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Chronic orofacial pain disorders are common debilitating conditions, affecting
the trigeminal system. Its underlying pathophysiological mechanisms are still
unclear and the therapy is often unsatisfactory, therefore, preclinical models are
crucial to identify the key mediators and novel treatment options. Complete
Freund’s adjuvant (CFA)-induced orofacial inflammatory allodynia/hyperalgesia is
commonly used in rodents, but it has not been validated with currently used
drugs. Here we tested the effects of the adjuvant analgesic/antiepileptic voltage-
gated Na+ channel blocker complex mechanism of action topiramate in
comparison with the gold standard antimigraine serotonin 5-HT1B/D receptor
agonist sumatriptan in this model. CFA was injected subcutaneously into the right
whisker pad of male Sprague-Dawley rats (250–300 g), then
mechanonociceptive threshold values were investigated with von Frey
filaments (3, 5, and 7 days after CFA injection). Effects of topiramate
(30 mg/kg per os) and sumatriptan (1 mg/kg subcutaneous) on the adjuvant-
induced chronic inflammatory orofacial allodynia were investigated 60, 120, and
180 min after the treatments each day. To determine the optimal concentration
for drug effect analysis, we tested the effects of two different CFA-concentrations
(1 and 0.5 mg/mL) on mechanonociceptive thresholds. Both concentrations of
CFA induced a chronic orofacial allodynia in 60% of all rats. Although, higher CFA
concentration induced greater allodynia, much more stable threshold reduction
was observed with the lower CFA concentration: on day 3 the thresholds
decreased from 18.30 g to approximately 11 g (low) and 5 g (high),
respectively, however a slight increase was observed in the case of higher
CFA concentration (on days 5, 7, and 11). In all investigation days, topiramate
showed significant anti-allodynic effect comparing the pre and post drug dose
and comparing the vehicle treated to the drug treated groups. Sumatriptan also
caused a significant threshold increase compared to pre dose thresholds (day 3)
and also showed a slight anti-allodynic effect compared to the vehicle-treated
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group (day 3 and 5). In the present study CFA-induced chronic orofacial allodynia
was reversed by topiramate in rats validating themodel with the adjuvant analgesic.
Other than establishing a validated orofacial pain-related syndrome model in rats,
new ways are opened for the repurposing of topiramate.

KEYWORDS

topiramate, sumatriptan, orofacial pain, trigeminal activation, inflammatory pain, animal
model, complete Freund’s adjuvant, mechanical allodynia

1 Introduction

Orofacial pain disorders (e.g., temporomandibular disorders,
trigeminal neuralgia, facial migraine) are exhausting conditions
affecting the trigeminal system and reducing the quality of life
(Romero-Reyes and Uyanik, 2014; Rotpenpian and Yakkaphan,
2021). They are commonly caused by inflammation or injury
(Tseng et al., 2012; Bista and Imlach, 2019), compression of the
trigeminal nerve (Leal et al., 2014; Bista and Imlach, 2019),
demyelinating diseases (Cruccu et al., 2009), neoplastic
infiltration (Gottfried et al., 2007), or herpes virus infections
(Bista and Imlach, 2019). In many cases, the etiology and the
pathophysiological mechanisms are unclear, however it has been
suggested that both peripheral and central dysfunctions may play
crucial roles (Leal et al., 2014; Costa and Leite, 2015; Bista and
Imlach, 2019; Gündüz et al., 2019). Since the pharmacotherapy of
orofacial pain is often unsatisfactory, sensitization mechanisms need
to be better understood to identify novel treatment options (Sessle,
2021; Romero-Reyes et al., 2023).

