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Heart failure (HF) is a life-threatening cardiac syndrome characterized by high
morbidity and mortality, but current anti-heart failure therapies have limited
efficacy, necessitating the urgent development of new treatment drugs.
Exogenous ketone supplementation helps prevent heart failure development
in HF models, but therapeutic ketosis in failing hearts has not been systematically
elucidated, limiting the use of ketones to treat HF. Here, we summarize current
evidence supporting ketotherapy in HF, emphasizing ketone metabolism in the
failing heart, metabolic and non-metabolic therapeutic effects, and mechanisms
of ketotherapy in HF, involving the dynamics within the mitochondria. We also
discuss clinical strategies for therapeutic ketosis, aiming to deepen the
understanding of the characteristics of ketone metabolism, including
mitochondrial involvement, and its clinical therapeutic potential in HF.
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1 Introduction

Heart failure is an advanced stage of various cardiovascular diseases characterized by
abnormal cardiac structure and function, resulting in reduced cardiac output and increased
intra-cardiac pressure (Writing Committee and Members, 2022; Mascolo et al., 2022).
Currently, the main approach for treating heart failure is to improve hemodynamics by
regulating the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous
system (SNS), which includes positive inotropy, diuresis, and vasodilation (Mullens et al.,
2017; Wu and Vaseghi, 2020; Tang and Kiang, 2020). Although these medications can
alleviate clinical symptoms in the short term, they cannot alter the disease progression of
heart failure, ultimately resulting in the persistence of high readmission rates and mortality
among patients (Ponikowski et al., 2016). Therefore, identifying new therapeutic targets is a
critical issue that needs to be addressed. Among them, ketone body metabolism has become
a hot therapeutic target for cardiopharmacology.

