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Organoids, characterized by their high physiological attributes, effectively
preserve the genetic characteristics, physiological structure, and function of
the simulated organs. Since the inception of small intestine organoids, other
organoids for organs including the liver, lungs, stomach, and pancreas have
subsequently been developed. However, a comprehensive summary and
discussion of research findings on gastrointestinal tract (GIT) organoids as
disease models and drug screening platforms is currently lacking. Herein, in
this review, we address diseases related to GIT organoid simulation and highlight
the notable advancements that have been made in drug screening and
pharmacokinetics, as well as in disease research and treatment using GIT
organoids. Organoids of GIT diseases, including inflammatory bowel disease,
irritable bowel syndrome, necrotizing enterocolitis, and Helicobacter pylori
infection, have been successfully constructed. These models have facilitated
the study of the mechanisms and effects of various drugs, such as metformin,
Schisandrin C, and prednisolone, in these diseases. Furthermore, GIT organoids
have been used to investigate viruses that elicit GIT reactions, including
Norovirus, SARS-CoV-2, and rotavirus. Previous studies by using GIT
organoids have shown that dasabuvir, gemcitabine, and imatinib possess the
capability to inhibit viral replication. Notably, GIT organoids can mimic GIT
responses to therapeutic drugs at the onset of disease. The GIT toxicities of
compounds like gefitinib, doxorubicin, and sunset yellow have also been
evaluated. Additionally, these organoids are instrumental for the study of
immune regulation, post-radiation intestinal epithelial repair, treatment for
cystic fibrosis and diabetes, the development of novel drug delivery systems,
and research into the GIT microbiome. The recent use of conditioned media as a
culture method for replacing recombinant hepatocyte growth factor has
significantly reduced the cost associated with human GIT organoid culture.
This advancement paves the way for large-scale culture and compound
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screening of GIT organoids. Despite the ongoing challenges in GIT organoid
development (e.g., their inability to exist in pairs, limited cell types, and singular
drug exposure mode), these organoids hold considerable potential for drug
screening. The use of GIT organoids in this context holds great promises to
enhance the precision of medical treatments for patients living with GIT diseases.
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1 Introduction

Organoids are organ-specific cell cultures developed from
in vitro pluripotent stem cells (PSCs) or pluripotent adult stem
cells (ASCs) to mimic the structure and function of their
corresponding in vivo organ (Sato et al., 2009). These cells are
cultured in specific in vitro environments to form tiny cell
populations that self-organize and differentiate into functional
cell types (Schutgens and Clevers, 2020). These organoids exhibit
highly physiological properties that recapitulate the differentiation
capacity of cells, tissue structures, as well as the interactions between
cells and between cells and matrices (Günther et al., 2022).
Gastrointestinal tract (GIT) organoids were first developed in
Hans Clever’s laboratory (Yi et al., 2021), where researchers
successfully constructed intestinal organoids with intestinal crypt-
villus structures in vitro by extracting Lgr5+ ASCs directly from the
intestines and culturing them with appropriate growth factors and
supportive substrates (Sato et al., 2009). Since the development of
intestinal organoids, various types of organoid models, such as those
for the esophagus, lung, liver, stomach, pancreas, and colorectum,
have also been developed (Clevers, 2016). These models provide
more accurate biological representations to aid research in areas
such as immunotherapy, new drug discovery, and drug screening
(Tang et al., 2022).

GIT organoids have advantages over two-dimensional (2D) cell
systems and intestinal explant models. The primary drawbacks of
2D cell systems is that they lack many of the characteristics of
normal GIT epithelium, they contain a single cell type, they lack the
complex structure of in vivo tissues (Sato et al., 2009; Rossi et al.,
2018), and they have a different genetic profile than normal cells
(Millen et al., 2023; Sommerkamp et al., 2021). In contrast, intestinal
exosomes reflect the complex structure of the in vivo intestinal tract,
but they do not support passaging cultures (Sato et al., 2009; Xi et al.,
2021). The development of GIT organoids remedies these
deficiencies, and the model has numerous proven advantages
(Sato et al., 2009). GIT organoids exhibit high similarity to the
original tissue and can represent the patient cohort, capturing
diversity. The high similarity between GIT organoids and the
original tissue is reflected in aspects such as anatomical
morphology, cellular composition, physiological function, and
gene expression patterns. GIT organoids contain most intestinal
epithelial cell types, including absorptive cells, cup cells, pan cells,
and tufted cells, and have crypt-like structures and villous regions
that are key in in vivo human intestinal tissue (Filippello et al., 2022;
Kim et al., 2022). GIT organoid models can also be cultured for more
than 1.5 years during which time they remain functional (e.g., the
motility, absorption, and secretion functions of the gastrointestinal
tract.) (Elbadawi et al., 2021). The gene expression pattern of the

GIT organoid is more similar to that observed in normal tissues than
in 2D cell system or animal models (Oberdoerffer et al., 2008;
Legnini et al., 2023). This model provides advantages for
studying genomic and epigenomic host-environment interactions
(Witonsky et al., 2023). GIT organoids represent the patient cohort,
capture diversity, and are manifested in the following aspects: First,
GIT organoids represent the personalized characteristics of the
patient’s disease. GIT organoids derived from patient-specific
induced pluripotent stem cells or directly from patient biopsy
tissue enable them to represent the individual’s genetic
background, potentially capture the patient-specific disease
characteristics, and are excellent models for studying intestinal
epithelial interactions (Deleu et al., 2023). Second, GIT organoids
capture the diversity of diseases. By creating organoids from patients
with different diseases, researchers can study a range of pathologies
and pathological processes, including inflammatory bowel disease,
gastrointestinal cancer, H. pylori (Helicobacter pylori) infection, and
viral infections. GIT organoids also allow patient-derived viruses to
exist and replicate efficiently, circumventing the limitation that the
use of laboratory-adapted strains is not representative of all
circulating strains (Yin et al., 2015). Ultimately, GIT organoids
also capture the diversity of populations. Biobanks of organoids
from different populations have been established (Yao et al., 2020),
ensuring that research is representative of a broad population and
understanding how different genetic backgrounds affect disease
susceptibility and treatment responses. Due to the high accuracy
of GIT organoid disease modeling (Belair et al., 2020), it has also
been used to predict patient responses to therapy (Aalbers et al.,
2022) and subsequent clinical outcomes, thereby providing
therapeutic guidance (Moussa et al., 2020).

