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The role of computational tools in drug discovery and development is becoming
increasingly important due to the rapid development of computing power and
advancements in computational chemistry and biology, improving research
efficiency and reducing the costs and potential risks of preclinical and clinical
trials. Machine learning, especially deep learning, a subfield of artificial
intelligence (AI), has demonstrated significant advantages in drug discovery
and development, including high-throughput and virtual screening, ab initio
design of drug molecules, and solving difficult organic syntheses. This review
summarizes AI technologies used in drug discovery and development, including
their roles in drug screening, design, and solving the challenges of clinical trials.
Finally, it discusses the challenges of drug discovery and development based on
AI technologies, as well as potential future directions.
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1 Introduction

New drug development includes the discovery of drug lead compounds and drug
optimization, which is a long, expensive, and high-risk process. The transformation of a
new drug from a promising candidate to a marketable product can take over a decade or
more, cost up to a billion dollars, and result in a high rate of clinical failure (Liu C. et al.,
2021). Currently, diseases such as cancer, diabetes, Alzheimer’s disease, and
Parkinson’s disease significantly affect human health and have become a serious
public health problem globally, making drug discovery and development
increasingly critical (Yuan et al., 2023; Zheng and Jiang, 2019). Drug development
companies have adopted various methods to overcome this dilemma, with artificial
intelligence (AI) playing a key role. For example, a study by the technology company
Tech Emergence revealed that applying AI to new drug development can speed up the
process by 2%, and a report by Goldman Sachs predicted that as AI technology matures,
the annual savings in the field of new drug development could be as high as 28 billion
dollars (Mao and Liu, 2021). The number of innovative drugs approved in China’s drug
market was 14, 24, 18, 37, 49, 48, and 47 between 2014 and 2020, with the number of
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domestically produced innovative drugs increasing from 0 in
2017 to 14 in 2020 (Tang et al., 2022). These figures are attributed
to the undeniable influence of AI on this process, indicating that
AI is anticipated to revolutionize drug development.

2 Technologies and algorithms related
to AI in drug discovery and
development

The concept of AI dates back to 1950, when scientist Alan
Turing described a simple test, later known as the “Turing Test” in
his book Computing Machinery and Intelligence, to determine
whether a computer exhibited human intelligence. He described AI
as similar to but more complex than the human brain. Turing is
thus known as the “Father of AI” (Mintz and Brodie, 2019; Kaul
et al., 2020).

Machine learning (ML) is a subfield of AI, with deep learning
(DL) as a subset of ML (Pandiyan and Wang, 2022). Currently,
AI can analyze more complex algorithms and perform DL. Many
related algorithmic models have been developed for drug
discovery. ML algorithms have been used in several drug
discovery processes, including peptide synthesis, structure-
based virtual screening, ligand-based virtual screening, toxicity
prediction, drug monitoring and release, pharmacodynamic
modeling, quantitative structure-activity relationships, drug
repositioning, polypharmacology, and physicochemical
activities (Gupta et al., 2021). The relevant algorithmic models
based on ML are described below.

2.1 ML

ML refers to AI algorithms in which models are trained on large
datasets to learn rules, analyze new data, and make predictions and
decisions. There are three main types of ML: supervised learning,
unsupervised learning, and reinforcement learning (Figure 1)
(Pandiyan and Wang, 2022; Tuan et al., 2023; Mak and Pichika,
2019). Supervised learning involves training algorithms on labeled
datasets with predetermined correct answers for each input,
enabling accurate predictions of new, unseen inputs (Islam et al.,
2024). Unsupervised learning recognizes hidden patterns in data,
clusters them, and interprets them in groups, with outputs such as
disease subtypes and target discovery (Mak and Pichika, 2019).
Reinforcement learning entails learning from interactions with the
environment (Islam et al., 2024). For instance, Chen et al. used the
Trinity software to assemble 148,784 transcripts and 78,092 single
genes from clean reads. Expression patterns or functionally relevant
gene clusters could be identified under specific conditions by
analyzing the assembled gene expression data using the ML
approach (Chen et al., 2021).