According to the most recent guidelines for trigeminal neuralgia
the antiepileptic voltage-gated Na+ and Ca2+ channel blocker
carbamazepine is considered as a first-line therapy (Bendtsen
et al., 2019; Clark et al., 2020), remaining the only drug with this
approved indication (Wu et al., 2017). Notably, several clinical
studies were conducted on facial pain and later referred to as
trigeminal neuralgia, but the quality of these trials underlying the
efficacy of carbamazepine for this indication was questioned due to
limited number of involved patients and inconsistent outcome
reports (Martin and Forouzanfar, 2011; Wiffen et al., 2011).
Furthermore, adverse effects were also reported to frequently
occur (Wiffen et al., 2011). In carbamazepine-resistant trigeminal
neuralgia patients topiramate was found to be effective in case
studies (Zvartau-Hind et al., 2000; Solaro et al., 2001; Domingues
et al., 2007) involving small group of patients. A meta-analysis
comparing the efficacy of topiramate versus carbamazepine for
trigeminal neuralgia treatment concluded that topiramate was
superior, however the low quality of the underlying clinical trials
was highlighted as a limitation (Romero-Reyes and Uyanik, 2014).
Carbamazepine-resistant cases of trigeminal pain, high frequency of
several adverse effects and poor quality of clinical trials reporting on
carbamazepine or alternative therapeutical options necessitate more
evidence on the efficacy of drugs against orofacial pain conditions.

It has been described that orofacial inflammation activates and
sensitizes the trigeminal primary and secondary sensory neurons,
which induces mechanical allodynia/hyperalgesia both in humans
and animal models (Iwata et al., 2017). Animal models are crucial in
the development of novel therapies, but none of them show all
aspects of the disorders (Chou and Chen, 2018), therefore, there is a

constant need for further improvement in this field (Laborc et al.,
2020). CFA-induced inflammation and subsequent allodynia/
hyperalgesia is commonly used to explore the mechanisms
involved in acute or chronic pain conditions (Takeda et al., 2008;
Magni et al., 2015; Takeda et al., 2018; McCarson and Fehrenbacher,
2021; Lin et al., 2022). In our previous study, a CFA-induced
orofacial inflammatory allodynia model was set up to investigate
transcriptomic changes in the trigeminal ganglion (TG) and the
trigeminal nucleus caudalis (TNC). The detected alterations are
associated with the onset and time course of peripheral and central
sensitization, and they were reflected by similar changes in the
peripheral blood mononuclear cells (Aczél et al., 2018; Aczél
et al., 2020).

In animal models of trigeminal neuralgia, mainly carbamazepine
(Chogtu et al., 2011; Hahm et al., 2012; Pineda-Farias et al., 2021;
Baggio et al., 2024; Song et al., 2024), in some cases gabapentin
(Chogtu et al., 2011), pregabalin (Hahm et al., 2012), lamotrigine
(Chogtu et al., 2011) or baclofen (Deseure and Guy, 2017) are used
as reference compounds. Although topiramate is also used as an
adjuvant analgesic in trigeminal neuralgia, few clinical data are
available regarding its efficacy, and it has not been investigated in
the CFA-induced animal model of inflammatory orofacial pain.

In this study we aimed to pharmacologically validate the CFA-
induced orofacial allodynia model using topiramate in comparison
with the gold standard antimigraine serotonin 5-HT1B/D receptor
agonist drug sumatriptan (Tfelt-Hansen and Hougaard, 2013).
Topiramate was developed originally to treat epileptic seizures,
however, it is also indicated to prevent migraine attacks and
neuralgia related to trigeminal activation (Raffaelli et al., 2023). It
mainly inhibits the voltage-gated Na+ and Ca2+ channels, however it
can modulate the function of several other targets such as the
GABAA receptor, glutamate receptors, K+ channels (Raffaelli
et al., 2023). Topiramate also proved to be effective in
neuropathic and mediator-based pain-related animal models
(Bischofs et al., 2004; Wieczorkiewicz-Plaza et al., 2004; Lopes
et al., 2009; Paranos et al., 2013; Pradhan et al., 2014).
Furthermore it has been described that topiramate inhibits
microglial activation and thus inflammatory mediator release
[e.g., tumor necrosis factor-α, interleukin-1β, interleukin-6) (Su
et al., 2020; Faustmann et al., 2022)], therefore in this study we
aimed to reverse the CFA-induced inflammatory orofacial allodynia
with topiramate. Although the CFA-induced inflammatory orofacial
pain is not migraine model, its pathophysiological mechanisms are
closely related to headache and migraine, therefore sumatriptan, the
antimigraine agent which inhibits trigeminal activation, may also be
effective in this model.