GIT organoids have been increasingly used in disease research
and drug screening, but there is a lack of literature that summarizes
and discusses data around the use of GIT organoids as disease
models and drug screening platforms. Herein, we focused on GIT
organoid modeling of related diseases, and found that a variety
studies have successfully been carried out using organoid-based GIT
disease models. Examples include, pharmacological studies into
clinical treatments, with some helping to elucidate the pathogenic
mechanisms of GIT diseases and screening for preventive and
therapeutic drugs. Further, previous studies using such organoid
models have helped to reveal the pathology of viral infections and
the subsequent GIT responses, leading to the development of novel
drugs that inhibit viral replication. These models have also been key
for testing the GIT toxicity of drugs and guiding their use in clinical
practice. Owing to their use in wide range of applications and the
richness of the data they can yield, GIT organoid models are
important tools in disease research, drug screening,
pharmacokinetics, drug toxicology research, and clinical practice,
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among others, and promotes the development of precision medicine
to improve global health.

2 Advances in organoid technology

There have been considerable developments in different aspects
of organoid technology for basic research and clinical applications
(Figure 1). For example, there have been breakthroughs in organoid
culture technology, both in terms of broad applicability and
specificity. In biomedicine, they have been transformed from
ordinary in vitro models that can only be used for disease
research to all-purpose models that can be used to study the
mechanisms of viral and parasitic infections. The development of
organoids that contain components of the immune system has

further improved their utility as models for disease relevant and
physiological in vitro research.

The development of organoid culture technology has promoted
the wide application of organoids in basic research and clinical
therapy. During organoid culture, cells can be attached to scaffolds
composed of natural extracellular matrix or synthetic materials
(Murakami and Masui, 1980; Giandomenico et al., 2019;
Jaganathan et al., 2014; Garreta et al., 2021), or they can be
aggregated to form microtissue spheroids by droplets, magnetic
fields, or special synthetic materials. The use of collagen gels instead
of matrix gels also makes low-cost mass replicable organoid models
a reality (Takahashi et al., 2023), facilitates large-scale culture and
complex screening of GIT organoids, and expands the application of
GIT organoids in various research fields. The reduction in culture
costs has been accompanied by an increase in the precision of

FIGURE 1
Cultivation of gastrointestinal organoids and frontier technologies (Created with BioRender.com).
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culture conditions. Wuputra et al. (2021) developed precise culture
conditions for gastric organoids, which have improved the accuracy
of GIT organoids as models for clinical therapeutic and medical
applications.

In addition to the development of culture techniques suitable for
general GIT organoids, modifying the culture conditions to
incorporate disease-specific features enhances their suitability for
disease research applications. Certain disease studies necessitate
specific environmental conditions, such as controlled oxygen
concentrations, which require techniques to regulate the oxygen
environment of the organoids. Li et al. (2014) innovatively used an
air–liquid interface culture method for modeling colorectal cancer
(CRC) organoids, which improves in vitro oxygenation and enables
studies of hypoxic diseases with control of this variable. Also, Zheng
et al. (2021) designed a microfluidic chip capable of precisely
regulating oxygen concentrations in each chamber. These studies
provide technical support for organoid as a platform for researching
hypoxic diseases. Moreover, certain diseases necessitate specific
nutritional environments. Perlman et al. (2023) developed a new
technique for culturing malnourished gastric organoids, which can
alter the nutritional status of the organoids and provide a basis for
the use of organoids as a research tool for studying the effects of
nutritional status on the GIT epithelium.

While the application of organoids in disease research is
expanding, its use as a therapeutic tool for clinical diseases is also
becoming more widespread. Huang et al. (2023) differentiated
cultured human gastric stem cells into islet-like organoids for the
treatment of diabetes mellitus. Moussa et al. (2020) utilized organoid
transplants to repair intestinal post-radiation injuries, which
provided the basis for the development of organoid regenerative
medicine. In addition, GIT system-on-a-chip organoids have
emerged as promising in vitro models for preclinical studies.
These advances are based on recent developments in several
technologies such as bioprinting, microfluidics and
organoid research.

Organoid technology is continually evolving for general disease
research, but researchers are also developing new experimental
models, combining organoids with gene editing techniques, and
facilitating the study of virus and parasitic infection mechanisms.
Kim et al. (2022) developed bovine gastric organoids as a novel
in vitro model to study host-parasite interactions in GIT nematode
infections. Gebert et al. (2024) utilized a gene-encoded calcium
indicator for real-time calcium imaging of virus-infected organoids
to establish an adaptable platform to represent cellular signals in
virus-infected GIT nematodes. Moreover, an encoded calcium
indicator has also been used for real-time calcium imaging of
virus-infected organoids, establishing a tractable method for
characterizing cellular signals in virus-infected GIT organoids.