DL, a ML technique based on various types of neural networks
(NNs) that utilize a hierarchical structure to learn more complex
structures and relationships in a dataset (Smith et al., 2023), is a type
of modeling and learning that employs neuronal structures
mimicking biological neural networks (Figure 1). DL differs from
ML because it utilizes data types and learningmethodsmore adept at
handling massive, high-dimensional, and complex data structures
(Lac et al., 2024). DL eliminates some of the data preprocessing steps
associated with ML and continuously corrects prediction errors

FIGURE 1
Anoverviewof AI applications and technologies in drug discovery. The use of AI in drug discovery encompasses various applications and techniques The
integration of AI into drug discovery involves the incorporation of ML and DL, with DL being a subset of ML. ML is further classified into three primary types:
supervised, unsupervised, and reinforcement learning. This figure also delineates the ML and DL algorithms, highlighting the differences in their execution
methodologies.
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through gradient descent and backpropagation. DL techniques have
demonstrated significant potential and prospects for various clinical
applications, including medical image analysis, disease diagnosis,
treatment prediction, and patient monitoring (Wang et al., 2024).

2.2 Traditional ML algorithms

The most common ML algorithms in drug discovery and
development include k-Nearest Neighbors (kNN), Naïve Bayesian
Classifier (NB), Random Forest (RF), Support Vector Machine
(SVM), and Artificial Neural Networks (ANNs) (Figure 1). Their
roles in drug discovery and development have been summarized
as following.

2.2.1 kNN
kNN implies that a sample belongs to a specific category if the

majority of the k-nearest samples (the closest neighbors in the
feature space) surrounding it belong to that category (Guan
et al., 2023). In recent studies, Yang M et al. used the weighted
kNN (WkNN) method to improve the overall density of the drug-
disease association matrix based on the kNN principle for drug
repositioning research (Yang et al., 2023).

2.2.2 NB
NB is one of the Bayesian classifiers that can be used to train a

model with a dataset of known categories, enabling the
categorization of data from unknown categories (Yang et al.,
2023). NB has been used in the pharmaceutical field due to its
simplicity, speed, and effectiveness. For instance, based on the
principle of NB, Shi H et al. trained a classifier to recognize
positive and negative samples of the pregnane X receptor (PXR).
This classifier was then used to distinguish between PXR activators
and non-activators, thereby improving classification efficiency (Shi
et al., 2015).

2.2.3 RF
The RF is a regression tree technique that uses bootstrap

aggregation and randomization of predictor variables to achieve a
high degree of predictive accuracy (Rigatti, 2017). Recently, Ryu
et al. (2022) developed a computational model called PredMS based
on the RF model to predict the stability of small compounds during
metabolism.

2.2.4 SVM
The SVM is a two-class classification model. Its basic model is

defined as a linear classifier that maximizes the intervals on the
feature space. The learning strategy of SVM is interval
maximization, which ultimately translates to solving a convex
quadratic programming problem (Yang et al., 2023). It is crucial
for predicting molecular interactions, binding affinity, and other
properties between ligands and target proteins (Shiammala et al.,
2023). Jing-Fang Z et al. selected 324 neurotoxic compounds and
234 non-neurotoxic compounds based on the combination of SVM
with Cfs subset evaluation and Best First-D1-N5 search using a web
database. Compounds were used as the dataset for constructing the
neurotoxicity discriminant model. This dataset included charge
distribution and physicochemical and geometric descriptors to

characterize the molecular structures of neurotoxic compounds.
The accuracy, sensitivity, and specificity were >80% (Zhang
et al., 2014).

2.2.5 ANNs
ANNs are computer programs that simulate the operation of

many processing units that mimic nerve cells and the basic
biological mechanisms by which they connect and interact
with each other. ANNs are a subset of ML that were created
as direct analogs of biological NNs (Shiammala et al., 2023). Like
the human brain, ANNs can learn from experiences and
understand the general relationships between variables. These
algorithms are crucial for various processes, including drug
screening and design.

Despite the unique characteristics of each of these ML-based
algorithmic models, they also have limitations. First, these models
often do not consider the heterogeneous information defined in
relational networks. Second, AI/ML-based models require extensive
training, and each application necessitates specific training tailored
to its requirements. Additionally, shallow network- and sequential
data-based approaches are usually insufficient to learn some of the
key features (e.g., distance correlation) required to make accurate
predictions (Wu et al., 2024).

2.3 DL-based algorithm

DL algorithms for drug discovery usually consist of
convolutional neural networks (CNNs), generative adversarial
networks (GANs), and recurrent neural networks (RNNs)
(Figure 1). All of them play critical role in drug discovery and
development, which have been summarized as following.

2.3.1 CNNs
CNNs operate with a convolutional layer that slides over the

original image using convolutional filters (typically small matrices of
3 × 3 or 5 × 5 in size), allowing each filter to extract specific features,
thereby reducing the amount of computation and the risk of
overfitting after maximum pooling and average pooling by a
pooling layer. These are compressed into a lengthwise vector that
serves as an input to a fully connected layer. The fully connected
layer then uses these features to determine image categories. Lei et al.
(2021) developed a learning framework based on DL called CAMP,
which utilizes CNNs and self-attention mechanisms to adequately
extract local and global information to predict binary interactions of
input peptide-protein pairs.