Our results showed that topiramate reversed chronic CFA-
induced inflammatory orofacial allodynia in rats, therefore, this
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model could be validated with this adjuvant analgesic. These results
help to identify novel therapeutic options against orofacial pain-
related syndromes including potential repurposing of topiramate for
this indication.

2 Materials and methods

2.1 Animals, drugs, and chemical

The experiments were performed on 120 male Sprague-Dawley
(SPRD) rats (Envigo, Akronom Ltd., Hungary) weighing 250–300 g.
They were housed in the animal house of the Department of

Pharmacology and Pharmacotherapy (University of Pécs) under
standard light-dark cycle (12-h light/dark cycle) and temperature
(24°C–25°C) conditions, food and water were provided ad libitum.
The study was accomplished in accordance with the Ethical Codex
of Animal Experiments of the University of Pécs and the 1998/
XXVIII Act of the Hungarian Parliament on Animal Protection and
Consideration Decree of Scientific Procedures of Animal
Experiments (243/1988), and approved by the Ethics Committee
on Animal Research of Pécs University and the license was given
(license No.: BA02/2000–75/2023.).

CFA was purchased from Merck Life Science Ltd. (Budapest,
Hungary). Topiramate was obtained from Thermo Fisher Scientific
(Waltham, Massachusetts, United States), while sumatriptan from

FIGURE 1
(A) Schematic representation of the experimental paradigm. (B)Mechanonociceptive threshold values after 0.5 mg/mL and 1 mg/mL CFA injection
into thewhisker pad in comparisonwith the control paraffin oil. Data points represent themeans + SEMof n= 10 (paraffin oil); n = 29 (0.5mg/mLCFA); n =
14 (1 mg/mL CFA), as analyzed by repeated measures one-way ANOVA followed by Dunnet’s post-test (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤
0.0001 vs pre-intervention data). (C) Mechanonociceptive threshold values induced by 0.5 mg/mL CFA injection into the whisker pad of selected
animals in which allodynia developed (threshold <18.30 g). Data points represent the means + SEM of n = 17 rats (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,
****p ≤ 0.0001 vs pre-intervention values, as analyzed by repeated measures one-way ANOVA followed by Dunnet’s post-test).
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Biosynth (Louisville, KY, United States). Topiramate and
sumatriptan were dissolved in saline containing 5% Tween
80 before the administrations. Pentobarbital was obtained from
Alfasan International B.V. (Euthanimal 40% ad. us. vet., Alfasan
International B. V., Woerden, Netherlands).

2.2 Experimental protocol and functional
measurements

Experiments were performed as illustrated in Figure 1A. Briefly,
chronic orofacial inflammation was induced by subcutaneous (s.c.)
injection of CFA (killed mycobacteria suspended in paraffin oil;
50 μL, one or 0.5 mg/mL) into the right whisker pad under 50 mg/kg
intraperitoneal (i.p.) pentobarbital anaesthesia. Paraffin oil was
injected the same way in control rats.

The mechanonociceptive threshold of the whisker pad was
determined by von Frey filaments (Stoelting, Wood Dale, IL,
United States) before CFA (or paraffin oil) injection and after on
days 3, 5, 7, and 11. The animals were habituated to the filaments
after which baseline measurements were performed to exclude
rats which produced basically lower mechanical threshold values
(<10 g). During the measurements animals were lightly
restrained by the experimenter using a cotton glove and after
the animal calmed down, the von Frey filaments (15.14, 8.51,
5.50, 3.63, 2.04, 1.20, 0.69, 0.41 g) were applied using the “up-
and-down” method (Chaplan et al., 1994): testing was started in
the middle of the series using the 4.31 marked filament (2.04 g),
and when response was positive, the next weaker filament was
used, however in the case of a negative response, the next stronger
filament was applied. Each filament was applied on the whisker
pad 3 times in succession and if the animal showed at least twice
avoidance behavior (withdrawal response) the response was
positive, otherwise the answer was negative. Withdrawal
response was considered in cases of face stroking with the
forepaw, retreating from the stimulus, face shaking,
vocalization, enhanced face grooming. Allodynia (decrease of
the touch sensitivity thresholds) was expressed as the 50%
orofacial withdrawal threshold.