Organoid modeling has great potential in biomedicine; however
the lack of a model immune system in these models is a major
drawback (Günther et al., 2022). However, by transplanting PSC-
derived human intestinal organoids (HIOs) under the kidney
capsule of mice with a humanized immune system, Bouffi et al.
found that human immune cells temporarily migrate to the mucosa
and form cell aggregates similar to human intestinal lymphoid
follicles. In addition, upon exposure to microorganisms, the
number of epithelial microfollicular cells in this study increased,
leading to immune cell activation and secretion of immunoglobulin

A antibodies in the lumen of the HIOs. This immune cell-containing
HIO system provides a framework for future studies of infection- or
allergen-driven intestinal diseases (Bouffi et al., 2023), compensating
for the lack of an immune system in organoids. Taken together, the
continued advances in organoid technology are aided by the
available comprehensive supporting methods, making it a
valuable tool for biomedical research.

3 Models for GIT disease

3.1 GIT organoids as tools in inflammatory
bowel disease (IBD) research

GIT organoids are excellent models which have been used to
study a variety of GIT diseases (Figure 2), including IBD (Holmberg
et al., 2017) [i.e., Crohn’s disease (CD) and ulcerative colitis (UC)].
IBD manifests itself as recurrent episodes of inflammation and
remission, all characterized by chronic inflammation in different
parts of the GIT tract. These inflammatory episodes can cause
diarrhea, abdominal pain, blood in the stool, and other
symptoms. Although IBD pathogenesis remains unclear, previous
studies have shown that immune dysfunction in the intestinal
mucosa due to genetic and immunological factors plays an
important role in IBD pathology (Iacucci et al., 2024).

The influence of genetic factors on IBD pathogenesis has been
demonstrated by twin, targeted sequencing, and genome-wide
association studies (GWAS) (Mokry et al., 2014). In 2013, an
organoid-based genetic study of IBD was conducted by
researchers who generated acetylated histone 3 lysine 27 profiles
from primary intestinal epithelial cells and subsequently cultured
organoid derived from these cells. From this, 92 out of 163 IBD-
associated single-nucleotide polymorphisms (SNPs) were shown to
be associated with differentially active regulatory elements.
Moreover, variations in these SNPs were shown to create or
disrupt known binding motifs, suggesting that they may affect
the binding of transcriptional regulators, thereby altering the
expression of regulated genes. In addition to variants in protein-
coding genes, variants in noncoding DNA regulatory regions active
in intestinal epithelial cells and immune cells may also be involved in
IBD pathology (Mokry et al., 2014). With the wide study of GWAS’
and SNPs, many genes involved in immune regulation have been
successfully identified as susceptibility genes for IBD, including
Interleukin 28, which controls intestinal epithelial cell
proliferation in mice with colitis and accelerates mucosal healing
by activating the signal transducer and activator of transcription
1 protein (Chiriac et al., 2017).

Patients with IBD suffer from an imbalance in immune
regulation, and the marked differences in the immune
microenvironment between the two models of IBD (i.e., UC
versus CD), are also reflected in T cell differentiation patterns
(Biton et al., 2018). In organoid models of UC and CD, T cells
either differentiate more into the Th17 or Th1 type, respectively.
Interestingly, Hammoudi et al. demonstrated for the first time that
autologous mucosal T cells can directly induce epithelial cell death in
patients with CD (Hammoudi et al., 2022).

In conclusion, GIT organoids are important in vitro models for
IBD research, where they are used to accurately simulate the effects
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of reductive genetic and immune factors on intestinal epithelial
damage in IBD.

3.2 GIT organoids as tools in GIT
cancer research

GIT tumor organoids provide an ideal in vitro model for
studying GIT tumor cells and molecular signaling pathways.
These organoids are able to maintain the complexity of GIT
tumor cells and can recapitulate tumor biology.

Many studies have been carried out using organoids to mimic
gastric cancer progression. Further, the combination of GIT
organoids and gene editing technology has facilitated basic
research into gastric cancer. Tong et al. induced normal gastric
organoids to develop the malignant phenotype of gastric cancer by
knocking down the tumor suppressor, CDH1, and they subsequently
showed that knocking down RHOA restored them to their normal
morphology (Tong et al., 2023). These data suggested that normal
gastric organoids can develop into gastric cancer organoids, and
their malignant behavior can be reverted to normal with relevant
interventions, highlighting the importance of organoids in studying
tumorigenesis and development. In patients with GIT tumors,

gastric cancer peritoneal metastasis (GCPM) is a leading cause of
death. During this process, monocyte-like dendritic cells (DCs) with
pro-angiogenic effects are increased and their antigen-presenting
capacity is reduced. In addition, gastric cancer clusters with high
plasticity have shown a tendency to transition to a high-proliferative
phenotype through an autophagy-dependent plasticity program,
whereas autophagy inhibitors induced apoptosis in patient-
derived organoid (PDO) (Huang et al., 2023). These findings
provide insights into the developmental trajectories of cancer and
immune cells that underlie GCPM. GIT organoids can be used to
recapitulate the entire process of gastric cancer occurrence,
development, and metastasis, making them excellent models for
gastric cancer research.

In intestinal tumors, Notch signaling plays an important role in
regulating tumor progression and metastasis, and it is associated
with poor prognosis of CRC intestinal epithelial–mesenchymal
transition (EMT). Using intestinal organoids to understand how
the Notch pathway regulates epithelial cell regeneration and
differentiation is essential for studying intestinal stem cell
homeostasis and pathogenesis in intestinal tumors. Fujii et al.
(2016) found that Notch signaling activation in organoids alone
was not sufficient to induce CRC development. Heuberger et al.
(2021) demonstrated that when Notch signaling activation was

FIGURE 2
Application of gastrointestinal organoids (Created with BioRender.com).
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accompanied by inhibition of p53, it promotes EMT and subsequent
tumorigenesis (Chanrion et al., 2014). These studies suggest that
GIT tract-like organoids accurately represent physiological signaling
during intestinal tumorigenesis, making them valuable tools in
studies of intestinal tumor pathogenesis.