2.3.2 GANs
The operation of a GAN involves a generator and a

discriminator. Random inputs are passed through the generator
to produce new samples, which are then given to the discriminator
to distinguish between real and fake. These two components
continuously challenge each other to generate more authentic
sample data (Gulakala et al., 2022). For instance, Wang et al.
(2023) constructed a new CNN using dense networks. Dense
networks perform multilayer transmission on the generator
network of the GAN architecture, extending the training space
and improving sequence generation efficiency (Wang et al., 2023).
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2.3.3 RNNs
RNNs are particularly important for analyzing information

based on sequences or time series (Pandiyan and Wang, 2022),
which are distinguished by their ability to process image and
numerical data and learn data types exhibiting forward and
backward correlations due to the network’s inherent ability to
memorize them. Based on the advantages of RNNs for data
processing, Sangrak et al. constructed an RNN model that
significantly improved the performance of drug interaction
extraction by incorporating positional features, subtree inclusion
features, and integration methods. Compared to the top models in
the same period, this model exhibited improved performance on the
DDIExtraction Challenge’13 test data by up to 4.4% and 2.8%. This
improvement provides an effective solution for large data processing
and plays a key role in drug discovery (Lim et al., 2018).

Despite its widespread use, AI-based DL requires special
conditions. It starts with the need for high-quality and
sufficiently large data, which are often privately owned and not
intuitively generated. Additionally, data in ML-generated “black
boxes” can be difficult to interpret, especially in the fields of
biology and chemistry (Lei et al., 2021).

3 AI opens a new chapter in
drug screening

Drug screening involves the identification and evaluation of the
initial pharmacological properties of substances with potential
medicinal applications aming to uncover their therapeutic value
and clinical utility. This process is a foundational step in the research

and development of novel drugs, providing essential data and
insights. Drug screening is commonly divided into two main
categories: high-throughput and virtual screening (Figure 2).

High-throughput screening uses experimental techniques at the
cellular or molecular level, as well as microtiter plates, automated
systems, and rapid detection instruments for data collection,
analysis, and processing (Figure 2). This approach involves
screening thousands or even millions of compounds during the
drug discovery phase, serving as a crucial technique for identifying
active compounds early in the drug development process (Figure 2)
(Dueñas et al., 2023). For instance, in the context of ATR kinase
inhibitor research, high-throughput screening using compound
libraries has proven to be an effective strategy for discovering
ATR kinase inhibitors, exemplified by the identification of the
lead compound BAY-937 (Yuan et al., 2022). In antiviral
research targeting articulator-associated protein kinase 1 (AAK1),
Qi et al. used high-throughput RNAi screening to determine the
pivotal role of AAK1 in regulating the entry of rabies virus into cells
(Qi et al., 2022). Furthermore, in a study investigating the
relationship between intestinal flora and Shengmai Yin, You et al.
used quantitative sequencing technology to assess alterations in the
composition of the intestinal microbial community in a rat model of
splenic deficiency (You et al., 2020).

Virtual screening plays a crucial role in identifying potential
drug candidates by evaluating and screening extensive structural
libraries (Figure 2) (Singh et al., 2024). Using software tools, virtual
screening enables the simulation of molecular interactions,
calculation of affinities, and streamlining screening processes to
improve efficiency. Virtual screening is particularly advantageous
for drug discovery involving large numbers of small molecules, with

FIGURE 2
The categorization of drug screening into high-throughput screening and virtual screening. High-throughput screening is a classic method based
on cell culture, high-throughput screening, and data analysis. Virtual screening is further divided into ligand-based and structure-based virtual screening.
The text outlines the use of ligand-based virtual screening in the drug screening process.
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libraries exceeding 1060 compounds within the total chemical space,
surpassing the capacity of traditional high-throughput screening
methods that are limited to tens to hundreds of thousands of
compounds (Gorgulla et al., 2022). The two primary categories of
virtual screening are ligand-based and structure-based virtual
screening (Figure 2) (Singh et al., 2024; Parvatikar et al., 2023;
Lin et al., 2022). By employing a hierarchical approach that
combines ligand-based and structure-based virtual screening,
researchers can sequentially apply filters to reduce the size of
screening libraries to a manageable scale for experimental
validation, yielding successful outcomes in numerous drug
screening initiatives (Kumar and Zhang, 2015). Wei et al. used
virtual screening in their investigation of transcriptome analysis to
elucidate the regulatory mechanisms underlying the biosynthesis of
warm tulipane terpenoids induced by methyl jasmonate. This
approach, which involved the prediction of protein analyses and
Hidden Markov Model mapping of terpenes, provided a faster and
more efficient way of studying regulatory mechanisms than
conventional methodologies (Wei et al., 2022).