2.3 Drug treatments

The effects of topiramate (30 mg/kg per os (p.o.) 0.5 mL/100 g)
and sumatriptan (1mg/kg s. c., 0.25 mL/100 g) were tested on days 3,
5, and 7 after CFA injection (Figure 1A). The first control
measurement was performed before the treatments on day 3 and
rats with thresholds below 18.3 g were selected and randomized in
two different groups (drug- or vehicle treatments) for further p. o.
(oral gavage in conscious animals) or s. c. treatments. This
randomization remained during the whole experiment. We used
5% tween 80 solution as vehicle (which was the solvent for
topiramate and sumatriptan). All treatments and measurements
were performed in a double-blind manner. The effects of the drugs
were investigated before drugs and 60, 120, and 180 min after the
treatments each day (3, 5, and 7 days after CFA). We did not observe
any changes in the behavior of the animals due to the repeated

measurements that would affect the results, they did not show any
escape or distress behavior in any case.

2.4 Evaluation of gene-expression changes
in the TG samples

Ingenuity Pathway Analysis (IPA) was performed (software
version 111725566 (QIAGEN) based on its manually curated
Knowledge Base) on the transcriptomic data of the TG samples
obtained from CFA-treated rats of the same protocol on day 7
(Aczél et al., 2018; Aczél et al., 2020). The microarray data
analysis identified 512 differentially expressed (319 up- and
191 downregulated) transcripts between the contralateral
(control) and ipsilateral (CFA-treated) TG samples at a
statistically significant level (p ≤ 0.05), with fold change |FC|>
2. In this study, we reviewed the data and selected genes that may
be involved in the mechanism of action of topiramate and
sumatriptan. The expression changes for the selected genes
between the two groups were visualized on a heat map
(Figure 4), and hypothesis-driven exploration of the potential
pathways (e.g., headache, pain, inflammation, and the tested
drugs) was demonstrated (Figure 5).

2.5 Statistical analyses

All data are represented as the means of the individual threshold
values with the standard errors of the mean (SEM) values, statistical
analysis was performed by the GraphPad Prism nine software.
Although not all data sets showed normal distribution in the
present series of experiments with the Shapiro–Wilk test due to
the relatively small group sizes and big variations, based on earlier
results and literature data in the samemodel repeated measures two-
way ANOVA followed by Šidák’s post-test were conducted to
determine differences between measurements of the vehicle- and
drug-treated groups. One-way repeated measures ANOVA followed
by Dunnett’s post-test were conducted to test differences between
pre dose and post dose measurements. Probability values p ≤
0.05 were accepted as significant.

Effect size is a value measuring the strength of the relationship
between two variables in a population, calculated by Hedge’s g,
which is the estimated standardized difference between the means of
two populations (effect size calculator: https://www.socscistatistics.
com/effectsize/default3.aspx). Hedges’ g provides a correction for
small-sample bias (Hedges, 1981; Hedges and Olkin, 2014;
1. Equation):

Hedges′g � M1 −M2

SDpooled
*

Where.

M1 −M2 = difference in means
SDpooled

* = pooled and weighted standard deviation (2. Equation)

SDpooled
* �

����������������������
n1 − 1( )SD2

1 + n2 − 1( )SD2
2

n1 + n2 − 2

√
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3 Results

3.1 The 0.5 mg/mL CFA induces stable
orofacial allodynia in rats: optimal for further
drug testing

First, we tested the behavioural effects of 1 mg/mL and 0.5 mg/mL
CFA to determine the optimal concentration for further drug effect
analysis. Although the higher CFA concentration induced greater facial
allodynia, much more stable touch sensitivity reduction was observed
with the lower CFA concentration (Figure 1B). On day 3, the threshold
values decreased from 18.30 g to approximately 11 g (low CFA) and 5 g
(high CFA concentration), respectively, however a slight increase was
observed in the case of higher CFA concentration (on days 5, 7, and 11).
Animals in the paraffin oil-treated group did not show any change in
the threshold values.

We also calculated the change in the threshold values by
excluding the animals which did not developed allodynia (non-
responsive rats: approximately 40% of the animals, n = 12/29).
Significant decrease in mechanonociceptive thresholds was observed
(from 18.30 g to approximately 7 g) 3 days after CFA injection,
which became more robust on days 5, 7, and 11 (Figure 1C).