3.3 GIT organoids for Helicobacter
pylori studies

H. pylori is a major cause of gastric diseases and tumors. The
attachment, colonization, and cytotoxin-associated gene A (CagA)
transport that characterize H. pylori infection have been reproduced
in organoids. Recognition and attachment of H. pylori to target cells
is important for its infection and cellular reprogramming. Confocal
live cell microscopy has been used to visualize H. pylori attachment
to infected gastric organoids from normal human mucosa. Based on
this, Aguilar et al. used organoids to study H. pylori attachment
characteristics and found that H. pylori preferentially adhered to
highly differentiated depressed cells marked by high levels of
Gastrokine 1, Gastrokine 2, and the prostate stem cell antigen.
Further, this study also showed that attachment was not associated
with the expression of Mucin-5AC or the prostate stem cell antigen,
but rather depended on TlpB-dependent chemotaxis of the
bacterium in response to ureides released by the host cell
(Aguilar et al., 2022).

Using organoid models, Sigal et al. (2015) found that H. pylori
colonizes and manipulates progenitor and stem cell compartments,
altering metabolic dynamics and glandular proliferation. This
finding has important implications for GIT stem cell biology and
H. pylori-induced gastric pathology. Furthermore, infection with H.
pylori strains infused with CagA is a major risk factor for death from
gastric cancer (Zhang et al., 2022). This strain causes gastric
epithelial cell transformation by promoting EMT, which disrupts
junctions and enhances the motility and invasiveness of infected
cells. This was confirmed in monolayers of cells derived from human
organoids, suggesting thatH. pylori is generally able to transfer CagA
into organoid cells.

3.4 GIT organoids can mimic viral infections

GIT organoids allow patient-derived viruses to exist and
replicate efficiently with high accuracy in their disease modeling
(Belair et al., 2020; Yin et al., 2015), thereby providing a powerful
model system for studying virus-host interactions. These GIT
organoids have been used in the study of viral infections capable
of causing GIT reactions, including diarrhea [e.g., rotaviruses,
Human Norovirus (HuNoV), and SARS-CoV-2] due to their
location and functional specificity.

Rotaviruses primarily infect the ileum and jejunum of the host
and are capable of destroying enterocytes and impairing intestinal
absorption. While we know that rotavirus non-structural protein 4
(NSP4) stimulates intestinal secretion and activates the enteric
nervous system, thereby inducing diarrhea, little else is known
about the mechanisms behind its pathology. The development of
in vitromodels of the GIT tract will likely be crucial for the study of
rotavirus pathogenesis. Finkbeiner et al. used HIOs for the first time

for in vitro culture of rotaviruses and observed efficient replication of
the viruses by immunofluorescence microscopy (Finkbeiner et al.,
2012). These data suggest that intestinal organoids are a suitable
model for to study rotaviruses.

HuNoV is also an important pathogen in acute gastroenteritis.
The development of the HIO culture system provides a new model
for further study of HuNoV infection, signaling and pathogenesis.
Ettayebi et al. (2016) simulated HuNoV infection in an intestinal
organoid model and using immunofluorescence analysis and
electron microscopy they confirmed the replication process of
this virus in intestinal organoids. Importantly, their data showed
that the virus proliferated in the model to produce intact virus
particles. This study provides an important experimental model for
further research into HuNoV pathology.

Nearly half of patients with SARS-CoV-2 experience GIT
symptoms such as diarrhea or nausea, and it is thought that SARS-
CoV-2 infection elevates proinflammatory factors that lead to intestinal
inflammation (Guo et al., 2021). Krüger et al. (2021) detected virus
spiking (S) proteins in 10% of the cells of intestinal organoids after 24 h
exposure to SARS-CoV-2, which increased to 57% after 48 h, suggesting
virus replication and transmission, which was confirmed by the
detection of nucleocapsid (N) proteins. These results suggest that
SARS-CoV-2 can effectively infect and replicate in intestinal organoids.

4 Drug screening for GIT diseases

Traditionally, most therapeutic drug screening and research
campaigns for GIT diseases have been conducted using 2D cell
systems. However, there are now an increasing number of studies
using GIT organoids for drug screening (Table 1). Compared to 2D
cellular systems, GIT organoids provide a more complete picture of
the GIT tract at the time of disease, thus increasing the accuracy of
drug screening and giving the best options for disease prevention
and treatment.

4.1 IBD treatment and prevention

IBD pathology is associated with intestinal tight junction disorders.
Treatment options include targeted therapies such as steroids,
aminosalicylates, and tumor necrosis factor-alpha (TNF-α)
neutralizing antibodies, but many patients are insensitive to these
therapies. Therefore, there is an urgent need for more effective
treatments and drugs. An increasing number of studies have shown
that intestinal epithelial damage organoids can effectively be used to
screen for therapeutic drugs for IBD. In terms of using organoids in
identifying preventive measures, Guo et al. (2023) found that excessive
intake of (epi) catechins potentially damages the intestinal epithelium in
mouse inflammatory intestinal organoids, which may increase the risk
of intestinal damage. Thus, limiting or avoiding such risk factors could
be an effective preventive measure for IBD.

Intestinal organoid modeling has also been used to highlight
reduced intestinal epithelial permeability as a pathological marker of
IBD, and therefore, a feature that can be addressed in IBD treatment.
Inflammatory cytokines contribute to reduced epithelial
permeability, and Hahn et al. used an organoid model of
intestinal epithelial injury and found that metformin decreased
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inflammatory cytokine levels and restored intestinal epithelial
permeability (Hahn et al., 2024). Intestinal epithelial permeability
is also affected by associated proteins, and Kim et al. (2022) used an
intestinal organoid assessment to show that Schisandrin C improved
abnormal intestinal permeability and also regulated the expression
of proteins closely associated with the development of leaky gut
symptoms and IBD, as well as inflammation-associated proteins.