Recently, particularly following the emergence of the novel
coronavirus in 2019, vaccine and drug development timelines
have been prolonged. In this unique context, the integration of AI
in drug screening has garnered significant attention from
researchers and scholars in the field of pharmacology. To
address the challenges associated with drug screening,
selecting appropriate algorithmic models to enhance the
screening capabilities of AI has become a focal point of
interest within the research community.

3.1 AI in ligand-based virtual screening

The ligand-based approach involves analyzing established active
molecules and the prediction of their pharmacological properties by
evaluating the resemblance of the compound under examination to
the recognized active compounds (Liu R. et al., 2021). Estimating the
binding affinity between a ligand and its target, known as drug-
target binding affinity, is a crucial stage in ligand-based virtual
screening. The objective of ligand-based virtual screening is to
identify molecules with unique fundamental structures with
similar or superior biologically active ligands compared to known
biochemical activity when a known active ligand binds to the drug
target, a phenomenon referred to as “scaffold hopping” (Böhm et al.,
2004). Ligand-based AI techniques can predict not only the
biological activity of compounds but also their physicochemical
and pharmacokinetic characteristics.

3.1.1 Predicting the biological activity
of compounds

Determination of drug-target binding affinity is crucial for
developing small-molecule drugs, as it indicates the strength of
the interaction between a drug and its target (Sadybekov et al., 2022).
Lack of affinity or interaction with non-target proteins can lead to
ineffective therapeutic outcomes or potential toxicity. AI can help
predict drug-target interactions by comparing drug and target
characteristics to predict interactions, especially between similar
drugs and targets (Öztürk et al., 2018). Currently, advanced models,
including sequence-based, graph-based, and multimodal data-based

models, are used; however, they face challenges in mining edge
information, acquiring pharmacophore knowledge, integrating
multimodal data, and simulating interactions (Zhang et al.,
2023). To overcome these limitations, Li Zhang et al. introduced
a method called graphical features and pharmacophore-enhanced
cross-attention networks for drug-target binding affinity prediction.
This method employs graph neural network (GNN) modules, linear
projection units, and self-attention layers to extract features of drugs
and proteins. Additionally, intramolecular and intermolecular
cross-attention mechanisms were designed to merge and interact
with the drug and protein features. Linear projection units were used
to obtain the final drug and protein features, and the binding affinity
of the drug to the target was predicted using a multilayer perceptron
(Zhang et al., 2023).

3.1.2 Predicting the physicochemical properties
of compounds

Physicochemical characteristics indirectly influence the
pharmacokinetic attributes and target receptor families of
pharmaceuticals, making them crucial in the discovery and
development of novel drugs (Zang et al., 2017). Currently, most
techniques used to evaluate the physicochemical properties of drugs
are based on traditional trial-and-error approaches. However, more
sophisticated methods have been introduced as a result of recent
advancements, such as six predictive models (SVMs, ANNs,
lncRNA-disease associations, probabilistic neural network
algorithms, kNN algorithms, and partial least squares) developed
by researchers like Kumar (Kumar and Kim, 2021). These models
were based on cumulative parameters like molecular refractive
index, molecular volume, molecular surface area, molecular
weight, log P, log S, and total polar surface area and have been
used to predict the intestinal absorption of 497 compounds.

3.1.3 Predicting the absorption, distribution,
metabolism, excretion, and toxicity tolerance
(ADMET) properties of compounds

A successful drug should not only exhibit strong biological
activity and favorable physicochemical characteristics but also
possess excellent ADMET properties and undergo efficient
pharmacokinetic processes. The inadequate pharmacokinetic
attributes and potential toxicity of candidate compounds are
significant contributors to the failure of drug development
endeavors. The efficacy of targeted cancer therapies, a burgeoning
antitumor treatment modality, necessitates drug delivery systems
with minimal immunogenicity and toxicity levels (Luo et al., 2021).
AI can be used to predict drug toxicity by analyzing the chemical
structures and properties of compounds. ML algorithms, trained on
toxicology databases, can predict detrimental effects and identify
hazardous structural attributes. This predictive capacity aids
researchers in prioritizing safer chemicals and mitigating adverse
effects during clinical trials. For instance, Xiong et al. (2021)
introduced the ADMETlab model, founded on in silico ADMET
and is based on version 2.0 constructed using the Python Web
framework Django. This model, hosted on the AliCloud Ubuntu
Linux system, offers an expanded range of ADMET endpoints than
its predecessor, including 17 physical chemistry, 13 medicinal
chemistry, 23 ADME characterization, 27 toxicity endpoints, and
8 toxicogenic rules.
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3.2 Utilization of AI in structure-based
virtual screening