3.2 Topiramate blocks CFA-induced chronic
orofacial allodynia after acute
administration

In order to characterize the CFA-induced inflammatory,
trigeminal-activated orofacial allodynia model the effect of
topiramate on the mechanonociceptive thresholds was
investigated in comparison with sumatriptan. The effect of

FIGURE 2
Effect of topiramate on the CFA-induced allodynia 3 (A), 5 (B), and 7 (C) days after the injection: before topiramate or vehicle (5% Tween 80 solution)
treatment animals received 0.5 mg/mL CFA injection into the right whisker pad, then threshold values were investigated before (pre dose) and 60, 120,
and 180 min after the treatments. Data points represent the means + SEM of n = 9–12 rats/group (the results are pooled from several individual cohort
studies). Asterisks denote statistically significant differences between control and experimental groups as analyzed by repeated-measures two-way
ANOVA (*p ≤ 0.05, **p ≤ 0.01). Crosses denote statistically significant differences between pre dose and post dosemeasurements within the same group
(+p ≤ 0.05, ++p ≤ 0.01, +++p ≤ 0.001, ++++p ≤ 0.0001) as analyzed by repeated measures one-way ANOVA followed by Dunnet’s post-test. Effect size
values and p values calculated between pre vs post dose thresholds (D) and topiramate vs vehicle treatment (E). Effect size was calculated using Hedges’g,
arrows denote the magnitude of the effect size and direction (↑small >0.2↑↑medium >0.5; ↑↑↑large >0.8).
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30 mg/kg topiramate was tested 3, 5, and 7 days after 0.5 mg/mL
CFA injection. Topiramate showed a significant anti-allodynic effect
comparing the pre dose and post dose of drug and comparing the
vehicle-treated to the drug treated group (Figures 2A–C) supported
by the medium and large effect size values, and the results of the
repeated-measures one- and two-way ANOVA tests (Figures 2D, E).

3.3 Sumatriptan exerts mild inhibitory effect
on CFA-induced chronic facial allodynia
after acute administration

The effects of lower (0.3 and 1 mg/kg) and higher (3 and 10mg/kg)
doses of sumatriptan were examined on orofacial allodynia provoked by
1 mg/mL CFA, however none of these doses applied were effective to

reverse the developed robust allodynia (see in Supplementary Material:
Supplementary Figure S1). Investigations were then repeated with
1 mg/kg sumatriptan, however in this case the lower CFA
concentration was used to induce a lower degree of allodynia
(Figures 3A–C). In the sumatriptan-treated group, sumatriptan
caused a significant threshold increase compared to pre dose (day
3), which was also supported by the medium effect size values (Figures
3A, D). Furthermore, sumatriptan also induced a slight anti-allodynic
effect compared to the vehicle-treated group (day 3 and 5), supported by
the small, medium and large effect size values (Figure 3E), however
repeated measures two-way ANOVA did not show significant
differences between the two group. Furthermore, the significant
difference between the treated and control groups on day five is due
to the lower thresholds of the control animals after
treatment (Figure 3B).

FIGURE 3
Effect of sumatriptan on orofacial allodynia after 0.5 mg/mL CFA injection into the right whisker pad 3 (A), 5 (B), and 7 (C) days after the induction of
the inflammation. Mechanonociceptive threshold values were investigated before (pre dose) and 60, 120, and 180 min after sumatriptan (1 mg/kg) or
vehicle (5% Tween 80 solution) treatment. Data points represent the means + SEM of n = 13–15 rats/group (the results are pooled from several individual
cohort studies), analyzed by repeated measures two-way ANOVA compared to the vehicle treatment and by repeated measures one-way ANOVA
followed by Dunnet’s post-test compared to the vehicle treatment. Effect size values and p values calculated between pre vs post dose thresholds (D) and
sumatriptan vs vehicle treatment (E). Effect size was calculated using Hedges’g, arrows denote the magnitude of the effect size and direction
(↑small >0.2↑↑medium >0.5; ↑↑↑large >0.8).
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3.4 Potential mechanisms of action of
topiramate and sumatriptan at the level of
the primary sensory neurons in the TG:
bioinformatic analysis