The maintenance of cardiac function depends on the continuous generation and
efficient utilization of adenosine triphosphate (ATP) (Doenst et al., 2013). With
metabolic flexibility, the heart can adjust the proportions of different metabolic
substrates according to energy requirements, substrate availability, and the body’s
nutritional status (Lopaschuk and Ussher, 2016; Lopaschuk et al., 2021). Under
physiological conditions, the ATP required for myocardial physiological function
mainly comes from the metabolism of fatty acids (FAs), glucose, ketone bodies, lactic
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FIGURE 1
Overview of Energy Metabolism in Normal and Failing Hearts (UP) In normal hearts: 1) Glucose is transported into cells via GLUT1 or GLUT4 and
undergoes glycolysis to produce pyruvate. 2) Lactate, taken up by MCT, is converted to pyruvate through LDH. 3) Pyruvate is transported to the
mitochondria through the MPC and is converted to acetyl-CoA via PDH. 4) Fatty acids are transported into cells by CD36/FATP-1, esterified to fatty acyl-
CoA, and then transferred to the mitochondria via CPT-1 and CPT-2 for β-oxidation. 5) Ketones (β-HB) are transported by SLC16A1 and oxidized by
BDH1 to acetoacetate (AcAc), which is further activated to AcAc-CoA by SCOT, producing acetyl-CoA. 6) Branched-chain amino acids (BCAAs) are
transported via LIVCS and converted to ketoacids in the mitochondria by BCATm. Acetyl-CoA and succinyl-CoA are subsequently formed by BCKDH
intermediates.7) Acetyl-CoA generated from fatty acid β-oxidation, glucose oxidation, ketone oxidation, and BCAA oxidation enters the TCA cycle,
producing FADH2 and NADH, which then enter the electron transport chain, consuming O2 to generate ATP. 8) The creatine kinase reaction rapidly and
reversibly converts phosphocreatine (PCr) and ADP to ATP and creatine (Cr), which serve as the major energy reserve of the heart. (DOWN) In failing
hearts, the following changes occur in energy metabolism pathways: 1) Increased ketone oxidation: Ketones are utilized more efficiently for energy
production. 2) Altered amino acid oxidation: BCAA metabolism may be upregulated to compensate for reduced glucose availability. 3) Reduced fat
oxidation: Fatty acid oxidation may be impaired due to decreased fatty acid transport or utilization. 4) Altered glycolysis and lactate metabolism: There
might be a shift towards increased glycolysis and lactate production to meet energy demands. 5) Decreased glucose oxidation: Glucose utilization may
be reduced due to insulin resistance or impaired glucose transport. 6) Changes in ATP production: The relative contribution of each pathway to ATP
generation may be altered. Upward red arrows indicate increases, and downward red arrows indicate decreases. 7) Alteration in energy transfer: In HF,
abnormalities in creatine kinase metabolism manifest as decreased levels of CK reactants, alterations in CK isoform, and diminished overall CK activity.
The blue numbers indicate the contribution of each pathway to overall ATP production. Abbreviations: GLUT1/4: Glucose Transporter 1 and 4, MPC:
Mitochondrial Pyruvate Carrier, PDH: Pyruvate Dehydrogenase, MCT: Monocarboxylate Transporter, LDH: Lactate Dehydrogenase, CD36/FAT: CD36/
Fatty Acid Transporter, CPT-1: Carnitine Palmitoyl Transferase 1, FADH2: Flavin Adenine Dinucleotide, NADH: Nicotinamide Adenine Dinucleotide, ATP:
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acid, amino acids and other substances (Shi and Qiu, 2022).
Mitochondrial oxidation of fatty acids and glucose is the main
source of energy required for the adult heart, providing more
than 90% of ATP (De Jong and Lopaschuk, 2017), while the
utilization of energy substrates such as ketones, lactate, and
amino acids is minimal (Ussher et al., 2016; Lopaschuk et al.,
2010). However, in heart failure, pathological cardiac structure
and functional reconstruction are often accompanied by
significant reshaping in energy generation and transfer reshaping,
manifested as a significant decrease in the metabolic efficiency of
fatty acids and carbohydrates for energy but an increase in ketone
oxidation (Lopaschuk and Ussher, 2016; Shi and Qiu, 2022; Sun
et al., 2016; Gupta et al., 2012; Keceli et al., 2022) (Figure 1).

Changes in ketone metabolism during heart failure are
complex and depend on the severity and type of heart failure
and on comorbidities such as obesity and type 2 diabetes
(Lopaschuk et al., 2021). Importantly, alterations in the
cardiac metabolism of ketone bodies contribute to the severity
of heart failure. The pharmacological targeting of ketone body
metabolism has emerged as a novel therapeutic approach to
improve cardiac efficiency, reduce energy deficiency, and
enhance cardiac function in failing hearts (Braunwald, 2013).
However, whether increased ketone metabolism in heart failure
patients is adaptive remains unclear. In addition, the functional
regulation and underlying mechanisms of ketone bodies in failing
hearts, including metabolic and non-metabolic effects, have not
been systematically elucidated.

Here, we review the therapeutic effects of ketones in heart failure,
emphasizing the metabolic alteration of ketone bodies in pathological
restructuring, the metabolic and non-metabolic functions and
mechanisms of ketone metabolism in pathological cardiac
remodeling, and clinical strategies for therapeutic ketosis, which are
highly important for understanding the underlying mechanisms and
evidence of therapeutic ketosis for pathological cardiac remodeling.