The application of AI in structure-based virtual screening, also
known as target-based virtual screening, has become prevalent in the
prediction of target-ligand interactions (Parvatikar et al., 2023).
Structure-based virtual screening involves using molecular docking
based on the three-dimensional (3D) structure of proteins to analyze
the characteristics of target protein-binding sites and their interactions
with small-molecule drugs. The binding affinity of the proteins to the
drugs was evaluated using affinity scoring functions. Drugs exhibiting
high predictive scores were selected from a vast pool of compound
molecules for subsequent bioactivity testing. Molecular docking is the
primarymethod used in this process (Singh et al., 2024). It is common
to combine molecular docking with AI algorithms to validate docking
outcomes and further refine compound screening (Lin et al., 2022). In
contrast to ligand-based virtual screening, structure-based virtual
screening can identify ligands with novel scaffolds or chemical
functional groups (Dilip et al., 2016). For instance, fragments
derived from natural products can be valuable lead compounds for
the design and discovery of small-molecule drugs (Bai et al., 2021).
Themodification or simplification of natural product scaffolds is a key
strategy in natural product drug discovery, and structure-based virtual
screening can provide novel insights into this domain (Hui
et al., 2024).

3.2.1 Molecular docking
Molecular docking is a computational technique used to predict

the preferred orientation and structure of a ligand molecule when it
interacts with another molecule, typically a larger receptor
(Cerqueira et al., 2015). For instance, DeepDock, an AI-driven
molecular docking approach, leverages deep learning algorithms
to forecast binding modes and affinities in molecular docking
scenarios. Unimol utilizes graph neural network technology to
predict docking outcomes with enhanced efficiency. In addition,
DiffDock amalgamates deep learning with graphical convolutional
networks, thereby augmenting the accuracy and velocity of docking
predictions (McNutt et al., 2021; He et al., 2024; B Fortela et al.,
2024). This method is commonly used to predict target-ligand
interactions (Pinzi and Rastelli, 2019). For instance, Yan et al.
conducted molecular docking using Discovery Studio to evaluate
the binding affinity of Mauritania with its potential targets,
identifying PIK3CA as a promising target (Yan et al., 2022). In
another study, Discovery Studio was used for molecular docking to
identify the potential binding site of SIRT3 with craniospermone,
revealing novel roles and mechanisms of craniospermone in anti-
glomerular basement membrane antibody disease (GBM) and
suggesting a new therapeutic approach for GBM treatment (Sun
et al., 2022). Additionally, Gao Y et al. conducted molecular docking
studies using the crystal structure of hHDAC1 to investigate the
binding modes of compounds 27f and 39f to HDAC1 and HDAC6,
demonstrating that the synthesized HDAC inhibitors 27f and 39f
exhibited favorable binding modes and elucidated their potent
inhibitory effects against HDAC1 and HDAC6 (Gao et al., 2023).

3.2.2 Predicting target structure
The prediction of the target structure plays a pivotal role in drug

screening. Using AI, target protein structures can be predicted and

evaluated to provide crucial insights for drug screening, thereby
improving the efficiency of research and development endeavors. In
a study of N6-methyladenosine (m6A), Liu et al. (Sui et al., 2020; Liu
S. et al., 2023)established a novel database named “M6AREG” to
facilitate the screening of drug-target interactions. They used
crosslinking techniques and other methodologies to improve data
collection, aiming to advance the future development of m6A
research. Additionally, Can et al. identified potential peptide
biomarkers within the Dendrobium genus using an AI-driven
multivariate statistical analysis approach (Fang et al., 2020).
Google’s DeepMind introduced AlphaFold, a tool that leverages
AI technology to train on Protein Data Bank structural data to
predict the 3D structure of amino acid sequences (Powles and
Hodson, 2017). The updated version of AlphaFold, AlphaFold2,
integrates a novel graph neural network to improve the accuracy of
target protein structure prediction (Lv et al., 2023). Although this
method offers advantages in predicting target structures, there are
areas of uncertainty (Meller et al., 2023). Therefore, newmodels, like
the AlphaFold-multitimer model, have been developed and used to
significantly improve the accuracy of predicting multichain protein
structures (Lv et al., 2023). Furthermore, the development of the
MULTICOM four-level structure prediction system improved the
AlphaFold-multitimer model’s ability to predict structurally
intricate proteins (Liu J. et al., 2023). The latest iteration
AlphaFold 3, which has a notable enhancement in DL algorithms
and model architecture over its predecessors, allows for more
effective management of intricate protein structures and extensive
datasets. It is anticipated to achieve greater precision in the 3D
structure prediction of proteins, particularly those that are complex
and varied. The refined algorithms and computational infrastructure
of AlphaFold 3 are designed to substantially decrease the prediction
time. Additionally, the platform now encompasses advanced
functionalities such as the prediction of protein-protein
interactions and the binding of proteins to ligands (Jumper et al.,
2021). However, protein folding remains a challenge for this
approach (David et al., 2022). DN-fold, a DL technique for
predicting protein-folded structures, has been proposed to
address the prediction challenges encountered by AlphaFold (Jo
et al., 2015). These examples underscore the notable achievements of
AI-based target structure prediction, which has the potential to
significantly improve the efficacy of drug discovery and
development processes.

