaging in genomic
data integration provides several benefits. It supports the
inclusion of complex genomic data elements, such as variant
annotations and clinical interpretations, while significantly
reducing the time required for laboratory resulting and
minimizing the risk of manual errors (Williams et al., 2019;
Ayatollahi et al., 2019).

The overall objective of the project was to integrate Epic’s
Genomic Module to enhance the management of PGx
information in post-analytical therapeutic decisions; however, the
complexity of integration warrants specific attention. The focus here
is on the technical aspects of this integration, detailing the process of

EHR resulting through HL7 integration and the implementation of
downstream CDS tools.

2 Methods

The UFHPL uses Epic Systems Corporation (Verona, WI,
United States) EHR with beaker laboratory information system
(LIS). Epic Systems provides different modules tailored to specific
laboratory disciplines, including Beaker Clinical Pathology (Beaker
CP) and Beaker Anatomic Pathology (Beaker AP). At UFHPL,
molecular resulting is done in the Beaker CP module, which
allows data to be filed in discrete searchable data fields. The
following describes the implementation of PGx data into Epic’s
Genomics Module (November 2021 version), which facilitates the
integration of complex genetic data into the EHR, enhancing the
ability to utilize discrete genomic indicators for CDS.

To implement the Genomics Module, a custom middleware
solution was developed to integrate PGx data with Beaker CP,
utilizing a pre-existing Health Insurance Portability and
Accountability Act (HIPAA)-compliant infrastructure. This
infrastructure is designed around a Linux server that securely
connects to Epic Bridges/NextGen Connect and a communal
network drive (Chamala et al., 2020; Dolin et al., 2023). The
system acts as an electronic intermediary, safeguarding the
privacy and accuracy of clinical data while facilitating
information exchange between the local network folder and Epic
Bridges/NextGen Connect. Epic Bridges facilitates the integration of
HL7 messages into the Epic EHR by using the Epic integration
engine to validate incoming message values against expected ones.

A key challenge addressed during the integration was
streamlining the conversion of PGx data into the correct
nomenclature for entry into the EHR as discrete data, since this
process can be complex and time-intensive when performed
manually. For each gene, a genotype (expressed as a star allele)
and a predicted phenotype are reported, and in some instances, an
activity score may also be reported (Caudle et al., 2017). The
predicted phenotype, based on the star allele nomenclature
established by the Clinical Pharmacogenetics Implementation
Consortium (CPIC), describes the individual’s metabolizer status
for a given gene as Ultrarapid, Normal, Intermediate, or Poor
(Caudle et al., 2017). Translating raw genomic data into star
allele nomenclature typically requires an additional step, often
involving third-party software, such as Allele Typer™ (Life
Technologies), to ensure accurate genotype interpretation,
particularly for complex genes like CYP2D6 (Twesigomwe
et al., 2020).

A workflow was created to bypass third-party software by
implementing a Python-based solution to streamline the
translation of raw data directly from the instrument. Python is
used to process information in the form of CSV files. This flexibility
allows for adjustments to assay content when necessary. The QS_
Translator.csv file is used by the Python script to translate assay data
into calls of Normal, Heterozygous, or Mutant, which allowed for
easy management of nucleotide order combinations and simplified
the addition of new assays. Following this step, the PGX_
Translator.csv file, which contains all of the Probe Information,
Assay IDs and all possible genotype calls, is used to convert the
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results into genotype calls. The script then returns the phenotype
calls based on data in the GT_PT_Translator.csv file, which includes
all relevant reportable information such as phenotype, activity score,
comments, and whether the result should be flagged as abnormal in
the EHR. Expertise from the UF Health PMP was utilized to ensure
that the phenotype terminology aligns with the currently accepted
CPIC guidelines (Caudle et al., 2017).

Institutions can access all files at https://github.com/UF-Health-
Molecular-Pathology/PGX_HL7 and modifications can be made for
institution-specific assays. The QS_Translator.csv file should be
updated with assay-specific probe information. The PGX_
Translator.csv file should be modified for assay-specific genotype
calls and the GT_PT_Translator.csv file should be updated for assay-
specific reportable information. In the Python code, the gene_
symbol_replacements function should be updated to reflect assay
specific genes, and the append_OBX_segments function should be
updated to incorporate institution-specific mapping related to Epic
Long Read Report (LRR) and Variant (VAR) coding.