Other inducible factors also contribute to intestinal inflammation,
Zhang et al. showed that silencing melatonin receptor 1 A inhibited
melatonin-induced inflammation in intestinal organoids (Xi et al.,
2021). The above drugs play a role in the treatment of IBD by
decreasing the levels of inflammatory cytokines, modulating
inflammation-related proteins, and inhibiting intestinal epithelial
damage-inducing factors, making them important candidates for

TABLE 1 Drug screening for disease (Sort by order of appearance in the article).

Disease Agents Dosage Effect to gastrointestinal organoids References

IBD Schisandrin C 5–40 µM Improves intestinal permeability
Enhanced epithelial barrier formation

Kim et al. (2022)

UC High-concentration acetate 100 mM Protects intestinal barrier
Anti-inflammatory

Deleu et al. (2023)

IBD (Epi) catechin 0.03–3 mM Damage to the intestinal epithelium Guo et al. (2023)

IBD Metformin 1 mM Anti-inflammatory and improves intestinal permeability Hahn et al. (2024)

IBD Lactobacillus reuteri 100 µM Repairing intestinal damage
Maintaining intestinal epithelial regeneration and homeostasis

Wu et al. (2020)

UC KAG-308 3 mg/kg qd Anti-inflammatory
Promotes regeneration of intestinal epithelial cells
Enhances mucus production

Nishimura et al. (2019)

CD EYTA
Butyrate

50 µM
10 mM

Suppression of ECM genes associated with stenosis
Suppression of collagen content and tissue stiffness

Jurickova et al. (2022)

CD Spironolactone 0–250 µM Blocking the organoid fibrosis response Rodansky et al. (2015)

CD Prednisolone 10 µM Preventing barrier dysfunction Xu et al. (2021)

HP lapatinib
Cherry-CAP

20 μM
NA

Decreased the survival of H. pylori in infected organoids Buti et al. (2020)

Rotavirus IFN-α
Ribavirin

1,000 IU/mL
10 μg/mL

Inhibition of rotavirus replication Yin et al. (2015)

SARS-CoV-2 Remdesivir 0–100 µM Inhibition of SARS-CoV-2 replication Krüger et al. (2021)

Rotavirus Gemcitabine 0–10 µM Inhibition of rotavirus replication Chen et al. (2020)

HuNoV Ephedra herba 12.5–50 µg/mL Inhibition of HuNoV replication Hayashi et al. (2023)

HuNoV Dasabuvir 5–20 µM Inhibition of HuNoV replication Hayashi et al. (2021)

HuNoV Nitazoxanide 0.1–10 µg/mL Inhibition of HuNoV replication Dang et al. (2018)

SARS-CoV-2 Imatinib
Mycophenolic acid
Quinacrine
Dihydrochloride

0.01–100 µM Inhibition of SARS-CoV-2 replication Han et al. (2021)

CRC GANT61
DAPT
ATO

10 µM Enhances 5-Fluorouracil’s chemosensitivity
Inhibits invasiveness

Citarella et al. (2023)

CRC Aspirin 0.5–2 mM Rescue of the wnt-driven cystic organoid phenotype Dunbar et al. (2021)

CRC Butyrate 1 mM Enhance the efficacy of radiotherapy
Protecs the normal mucosa

Park et al. (2020)

GC 55 drugs NA Inhibition of tumor cell proliferation Vlachogiannis et al. (2018)

GC 37 drugs NA Inhibition of tumor cell proliferation Yan et al. (2018)

CRC 83 drugs NA Inhibition of tumor cell proliferation Van De Wetering et al. (2015)

CRC XAV939
Rapamycin

5 µM
10 µM

Reduce abnormal proliferation Crespo et al. (2017)

CF ELX-02 0–160 µM Restore the CFTR function Crawford et al. (2021)
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IBD treatment. In addition to reducing the effects of inflammation-
related factors on intestinal inflammation, maintaining intestinal
epithelial stability is also crucial for IBD treatment. Wu et al. used
intestinal organoids simulating IBD barrier damage to show that
Lactobacillus reuteri effectively maintains intestinal epithelial cell
regeneration and homeostasis and repairs intestinal damage after
pathological injury (Wu et al., 2020). These data provide important
insights for the development of future UC and CD treatments, which
are generally directed at epithelial damage and intestinal fibrosis.
The recent advances in organoid technology allow for more accurate
predictions of drug effects as well as aiding drug discovery and
development. Deleu et al. (2023) used organoids derived from
patients with UC to show that high-concentration acetate
upregulated HIF1α, MUC2, and MKI67, while also
downregulating most proinflammatory cytokines, which had a
protective effect on epithelial resistance, barrier gene expression,
and inflammatory protein production. Together, this suggests that
high concentrations of acetate are effective therapeutic agents for
UC. Nishimura et al. evaluated the therapeutic effects of the drug on
intestinal epithelial cells using a colonoid organoid model and
showed that the study drug KAG-308 inhibited immune
responses and promoted the shift of cellular differentiation
towards the secretory profile (Nishimura et al., 2019), suggesting
that the KAG-308 could also be a candidate for UC therapy. HIOs
provide a platform for testing personalized therapies for CD
including small molecule drugs. Jurickova et al. (2022) tested the
modulation of mitochondrial and wound healing functions
associated with stricturing behavior by small molecules including
eicosatetraynoic acid (ETYA) through CD-induced HIOs, and the
results showed that in the HIOmodel ETYAmodulated the stenosis-
related ECM genes and suppressed collagen content and tissue
stiffness, restored mitochondrial function, and promoted wound
healing, suggesting a therapeutic effect of ETYA on CD. Rodansky
et al. (2015) used HIO as a new model of intestinal fibrosis in CD.
The results showed that spironolactone treatment blocked TGFβ-
induced fibrosis in HIOs, suggesting that spironolactone can be used
to treat CD. Xu et al. (2021) explored the effect of prednisolone on
the intestinal-derived organoid epithelial barrier in CD patients and
its mechanism, and found that prednisolone played a direct
preventive role in cytokine-induced barrier dysfunction by
regulating the expression of Claudin-2, E-cadherin, and
immunoglobulin-like domain-containing receptor 1. The above
drugs were preliminarily screened for their therapeutic effects on
UC and CD through GIT organoids, providing additional
therapeutic options for clinical treatment.