Transcriptomic alterations in the primary sensory neurons of
the TG might be associated with the molecular mechanisms of
topiramate and sumatriptan. Figure 4 represents the fold change
data obtained from our previous study of the same model (Aczél
et al., 2018). Significant upregulation of Cacna1c, Scn1a,
Grm2 Grin2d was detected on the CFA-treated ipsilateral side, of
which Scn1a can be inhibited by topiramate according to the IPA
analysis. On the other hand, CFA-treatment induced significant
decrease in the expression of Htr2c, Htr6, Kcnj1, Kcnh3, Kcnh3,
Kcns3, Kcnab2, Kcnh7, Gabra3, which encode proteins that may be
activated by topiramate or sumatriptan. Topiramate can also exert
direct effects not only on voltage-gated Na+ channels and GABAA

receptors, but also on Scn1a gene (Figure 5A), the expression of
which was significantly increased after CFA treatment (Figure 4).

Regarding the mechanism of action of sumatriptan, the results
showed a direct link between sumatriptan and the Htr1A gene
(Figure 5B), the expression of which was significantly reduced after
CFA treatment (Figure 4).

4 Discussion

We demonstrate here the first results on the acute anti-allodynic
effect of topiramate in rat chronic orofacial inflammation which
provides pharmacological validation of this model to test novel
analgesic targets and candidates. Interestingly, the gold standard
antimigraine drug sumatriptan also exerted some inhibitory effect
after acute administration on day 3 and 5 suggesting common
pathophysiological mechanisms of trigeminal activation related to
chronic orofacial pain and migraine. Although carbamazepine is the
first-line treatment for trigeminal neuralgia (Bendtsen et al., 2019;

Clark et al., 2020; Gambeta et al., 2020), which is a common orofacial
pain condition (Okeson and de Leeuw, 2011; Gambeta et al., 2020),
topiramate has also been shown to have analgesic effects in clinical
practice (Zvartau-Hind et al., 2000; Solaro et al., 2001; Domingues
et al., 2007; Wang and Bai, 2011). Furthermore, the clinical efficacy
of carbamazepine (Di Stefano et al., 2021; Guo et al., 2024) is also
supported by preclinical animal data (Chogtu et al., 2011; Hahm
et al., 2012; Pineda-Farias et al., 2021; Baggio et al., 2024; Song et al.,
2024), however preclinical studies demonstrating the efficacy of
topiramate treatment on the CFA-induced inflammatory orofacial
pain are still lacking.

Inflammatory allodynia/hyperalgesia induced by CFA is a
widely used experimental method (Takeda et al., 2008; Magni
et al., 2015; Takeda et al., 2018; Lin et al., 2022). CFA is a water-
in-oil emulsion containing Mycobacterium tuberculosis.
Mycobacterium induces inflammation due to its ability to
increase IL-12 production and activate toll-like receptors in
dendritic cells (Rafiyan et al., 2023). CFA also induces the
production of Th1 cytokines (e.g., IL-2, INF-γ, TNF, TNF-β),
increases humoral and cellular immunity and mediates specific
cellular immune responses (Huang et al., 2024). Furthermore, the
CFA-induced peripheral inflammation can also provoke glial
activation, leading to the enhanced expression of
proinflammatory cytokines (IL-1b, IL-6 and TNF-α) in the
central nervous system (Raghavendra et al., 2004).

Here, we present that about 60% of the CFA-treated animals
showed stable allodynia, which is in good agreement with our
previously published results (Aczél et al., 2018; Aczél et al.,
2020). Studies based on CFA use frequently undiluted form of
the adjuvant to induce local inflammation (Yaster et al., 2011; Ye
et al., 2018; Ferdousi et al., 2023), which is why we also first used the
concentrated emulsion in our experiments. However, the results
showed that concentrated CFA (1 mg/mL) induces exceedingly
robust allodynia in the orofacial region, which could not be
reversed pharmacologically even with high drug doses
(Figure 1A; Supplementary Figure S1). This also provides crucial
information for future use of this model in drug testing.