The overall infrastructure developed is shown in Figure 1 and
illustrates the PGx workflow, with bolded elements highlighting the
newly implemented automated workflow facilitated by the custom
middleware solution. Components indicated by dotted lines and
hatched greyed-out boxes represent the previously used manual
workflow, while unaltered items are common to both processes. The
sequence begins with orders being placed and signed in Epic,
followed by the collection and laboratory testing of patient
samples. In the automated workflow, upon receiving the sample
in the laboratory, an outgoing ancillary order (Ancillary Interface
Kind 8 [AIK8]) is transmitted to Epic Bridges, incorporating patient
and order information to ensure accurate result filing. Subsequently,
DNA extraction and TaqMan PCR are executed in the laboratory,
and the data undergoes review before being exported for annotation
and interpretation. In the manual workflow (depicted by a grey

dotted line), data is uploaded to Allele Typer™ (Life Technologies)
for annotation and interpretation, with results printed and manually
entered into Beaker for review. In the automated workflow update,
the in-house developed python script processes the data, generating
genotype and phenotype calls. The results are formatted to
HL7 specifications, matched with the AIK8 ancillary order to
create an AIK7 result message and then automatically filed to
Beaker using NextGen Connect and the Epic Bridges interface.
Both workflows converge with a final results review, ensuring
accuracy before verification and subsequent filing to the
patient chart.

The development of the genomic indicators was a collaborative
effort between the PMP, UFHPL, and the UF IT team. The PMP was
responsible for reviewing CPIC guidelines to ensure consistency and
accuracy, while also developing the interpretation language for both
providers and patients for each gene. UFHPL generated the VAR
records, which provide the structured genetic data necessary for the
genomic indicators. The UF IT teammapped the genomic indicators
to the VAR database using Epic’s PGx Turbocharger package, which
includes a comprehensive suite of CDS, translation logic, genomic
indicators, provider-facing clinical descriptions, and medication
interactions. While the package supports all CPIC Level A
guidelines, the implementation focused on a subset of these
guidelines, and also made significant modifications to the
translation logic. The translation logic in Epic consists of two
components: (1) mapping tables that link genotypes to their
corresponding phenotypes, which were tailored to include only
the SNPs tested by UFHPL; and (2) rules for each genomic
indicator that reference the mapping tables to determine when
the indicator should be applied to a patient’s chart. For example,
if the CYP2C19 result maps to an intermediate metabolizer (IM), the
corresponding indicator is added to the patient’s profile. The
translation logic was expanded to apply to pre-existing results

FIGURE 1
A Rummler-Brache diagram of the PGx workflow. Bolded items represent the new automated workflow utilizing the custom middleware solution.
Items with dotted lines and hatched greyed out boxes represent the manual workflow. All other items are common to both workflows.
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entered prior to the implementation via LRR components only. A
utility to retroactively process those results was used to add
indicators to patient charts. In collaboration with PMP, the logic
for certain variants was also refined where the evidence did not fully
align with current CPIC guidelines. Additionally, the decision
support system was updated to check genomic indicators instead
of traditional result components, and legacy CDS were revised to
link to the smart text used in the genomic indicators, ensuring
consistency in both clinician- and patient-facing content. The
incorporation of these indicators now activates PGx-CDS,
streamlining the update and monitoring processes for
personalized medicine within the EHR system.

3 Results

In the transition to integrating the Genomics Module into a
clinical workflow, it is important to understand the distinct data
storage frameworks for CP and the GenomicModule within the Epic
universe. CP results are stored in the LRR database, where data is
saved as discrete records. Each of these components requires an
individual record in the LRR, which makes it quite granular but also
results in a larger number of records for each test. Figure 2A shows
the result entry for CYP2D6 where the result component is specific
for each gene and result combination (e.g., CYP2D6 Genotype,

CYP2D6 phenotype, CYP2D6 Activity score). In contrast, results
in the Genomic Module are stored in the VAR (variant) database.
VAR uses a single set of records for each result type, simplifying the
data storage and retrieval process. Figure 2B shows the Genomic
Module result entry where the result components are not specifically
tied to particular gene, so a new record is not needed for every gene/
result combination. The table in Figure 2C shows the individual
result components required for LRR vs. VAR for the same
gene panel.