4.2 Drug development for GIT cancer

Chemotherapy and radiotherapy are the main means of CRC
treatment, and the use of GIT organoids to simulate the GIT tract
conditions in this period provides a powerful model for studying the
mechanism of action of traditional drugs in oncology treatment,
enhancing chemotherapy sensitivity, improving radiotherapy
efficacy, and suppressing the adverse effects of radiotherapy, as
well as screening for new therapeutic agents.

Aspirin has been shown to be a chemoprotective agent in the
treatment of CRC, but its mechanism of action is not fully

understood. Dunbar et al. (2021) used intestinal organoids and
found that aspirin restored the Wnt-driven stem cell-like phenotype
in HIOs. In addition, 5-Fluorouracil is the main chemotherapeutic
agent for CRC but emergence of resistance limits its clinical use.
Using GIT tumor organoids, Citarella et al. (2023) found that 5-
Fluorouracil promotes mesenchymal cell proliferation and thus
invasive phenotypes in KRAS- and BRAF-mutant organoids and
can be used in combination with Hedgehog/GLI and Notch pathway
inhibitors, as well as with GANT61 or arsenic trioxide (ATO) to
restore chemosensitivity, suggesting that ATO and GANT61 are
promising chemosensitizers in CRC. This study shows the promise
of 5-Fluorouracil in lifting clinical therapeutic limitations. These two
drugs have been further characterized in organoid-based studies,
confirming their roles as effective agents for chemotherapy in CRC
and demonstrating the value of GIT organoids as research models
for drug improvement.

Radiotherapy is the other mainstay of treatment for GIT tumors,
and the use of GIT organoids to improve the efficacy of radiotherapy
and reduce radiotherapy-related injury is critical in the treatment of
GIT tumors. Park et al. (2020) used organoids derived from patients
with CRC to assess their response to radiotherapy, and found that
butyrate does not increase radiation-induced cell death and
improves regeneration of normal organoids and tissues after
radiation. This study suggests that butyrate improves the efficacy
of radiotherapy while protecting normal mucosa, a potential strategy
to minimize radiotherapy-related toxicity.

In addition to small-scale drug screening for GIT tumors, GIT
organoids have also performed well in large-scale drug screening for
GIT tumors. Vlachogiannis et al. (2018) studied treatment responses of
metastatic GIT cancers using PDOs and screened 55 drugs in these
PDOs. They found that PDOs predicted responses to targeted or
chemotherapeutic drugs with a sensitivity of 100% and a specificity
of response was 93%. These data suggest that PDOs can be used in
functional genomics to model tumors and conduct clinical trials.
Further, Yan et al. (2018) screened 37 drugs in gastric tumor
organoids and found that drugs such as pabukasin (Napabucasin),
abemaciclib, an ataxia telangiectasia, and Rad3-related (ATR) kinase
inhibitor (VE-822) could be candidates for gastric cancer treatment. van
de Wetering et al. (2015) screened 83 drugs using CRC organoids and
confirmed the link between drug resistance and genetic mutations.
While drugs for GIT tumor therapies are being screened on a large scale
for adenomatous polyposis, drug screening for adenomatous polyposis
is also underway. Crespo et al. used colonic organoids (COs) as a
platform for drug testing and showed that compounds XAV939 and
rapamycin reduced proliferation of familial adenomatous polyposis
colonic organoids (FAP-Cos). This study also identified a ribosome-
binding antibiotic that effectively targeted aberrant WNT activity and
specifically restored normal proliferation in APC-mutant familial
adenomatous polyposis COs (Crespo et al., 2017). This study
provides additional lead drug molecule candidates for the treatment
of adenomatous polyposis.

4.3 H. pylori treatment

Helicobacter pylori is a major risk factor for gastric cancer, and
through GIT organoid studies Buti et al. (2020) found that
apoptosis-stimulating protein of p53 2 (ASPP2), a tumor

Frontiers in Pharmacology frontiersin.org08

Zhou et al. 10.3389/fphar.2024.1463114

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1463114


suppressor and important target of CagA, contributes to the survival
of CagA-positive H. pylori in the lumen of infected gastric organoid
tissues and that it is a key protein in disrupting cell polarity. Studies
have shown that inhibiting CagA-positiveH. pylori ASPP2 signaling
with inhibitors of the epidermal growth factor receptor signaling
pathway or specific peptides, prevents loss of cell polarity and
reduces H. pylori survival in infected organoids. These findings
suggest that maintaining the host cell polarity barrier reduces the
deleterious consequences ofH. pylori infection, thereby presenting a
novel potential strategy for treating H. pylori infection.

4.4 Drug-mediated inhibition of viral
replication

Viral infections often cause acute GIT reactions that can be
severe and life-threatening. Rotavirus infection is usually acute and
self-limiting, and it can cause chronic infections and serious illness
in immunocompromised patients. Gemcitabine is a widely used
anticancer drug. Chen et al. (2020) used HIOs to show that
gemcitabine is an effective inhibitor of rotaviral infection, which
is also beneficial for patients with cancer infected with this virus. In
addition, Yin et al. (2015) found that interferon-alpha and ribavirin
inhibit rotavirus replication through intestinal organoid studies.
These studies suggest that intestinal organoids can be used to
evaluate and screen for antiviral drugs.