3.2.3 Predicting target-ligand interactions
The interactions between targets and ligands are intricate, and

investigating their operational patterns can establish a theoretical
foundation for drug screening. Using AI technology to analyze,
assimilate, and prognosticate extensive datasets concerning known
drug-receptor interactions can facilitate a comprehensive
understanding of the mechanism of action and influential
variables, thereby ensuring a logical and efficient drug screening
process. Scoring functions are essential for predicting the binding
affinities of drugs and targets (Selvaraj et al., 2022). The DL-based
scoring function hinges on extracting features (such as distance
and charge) from a representation of receptor-ligand interactions
and subsequently predicting the binding affinity between the two
entities (Kumar and Kim, 2021). Several scholars have combined
RF and AutoDock scoring functions with the Glide XP score to
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achieve superior scoring outcomes (Brown et al., 2021). Jiménez
et al. (2018) developed a 3D graph-based CNN model to predict
the interaction between ligand and receptor proteins, with their
projected binding affinities closely aligning with the experimental
data. Wang et al. developed a multiscale convolutional model
capable of capturing the receptor and ligand characteristics to
predict their interactions (Wang et al., 2021). Furthermore, Jin
et al. (2021) introduced an EmbedDTI model, which improved the
depiction of ligands and receptors while bolstering drug-target
interaction prediction.

In the field of protein-protein interactions, numerous potential
drug targets exist, and the process of discovering and identifying
these targets is crucial for drug screening. For instance, in cancer
therapeutic research, the use of SwissTargetPrediction for Muritan
target prediction led to the identification of calmodulin as a
promising target for lung cancer treatment (Chen et al., 2020).
Furthermore, advancements in the high-resolution crystal structures
of KDM1A inhibitor complexes have provided researchers with
valuable insights into protein-ligand interactions, facilitating the
screening of inhibitors with enhanced selectivity (He et al., 2022).
Additionally, by investigating natural products, including
flavonoids, alkaloids, and terpenoids, and their interactions with
target proteins, scientists have gained insights into their ability to
selectively target and inhibit inflammatory mediators, leading to the
development of effective anti-inflammatory strategies (Li
et al., 2023).

4 AI-powered drug design

The use of ML and DL algorithms in the field of drug
development can facilitate the understanding of the intricate
interplay between chemical and biological data (Mervin et al.,
2021). Recently, computer-aided drug design (CADD) has gained
significant traction in the pursuit of novel pharmaceuticals (Singh
et al., 2024). Leveraging the computational capabilities of these
algorithms has broadened their accessibility and reduced their
costs. For example, Jiang XY et al. used CADD to investigate the
structural modifications, monosubstituted derivatives, disubstituted
derivatives, and disubstituted polymers of β-elemene, leading to
improved hydrophilicity and antitumor activity. In addition to
predicting the target structures and receptor-ligand interactions,
CADD facilitates the de novo design of novel active compounds and
the automated synthesis of drugs, thereby addressing challenges in
organic synthesis (Jiang et al., 2024).

4.1 Redesigning active molecules

Creating novel active molecules from scratch represents a
significant advancement in drug discovery and development.
Computer-aided ab initio design to develop new active molecules
has emerged as a valuable tool for drug design innovation (Reker
et al., 2014). This approach involves using computational
simulations and ML techniques to design bioactive molecular
structures from first principles, aiming to address the scarcity of
new chemical entities in drug discovery and cater to the demands of
effective drug therapy (Reker et al., 2014).