In the initial implementation of the Genomics Module, both
LRR and VAR data types were included in the results to address key
usability considerations. While the VAR view in the Genomics
Module offers a comprehensive genomic perspective, it lacks
integration within the results review tab, where LRR results are
easily accessible. To ensure continuity for clinicians and enhance the
overall review experience, both VAR and LRR were included to
provide a more complete and convenient presentation of genomic
results. To support the transmission of both data types,
HL7 messaging was used. Figure 3A shows an excerpt of an
HL7 message for CYP2D6, containing both VAR and LRR result
components (OBX/NTE segments). The OBX and NTE segments
are broken down into specific fields and field numbers, separated by
the pipe (|) symbol. Figure 3B provides a detailed overview of the
components within the HL7 message, specifically focusing on the
OBX and NTE segments for LRR and VAR records. To generate the

FIGURE 2
(A) Result entry screen in Beaker Clinical Pathology (CP) for Long Read Report (LRR) result types. (B) Result entry screen in Beaker Genomics Module
for Variant (VAR) result types. (C) Table of Long Read Report (LRR) and Variant (VAR) component mapping.
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HL7 message, a Python script is utilized to populate each
component, ensuring accurate data representation. For instance,
in OBX segment 1 (OBX-1), the Set ID guarantees a unique identifier
for each OBX, and this is self-populated from within the script. The
Value Type (OBX-2) is a hard-coded value that indicates the format
of the interface based on the data type. The Observation Identifier
(OBX-3) is mapped for the LRR record, requiring new mappings for
each result component. In contrast, for VAR, only one mapping is
utilized per result type, which can apply to different genes. The
Observation Sub-ID (OBX-4) represents the EAP Lab (test) ID,
organizing results for each gene. The actual results are populated in
the Observation Value (OBX-5), sourced from GT_PT_
Translator.csv, while Abnormal Flags (OBX-7) indicate abnormal
or critical results and are also derived from GT_PT_Translator.csv.
Additional details, such as Observation Result Status (OBX-11) and
timestamps, are managed within the script. The NTE segment
further provides a structured way to include lab-specific
comments, ensuring comprehensive data presentation.

Once the HL7 message is constructed, the generated data is
converted into two distinct output files: HL7 and PDF. The PDF file
serves the purpose of internal laboratory data review/document
control. As illustrated in Figure 4, this documentation includes
comprehensive genotype/phenotype information along with the

call for each individual sample tested allowing for easy review by
the performing laboratory technologist. To ensure traceability, each
PDF file includes the date of generation and the raw file names used
to produce the data, facilitating a clear and transparent record of the
data’s origin. This comprehensive approach not only enhances data
integrity but also supports efficient clinical workflows.

Visualization of the data in the EHR is shown in Figure 5. In
Figure 5A, results from the standard CP (LRR) database are shown
in the Results Review tab. This format lacks interactivity and does
not provide genomic indicators or drug information. In contrast, the
Genomics Module is designed to be more intuitive, enabling users to
interact with and interpret complex genomic data more efficiently.
Figure 5B presents the results from the Genomics Module (VAR),
demonstrating a more sophisticated and user-friendly interface.
Additionally, Figure 5C illustrates the link to genomic indicators
from the Genomics Module results view. This connection allows
clinicians to easily access relevant genomic information, improving
the overall clarity and comprehensibility of the presented data. The
PGx genomic indicator offers several notable functionalities,
including interpretation language for both providers and patients,
potential drug-gene interactions with recommendations, and a link
to lab results. This shift to the GenomicsModule offers a streamlined
experience for accessing relevant genomic data within a patient’s