Topiramate significantly reduced CFA-induced inflammatory
allodynia on day 3, which is in good agreement with the acute
analgesic effect of the drug observed in other allodynia models such
as the nitroglycerin-induced model, chronic constriction
injury, formalin-induced hyperalgesia, carrageenan-induced
inflammation (Bischofs et al., 2004; Lopes et al., 2009; Paranos
et al., 2013; Pradhan et al., 2014). Chronic administration of
topiramate exerted significant anti-allodynic effect in nerve-
ligation and mediator-based nitroglycerin-induced pain models
(Wieczorkiewicz-Plaza et al., 2004; Pradhan et al., 2014).
Literature data suggest that topiramate can inhibit microglial
activation and thus the release of inflammatory mediators (e.g.,
tumor necrosis factor-α, interleukin-1β, interleukin-6) (Su et al.,
2020; Faustmann et al., 2022)), this may explain the anti-allodynic
effect of topiramate in the CFA-induced inflammatory orofacial
allodynia model. The efficacy of topiramate in this model may also
be explained by the gene expression changes measured in TG tissues
of CFA-treated rats (Aczél et al., 2018). We identified several
differentially expressed genes which might be responsible for the
expression of proteins involved in the mechanism of action of
topiramate (e.g., Scn1a, Cacna1c). This is supported by the IPA

FIGURE 4
Change in themRNA levels between CFA-treated (ipsilateral) and
contralateral side (control group) in TG samples, 7 days after CFA
injection. Orange color means high, while blue indicates low
expression. The column represents the individual samples, while
the row shows one differentially expressed (DE) feature (microarray
feature identifiers). Data are obtained from the previous results of the
research group.
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analysis suggesting several relationships between topiramate, the
differentially expressed genes in the TG and neuroinflammation-
related mechanisms (Figure 5A). Furthermore, it has been reported
that topiramate can reduce excitatory neurotransmitter release
(Holland et al., 2010; Silberstein, 2017) by binding to the voltage-

gated Na+ channels as well as kainite and AMPA receptors of
glutamate, resulting in the downregulation of these structures
(Mula et al., 2006; Raffaelli et al., 2023). Topiramate also inhibits
voltage-gated Ca2+ channels on trigeminal nerve endings, which
suggests its ability to prevent the release of vasoactive peptides, such

FIGURE 5
(A) The direct and indirect relationships between topiramate, selected genes, and neuro-inflammation-related terms. (B) The direct and indirect
relationships between sumatriptan, selected genes, and neuro-inflammation-related terms.
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as calcitonin gene-related peptide (Hoffmann et al., 2014; Raffaelli
et al., 2023). Moreover, topiramate can also increase the inhibitory
GABA activity, by upregulating the GABAA receptors on neurons
(Mula et al., 2006; Holland et al., 2010; Silberstein, 2017; Raffaelli
et al., 2023) and alter the activation and sensitization of neurons,
which may explain its preventive effect on migraine and cortical
spreading depression (Ayata et al., 2006). All these mechanisms may
play a role in its anti-allodynic effect in our model.

Interestingly, sumatriptan also showed a mild effect on CFA-
induced inflammatory orofacial allodynia, suggesting that the
mechanisms involved in orofacial pain may overlap with
migraine disorders. This is consistent with other studies, in
which sumatriptan significantly reduced allodynia in nerve
ligation-induced chronic neuropathy models and was able to
acutely reverse nitroglycerin-induced hyperalgesia as well as the
neurogenic inflammation induced by the temporomandibular joint
injection of CFA (Kayser et al., 2002; Oshinsky et al., 2012; Tomic
et al., 2015; Lacković et al., 2016; Afshari et al., 2021). However, in
contrast with our findings sumatriptan did not show any effect on
the CFA-induced plantar hyperalgesia in rats (Pradhan et al., 2014).
Mild effect of sumatriptan exerted in this model might be explained
by gene expression changes in the TG of CFA-treated rats (Aczél
et al., 2018). We found significantly lower expression of serotonin
receptors encoding genes (Htr6, Htr2c, Htr1a) in the CFA-treated
group, of which a direct association between htr1a gene and
sumatriptan was identified by IPA analysis (Figure 5B).

In conclusion, CFA-induced chronic orofacial allodynia was
significantly reduced by topiramate, therefore this model is suitable
for testing novel drug candidates. Furthermore, our results also
highlight the potential for repurposing topiramate for this condition.
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