HuNoV is a major cause of acute gastroenteritis and foodborne
illness. GIT organoids can be used to screen for effective drugs to
inhibit this virus. Hayashi et al. (2023) screened components of a
Japanese–Chinese herbal medicine using stem cell-derived HIOs
and found that ephedra herb considerably inhibits HuNoV infection
among 22 herbs. Hayashi et al. (2021) used a human intestinal
enteroids culture to screen a library of antiviral compounds using
this system and successfully identified dasabuvir as a novel anti-
HuNoV inhibitor. Using GIT organoids, other teams have found
that thiazoles effectively inhibit HuNoV. Dang et al. (2018)
discovered that thiazoles inhibit HuNoV replication by inducing
the antiviral effector, Interferon regulatory factor-1.

SARS-CoV-2 still poses a serious risk to global health, with up to
50%of patients experiencingGIT symptoms such as diarrhea or nausea.
Potent drugs to inhibit the replication of this virus are a key global
public health concern. HIOs derived from pluripotent stem cells (PSC-
HIOs) as well as colonic organoids (PSC-COs) are important tools for
the identification of potent agents against SARS-CoV-2. Krüger et al.
(2021) found that rameltegravir effectively inhibits SARS-CoV-
2 infection and restores PSC-HIO morphology. Han et al. (2021)
used hPSC-COs to perform a high-throughput screening of FDA-
approved drugs and identified SARS-CoV-2 inhibitors including
imatinib, mycophenolic acid, and quinacrine hydrochloride. Taken
together, GIT organoids are clearly important drug screening tools
for antiviral drugs, particularly for GIT indications.

4.5 Pharmacokinetic and drug
toxicology studies

GIT organoids have been cultured to serve as in vitromodels for
exploring drug metabolism, and drug GIT toxicity studies (Lu et al.,

2017; Park et al., 2019). Yamada et al. investigated the effects of a
novel synthetic lithocholic acid derivative, Dcha-20, with vitamin D
activity, on the expression of pharmacokinetic genes in HIOs, and
found that Dcha-20 promotes the activity of the intrinsic defense
system of intestinal epithelial cells (Yamada et al., 2022). In disease
treatment, the decreased activity of the intestinal epithelial defense
system makes it more difficult for the body to resist drug-induced
GIT toxicity and symptoms such as vomiting and diarrhea.
Therefore, research into in vitro models of GIT tract toxicity and
prediction of drug GIT toxicity is necessary. Belair et al. (2020) used
human GITmesenchymal stromal tumor organoids to show that the
model reproduced clinical drug-associated diarrhea with an
accuracy of 90%, making it a suitable in vitro model for
addressing the drug GIT toxicity during preclinical development.
The molecular mechanisms of drug-induced GIT toxicity are
increasingly being elucidated using GIT organoid models. This is
the case for drugs such as gefitinib and Adriamycin (Rodrigues et al.,
2022b; Rodrigues et al., 2022a). Further, Lu et al. (2017) used crypt
organoid studies to demonstrate that the severe enterotoxicity of the
anticancer precursor drug camptothecin-11 originated from the
UGT1A1-dependent insufficient glucuronidation of its active
metabolite, SN-38. Using a mouse intestinal organoid (MIO)
model Wang et al. investigated toxicity molecular mechanisms
behind the marine toxins, okadaic acid, and conotoxin (CgTx),
and found that OA reduced cellular metabolism and energy
production by affecting MIO cell transcription, ultimately leading
to cell death. In contrast, CgTx upregulates intracellular hormone
metabolism pathways by affecting the nuclear receptor pathway of
MIO, leading to cell death and high energy production (Wang et al.,
2022). An in vitro toxicological study of sunset yellow (SY) using an
intestinal organoid model by Kong et al. (2021) found that SY
disrupts homeostasis in intestinal epithelial cells by producing high
levels of the endoplasmic reticulum stress and oxidative stress, and
that long-term sustained consumption of SYmay increase the risk of
intestinal inflammation. Takahashi et al. (2023) developed a lower-
cost intestinal organoid and found that YC-1 [3-(5′-hydroxymethyl-
2′-furyl)-1-benzyl indazole] induces apoptosis through the mitogen-
activated protein kinase/extracellular signal-regulated kinase
pathway. It is the high degree of restoration of the physiological
structure and function of the GIT tract that has led to the use of GIT
organoids in a wide range of toxicological studies.

5 GIT organoids in microbiology
research and clinical trials

GIT organoids are not only a platform for screening drugs for
GIT diseases, but also play a role in immunomodulation, gut
microbiota research, and the treatment of post-radiation
intestinal epithelial damage, cystic fibrosis (CF), and diabetes.
Importantly, GIT organoids also have an immunomodulatory
role, Zhang et al. (2021) isolated extracellular vesicles using
mouse and human GIT organoids and found that EVs play a
crucial role in maintaining homeostasis in the host. The gut
microbiota plays an important role in the formation of the
intestinal immune system, and it has been found that in HIOs,
13-hydroxy-cis-6,cis-9-octadecadienoic acid (γHYD), and 13-oxo-
cis-6,cis-9-octadecadienoic acid (γKetoD) produced by

Frontiers in Pharmacology frontiersin.org09

Zhou et al. 10.3389/fphar.2024.1463114

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1463114


Lactobacillus intestinalis, which are naturally occurring peroxisome
proliferator-activated receptor delta ligands in the intestinal tract,
are able to promote the β-oxidation of fatty acids and to reduce the
accumulation of intracellular triglycerides, in order to improve lipid
metabolism of the human intestinal tract (Noguchi et al., 2022).