FIGURE 3
HL7 Messaging for Genomic Data Transmission. (A) Excerpt of a Health Level 7 (HL7) message for CYP2D6, including both Variant (VAR) and Long
Read Report (LRR) result components represented as Observation (OBX) and Notes (NTE) segments. The segments are organized into specific fields and
field numbers, separated by the pipe (|) symbol, with numbered segments corresponding to those shown in (B) at the bottom. (B)Detailed overview of the
Observation (OBX) and Notes (NTE) segments within the HL7 message, focusing on the components for LRR and VAR records. This panel also
highlights the data source from the Python script used to generate the HL7 message.
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record, making it easier for providers to review and act upon the
results during clinical decision-making.

In the realm of personalized medicine, CDS play a crucial role in
guiding clinicians by providing timely notifications based on
patient-specific data (Lemke et al., 2023). An example CDS is
shown is Figure 6 with an alert for CYP2C19 Poor metabolizer.
In this scenario, the default is to remove the clopidogrel order
however, the provider can override this by choosing to keep the
order or dismiss the alert all together. With the integration of the
Genomics Module into the clinical workflow, legacy CDS were
revamped into a new format that uses the genomic indicators as
triggers. In the past, LRR results from either genotype or phenotype
were employed to trigger CDS. Although this method could meet
basic requirements for constructing suitable PGx-CDS, it had several
significant drawbacks. Firstly, it lacked the capability to assess
complex situations such as varying activity scores (e.g., CYP2D6
or CYP2C9) or updated guidelines. Secondly, maintenance was

challenging, as the rule had to cover all possible genotypes for a
certain phenotype. The introduction of genomic indicators as the
CDS trigger criteria provided a solution to overcome these
limitations. By the end of 2023, more than 11,000 patient results
had been transitioned to the new VAR results. This process included
the construction of 50 different indicators and the conversion of
50 CDS to the new format, using genomic indicators as triggers.
When comparing 1 year before implementation to 1 year post
implementation, there was a 112% increase in the number of
alerts fired and interreacted with by providers (from 1,518 to 3,218).

4 Discussion

The successful adoption of the Genomics Module, achieved
through Health Informatics and multi-team collaboration,
significantly enhanced the delivery of PGx data in a clinical

FIGURE 4
PDF Output File from Data Generation. The PDF file serves as a preliminary review of data before its integration into the Electronic Health Record
(EHR). It provides a comprehensive overview of genotype/phenotype information and individual sample calls.
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setting. This success is evidenced by three key measures. First, the
project achieved improved integration efficiency, allowing for
incorporation of PGx data and automated processes into the
existing system, which reduced manual data entry and inherently
enhanced data accuracy. Second, it demonstrated enhanced CDS
through the complete conversion of both old and new PGx-CDS
alerts to more reliable genomic criteria with the use of genomics
indicators. Finally, increased user adoption was observed, reflected
in the effective delivery of comprehensive PGx information to
healthcare providers and a notable rise in awareness and
utilization of PGx results in clinical practice. These outcomes
collectively underscore the successful implementation and

positive impact of the Genomics Module on PGx data
management and its clinical application.

While this project is not the first to address the integration of a
Genomics Module into healthcare systems, it tackles a critical
challenge in genomic integration: automation and adherence to
HL7 standards (Caraballo et al., 2020). Similar to the approach taken
by Caraballo et al., the process implemented includes creating
discrete genetic results, developing CDS rules, and integrating
genomic results into the EHR workflow. However, this project
goes further by providing a technical roadmap for healthcare
institutions looking to implement or improve their genomic data
management systems, with the aim to offer readers a comprehensive

FIGURE 5
Visualization of genomic data in the Electronic Health Record (EHR). (A) Results from the standard Clinical Pathology (CP) Long Read Report (LRR)
database displayed in the Results Review tab. (B) Results from the Genomics Module (Variant (VAR)). (C) Link to genomic indicators from the Genomics
Module results view.
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understanding of the essential technical components required for
successful integration and transition. This includes an in-depth
examination of data structures, and system architectures that
support genomic data integration. The focus on the automation
process using HL7 standards is particularly noteworthy, as it
addresses the growing need for efficient and accurate handling of
large-scale genomic data in clinical settings.