Currently, there have been significant advancements in
molecular design methodologies, including the use of
autoencoders, GANs, and RNNs. Among these techniques, the
variant autoencoder method stands out, comprising an encoder
network and a decoder network (Gómez-Bombarelli et al., 2018).
This method facilitates the transformation of chemical structures
represented by the simplified molecular input line entry system
(SMILES) notation into continuous real-valued vectors through the
decoder. These continuous vectors serve as a potential space, with
the decoder converting them back into chemical structures (Hessler
and Baringhaus, 2018). Researchers have successfully used this
method to train a model based on the quality estimation of drug-
likeness ratings and synthetic accessibility score, generating more
targeted molecules (Hessler and Baringhaus, 2018).

Furthermore, Kadurin et al. (2017) used GANs to propose novel
molecules with potential anticancer properties. Additionally, RNNs
have demonstrated promise in the ab initio design of drugs. RNNs
are trained to encode chemical structures by generating numerous
SMILES strings through training on a variety of compounds from
different compound libraries. This approach has demonstrated the
ability to generate novel peptide structures, demonstrating the
potential of RNNs in drug design innovation (Hessler and
Baringhaus, 2018).

4.2 Addressing the difficulties in organic
synthesis and achieving the automation of
drug synthesis

Addressing of challenges encountered in organic synthesis is a
significant obstacle in the field of drug development. AI technology is
crucial in predicting the reaction processes and optimizing synthetic
pathways to facilitate rapid organic synthesis and drug design. TheML-
based methods for forward synthesis prediction can accurately
determine the sequence of synthetic routes and predict reactions and
products (Hessler and Baringhaus, 2018). For example, PathPred
(Table 1) is a robust web server capable of predicting multi-step
synthetic pathways for a given compound, thereby enhancing the
efficiency and speed of organic synthesis (Molnar et al., 2022). Liu
et al. developed a model for retrosynthesis prediction that uses ML
techniques and extensive datasets to accurately predict chemical
reactions, thereby addressing the challenges of organic synthesis (Liu
et al., 2017). Furthermore, AI enables the automation of compound
synthesis (Mouchlis et al., 2021), as demonstrated by the development
of Chemputer (Tripathi M. K. et al., 2021) a computer-aided software
designed for automated compound synthesis.

5 AI’s revolutionary role in drug
clinical trials

Clinical trials are crucial for evaluating the safety, efficacy, and
reliability of drug development processes. These trials follow a
standardized, sequential methodology where scientists assess the
safety, efficacy, and clinical relevance of promising new drugs
(Bhavya et al., 2023; Vasan et al., 2023). However, clinical trials
are labor-intensive and involve patient recruitment, enrollment,
continuous monitoring, medical adherence, and data retention.
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Personalized AI solutions can streamline and expedite these
experiments by managing trial data, integrating patient histories,
and focusing on patient-centered AI approaches (Chopra et al.,
2023). The advent of AI has revolutionized the data collection and
monitoring aspects of clinical trials, leading to reduced costs,
increased efficiency, and improved drug development research.
The ways in which AI can contribute to pharmacy clinical trials,
including its applications in participant recruitment, data collection
and analysis, predictive analytics for trial design, and patient
monitoring and safety, were summarized in this study.

5.1 Improving participant
recruitment efficiency

In phase I clinical trials, approximately 80% of trials experience
delays in patient enrollment (Chopra et al., 2023). The recruitment
of suitable trial participants is a time-consuming and costly aspect of
clinical trials. Traditional methods of participant recruitment in
clinical trials involve professionals manually screening extensive
medical records, posing challenges in terms of both quantity and
quality (Lovato et al., 1997; Britton et al., 1999). Conversely, AI
technology can quickly identify potential participants meeting
specific trial criteria by analyzing electronic health records, social
media platforms, and other online data sources. For instance, Deep
6 AI (Table 1) has developed a technology capable of sifting through
millions of patient records to quickly identify suitable clinical trial
candidates. Similarly, Mendel. AI uses an AI system for precise
matching of medical records with clinical trial data, ensuring
prompt notification to patients to promote diversity and
representativeness in study samples (Lei et al., 2024; Liu et al., 2022).