GIT organoids are widely used in clinical trials and have been
used as an important tool in regenerative medicine and as a
medication guide for clinical treatment. Radiation therapy is
commonly used for GIT tumors, and high-dose radiation
exposure induces GIT stem cell death, leading to intestinal
mucosal denudation and GIT syndrome death. In recent years,
drugs to attenuate radiotherapy injury have been screened through
intestinal organoid studies, and experiments using intestinal
organoid transplantation cells to treat radiotherapy injury have
been successful. Wang et al. (2020) used intestinal injury
organoids and found that present arachidonic acid activated
radiation-resistant Musashi-1+ cells promote intestinal epithelial
repair. Fu et al. (2021) used intestinal organoids and found that
knockdown or drug inhibition of sirtuin1 increased p53 acetylation
and led to p53 stabilization, which considerably improved the
survival of irradiated intestinal epithelial cells, suggesting that
sirtuin1 inhibitors are an effective clinical countermeasure to
attenuate intestinal damage caused by radiation exposure.
Moussa et al. (2020) found that in vitro expanded epithelial cells
transplanted from mouse colonoid organoids implanted,
proliferated, and differentiated in irradiated mucosa and reduced
ulcer size. This study demonstrates the potential of organoids to
limit the effects of late radiation on the colon and opens the prospect
of a combined strategy to improve their expansion capacity and
therapeutic efficacy.

In a therapeutic study of CF, researchers used PDOs derived
from patients with the G542X genotype and found that ELX-02
targeting of the G542X cystic fibrosis transmembrane conductance
regulator (CFTR) nonsense allele restored CFTR function in HIOs
(Crawford et al., 2021), supporting the clinical evaluation of ELX-02
as a through-putting agent for the treatment of CF caused by
mutations in the G542X allele. Organoids are not only used to
investigate CF therapeutic agents but also to guide the treatment for
patients with clinical CF. Forskolin-induced swelling of patient
organoids was used to measure patient-specific CFTR function
and CFTR modulator response and has been used to clinically
guide the treatment of a patient with a rare genotype of CFTR
mutation (Aalbers et al., 2022).

GIT organoids can also be used in diabetes treatment research,
supporting the discovery of diabetes therapeutic targets and the
restoration of glucose homeostasis in vivo. Filippello et al. (2022)
usedMIOs that mimic lipotoxicity to find that lipotoxicity affects the
differentiation of specific intestinal cell types in the intestinal tract,
and also identified new targets related to the molecular mechanisms
affected by lipotoxicity that may be important for the treatment of
obesity and diabetes. Huang et al. (2023) cultured islet organoids
differentiated from human gastric stem cells containing gastric
insulin-secreting cells with similar molecular characteristics and
function to β-cells. The organoids were found to acquire glucose-
stimulated insulin secretion within 10 days and to restore glucose
homeostasis in diabetic mice within 100 days post-transplantation,
providing a potentially promising new approach to
diabetes treatment.

6 Summary and outlook

In this review we discuss the application of GIT organoid
technology in disease research and drug screening. GIT tract
organoids maintain the genetic properties, physiological structure,
and function of the GIT tract, have the ability to accurately model
GIT diseases, and have great potential for aiding our understanding
of disease pathology and for developing new treatments for GIT
diseases. Due to their miniaturization and ability to mimic the
physiological structure and function of the GIT tract, coupled
with their amenability to high-throughput screening and the
emergence of conditioned media and tissue-derived organoids
that have greatly reduced the time and cost of cultivation, GIT
organoids are invaluable tools for predicting preclinical drug toxicity
and screening for clinical therapeutic agents.

Although GIT organoids offer advantages for basic research and
clinical applications, they still have limitations, including differences
in drug exposure compared to physiological conditions, the absence
of an immune system, insufficient precision in responses to
modulators, difficulties in replicating the gastrointestinal tumor
microenvironment, and ethical issues associated with tissue
collection. First, drug exposure in organoids differs from in vivo
GIT administration; typically, drug exposure occurs on the
basolateral side. Using microfluidic devices or more precise drug
delivery systems in experiments to ensure that drugs are exposed
accurately to the organoids from the apical side can address this
issue. Second, organoid models contain cell types that are limited to
intestinal epithelial cells, restricting studies on immune responses
and the effects of drugs on immune cells within organoids.
Technologies for incorporating immune system components into
organoid systems are still underdeveloped, require further research.
Furthermore, GIT organoid responses to modulators exhibit limited
precision, especially in small differences, which requires us to
enhance the precision of experimental design, such as
establishing uniform standards for organoid culture and
experimental procedures, in order to reduce variability between
experiments. Additionally, GIT organoids cannot fully replicate the
GIT tumor microenvironment or achieve purification of GIT tumor
organoids. To address this challenge, we can reconstruct the
extracellular matrix using biomaterials and specific extracellular
matrix components, regulate key biochemical factors, and
perform gene editing and epigenetic modifications. These actions
are intended to maximize the simulation of the extracellular matrix
of tumor cells and genetic alterations in cancer. At the same time, by
employing methods such as flow cytometry, immunomagnetic bead
sorting, fluorescent protein labeling, and microfluidic technology,
we can achieve the spatial separation and purification of tumor cells,
enhancing the purity of organoid tumor cells. Finally, generating
healthy organoids from the same individual for tissue or donor
specificity studies poses ethical challenges due to the need for donor
to undergo nonessential surgical procedures. Therefore, ethical
review and informed consent are very necessary.

Despite the limitations of GIT organoids, a growing number of
studies have confirmed their potential for personalized treatment of
GIT diseases. Studies combining microvascularized intestinal
organoids and GIT organoids with gene editing technologies
have provided more accurate models for GIT disease research.
Large-scale cancer organoid biobanks have already been
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established, and to further improve precision medicine for GIT
diseases, GIT organoid biobanks should be established to allow for
faster preclinical studies of drugs and provide personalized
medication guidance for patients with GIT diseases.
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