The utilization of HL7 standards enhances scalability and
replication capabilities significantly (Hussain et al., 2018; Dolin
et al., 2018). The use of health informatics principles facilitated
the development of a solution that streamlines the interpretation of
PGx data and generates standardized information in HL7 format
compatible with the Genomics Module. Details on implementing
Epic’s Genomic Module and enhancing PGx management are
available as an open-source solution on GitHub (https://github.
com/UF-Health-Molecular-Pathology/PGX_HL7.git). This
repository contains detailed documentation and source code

covering the entire integration process, including analyzing PGx
TaqMan Genotyping data from Quantstudios and HL7-based
communication between instruments and the EHR.

Overall, the Genomics Module significantly improves the
utilization of genetic data, overcoming the limitations of
traditional PDF reports (Caraballo et al., 2020). It tackles the
challenge of scattered and inconsistent genomic information,
enabling healthcare providers to gain a holistic understanding of
all genomic results. This encompasses a wide range of results,
including PGx, germline, and somatic mutations. In the realm of
PGx, the Genomics Module exhibits its prowess by automatically
interpreting results and incorporating indicators into the patient’s
chart. This feature empowers healthcare providers by offering them
a clear understanding of the interpretations and enabling them to
receive genomics-guided recommendations. This integration not
only streamlines the process of interpreting complex genetic data
but also enhances the precision and personalization of healthcare.

FIGURE 6
Example clinical decision support (CDS) alert.
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Providing a comprehensive view of a patient’s genomic information
allows for more informed decision-making and contributes to the
advancement of personalized medicine. Ultimately, the Genomics
Module serves as a powerful tool in the hands of healthcare
providers, paving the way for a future where genetic data plays a
pivotal role in patient care (Lau-Min et al., 2021).

5 Limitations

The implementation of precision medicine care using the
Genomics Module encountered several challenges: (1) While the
HL7 standard aids in integrating genomics results, incorporating
data from third-party instruments that lack direct interface
capabilities with Epic (e.g., using middleware like Data
Innovations) involves a complex process. If this integration work
cannot be completed, manual input of results and genomic indicators
may still be required to fully utilize the capabilities of the Genomics
Module. (2) The ability to create rules for interpreting activity scores
derived from genotype is currently limited to the UFHPL. While
genomic indicators are used to report and interpret these scores, they
cannot directly translate from alleles or duplications. However, with
the upcoming Epic update, healthcare providers and IT teams will
gain the capability to create their own rules based on activity scores,
extending the customization of these interpretations beyond the
laboratory. (3) The current presentation of Genomic Indicators is
not ideal for illustrating complex gene-drug interactions involving
multiple genetic variants. For instance, medications like sertraline,
which is influenced by both CYP2C19 and CYP2B6 mutations, have
their relevant information scattered across different genetic indicators.
This layout forces users to navigate through multiple sections to
gather comprehensive data. Similarly, thiopurinemedications (such as
thioguanine, azathioprine, and mercaptopurine) are significantly
impacted by both TPMT and NUDT15 genes, yet their
information is not consolidated. To address this limitation, a more
effective approach could involve organizing indicators by medication
rather than by gene. Alternatively, implementing dynamic alerts
capable of assessing multiple drug-gene interactions simultaneously
could enhance the system’s utility and user experience. (4) The
module does not fully address the issue of phenoconversion, which
can occur when drug-drug interactions inhibit or induceCYP enzyme
activity, potentially altering a patient’s phenotype. This limitation
stems from the reliability of active medication information in patient
profiles rather than the Genomics Module itself. Currently, patient-
specific consultation notes are the primary method to address
potential phenoconversion. These limitations highlight areas for
future improvement to enhance the Genomics Module’s
effectiveness in supporting precision medicine care, including
better integration of third-party results, improved result
categorization, expanded activity score reporting capabilities,
optimized display of gene-drug interactions, and more
comprehensive handling of phenoconversion scenarios.
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