5.2 Improving data collection and analysis

Conventional methods for collecting and evaluating data
from drug clinical trials exhibit various limitations, including
reduced data efficiency, constrained utilization, susceptibility to
errors, limited scalability, and inadequate monitoring (Jüni
et al., 1999). Conversely, AI provides a solution to these
challenges. AI plays a crucial role in improving the quality
and expediency of data collection and analysis in drug
clinical trials by effectively processing and conducting in-
depth analyses of extensive and intricate datasets. ML
techniques excel in managing and analyzing large datasets
from clinical trials, enabling the identification of overlooked
issues and concealed risks. Furthermore, AI can monitor real-
time data from wearable devices to monitor participants’ health
metrics, thereby providing researchers with accurate and timely
information (Lei et al., 2024; Tripathi N. et al., 2021; Kolluri
et al., 2022)

5.3 Predictive analytics applied to trial design

AI-powered predictive analytics are instrumental in the trial
design phase as they aid in predicting the potential outcomes of a
clinical trial based on the analysis of historical trial data and
other relevant information (Fleming and DeMets, 1996). By
leveraging AI, researchers can predict the efficacy of drug
treatments before conducting trials, enabling informed
decisions regarding trial design, such as determining the
optimal drug dosage and the early detection of potential side
effects (Aliper et al., 2023).

TABLE 1 AI based drug discovery and development tools and software.

Number Drug discovery software
based on AI

Auxiliary direction Advantage

1 DeepDrug (Yin et al., 2023) Detecting the genome of pathogens Can access very large datasets and quickly identify new
compounds

2 Reinvent (Blaschke et al., 2020) Mainly used for molecular generation Can conduct AI molecular design

3 AlphaFold (Nussinov et al., 2022) Predicting the structure of proteins Help understand the interaction between drugs and targets

4 SwissADME (Daina et al., 2017) Predicting the oral bioavailability of
compounds, etc

Quickly screen potential drug candidates in the early stages of
drug development

5 ADMETSAR (Yang et al., 2018) Predicting the toxicity of drug molecules Plays an important role in drug development and safety
evaluation

6 AutoDock Vina (Santos-Martins et al., 2019) Determine binding conformation and
binding affinity

Having high accuracy and relatively high docking speed

7 ADMETsar (Cheng et al., 2019) Predicting the properties of compounds Efficient, fast, and can reduce repeated experiments

8 DeepPurpose (Huang et al., 2021) Drug activity prediction Easy to operate and flexible to use

19 MATLAB (Molnar et al., 2022) Assist in exploring the potential
characteristics of drugs

The algorithm is efficient and highly targeted

10 PathPred (Ma et al., 2020) Predicting the synthetic route of compounds Can conveniently and intuitively demonstrate the synthetic
route of compounds

11 Deep 6 AI (Lei et al., 2024; Liu et al., 2022) Assist in quickly identifying potential trial
participants

Improve patient recruitment efficiency
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5.4 Improved patient monitoring and
safety measures

Furthermore, AI-based monitoring tools are crucial in
improving patient safety by automatically collecting data to
promptly identify and address safety concerns. Moreover, AI
technology can assist in monitoring patient adherence to trial
protocols, thereby ensuring the credibility and accuracy of trial
outcomes (Moazemi et al., 2023).

6 Challenges of AI in drug development

AI has demonstrated improved outcomes across various stages of
drug development. However, significant challenges remain in this
domain. First, the intricate nature of drug actions within an organism
presents a complex hurdle (Yu et al., 2023). The failure of certain
drugs to progress to clinical trials can be attributed to the fact that AI-
driven drug development processes are conducted in a controlled
environment that lacks the complexity of real-world conditions (Yu
et al., 2023). Second, the efficacy of AI models in drug screening is
influenced by the quality and diversity of research data. Moreover, AI
relies significantly on data and specialized personnel. Additionally,
concerns arise when technologies like facial recognition software or
other ML tools are used to monitor trial participants, potentially
infringing upon their privacy (Almeida et al., 2022). Furthermore, AI
is susceptible to issues like programming errors that can lead tomissed
opportunities in drug studies. These challenges are not easily
surmountable in the short term. The integration of AI in drug
research not only tests the limits of time and technology but also
represents humanity’s quest into uncharted territories, signifying a
long and arduous journey ahead.

7 Prospect

Integration of AI is becoming more common in the field of drug
development. The current era is characterized by a surge in AI
technologies, exemplified by the introduction of the text-to-image
model Dall-E in 2021 and its successor Dall-E2 in 2022 (Adams
et al., 2023). These tools are considered promising for image
generation, enhancement, and manipulation in future radiology
AI research. The release of ChatGPT was succeeded by GPT-4,
demonstrating its significant potential for application in
pharmacology, spanning from research topic identification to
clinical laboratory diagnosis (Dave et al., 2023). Recently,
OpenAI formally introduced the text-to-video model Sora, which
is currently in the feedback acquisition phase. Despite being in the

early stages of development, Sora’s performance and potential are
comparable to that of GPT-4. It is anticipated that Sora will soon be
used in drug discovery. The integration of AI technology into drug
development and mining endeavors is poised to make a significant
and groundbreaking impact on human health and wellbeing.
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