2 Ketone metabolism in normal and
failing heart

2.1 Production and energetic properties of
ketone bodies

Biologically, ketone bodies serve as important energy reserves
to maintain metabolic homeostasis in the body during stress and
starvation, and ketone body levels are typically low in non-fasting
conditions (Puchalska and Crawford, 2017). Endogenously
produced ketone bodies include β-hydroxybutyrate (β-HB),
acetoacetate (AcAc), and acetone, which are primarily derived
from the conversion of fatty acids in the liver (Figure 2) (Zhang
et al., 2011). During fasting, hepatocytes transport
mobilized fatty acids into the mitochondria, where they

undergo β-oxidation to generate multiple acetyl-CoA
molecules. Acetyl-CoA can be further converted to
acetoacetate through various enzymatic reactions, and
acetoacetate can also be reduced back to β-HB for further
utilization (Sun et al., 2016). The production of endogenous
ketone bodies is influenced by hormonal signals,
transcriptional regulation, and posttranslational modifications
(Puchalska and Crawford, 2017). Ketone bodies can be cleared by
the kidneys or lungs, converted into lipids, or transported to
extrahepatic tissues for utilization.

Ketone bodies are increasingly recognized as important energy
substrates for the heart, with a better balance between the quantity
and efficiency of energy production (De Jong and Lopaschuk, 2017;
Lopaschuk, 2017; Selvaraj et al., 2020; Qian and Wang, 2020).
Considering the oxygen consumption of ATP production, ketone
body oxidation is considered to be a relatively efficient oxidation
pathway because the phosphate-to-oxygen (P/O) ratio of ketone
body oxidation is 2.5, which is more favorable than fatty acid
oxidation (P/O ratio of 2.3). In addition, by calculating the ATP
produced per 2 carbon molecules, the oxidation reaction of ketone
bodies was shown to produce more ATP than glucose. In fact,
adding ketone bodies to the glucose infusion significantly increased
cardiac output and efficiency in an isolated rat heart model, similar
to insulin addition (Keon et al., 1995).

2.2 Ketones metabolism in heart

The myocardium is a tissue with high enzyme activity for ketone
metabolism, and ketone bodies are easily metabolized by the heart.
The uptake and utilization of ketone bodies by myocardial cells are
the result of the synergistic action of multiple enzymes (Figure 2)
(Puchalska and Crawford, 2017; Janardhan et al., 2011): 1)
Myocardial cells take up circulating ketone bodies through
monocarboxylic acid transporters and oxidize them to
acetoacetate by β-hydroxybutyric acid dehydrogenase 1 (BDH1)
in mitochondria; 2) acetoacetate is further activated to acetoacetyl-
CoA by 3-ketozcid CoA transferase 1 (SCOT1); and 3) acetyl-CoA
acetyltransferase (ACAT) catalyzes the thiolysis reaction, generating
two molecules of acetyl-CoA that enter the tricarboxylic acid cycle.
Studies have shown that SCOT1 knockout mice exhibit more severe
cardiac structural and functional impairments during heart failure
(Aubert et al., 2016), indicating that impaired ketone metabolism
exacerbates myocardial injury under cardiac stress conditions.

Under non-fasting conditions, the myocardium rarely takes up
ketone bodies and primarily relies on fatty acid oxidation (FAO) and
glucose oxidation for energy (Ho et al., 2019), but when circulating
ketone bodies increase, the heart preferentially utilizes ketone bodies
for energy while reducing FAO and glucose oxidation (Stanley et al.,
2003; Ziegler et al., 2002). Among them, β-HB is the major ketone
body oxidized in the heart.

FIGURE 1 (Continued)

Adenosine Triphosphate, ADP: Adenosine Diphosphate, TCA: Tricarboxylic Acid Cycle, βOHβ: β-hydroxybutyrate, SLC16A1: Solute Carrier Family
16 Member 1, BDH1: β-Hydroxybutyrate Dehydrogenase 1, SCOT: Succinyl-CoA: 3-Oxoacid Coenzyme A Transferase, LIVCS: L-type Amino Acid
Transporter Vesicular Carrier System, BCATm: Mitochondrial Branched-Chain Amino Acid Transaminase, BCKDH: Branched-Chain α-Ketoacid
Dehydrogenase Complex, Ckmyofib: Myofibrillar Creatine Kinase, CKmito: Mitochondrial Creatine Kinase, Cr: Creatine, pCr: Phosphocreatine.
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2.3 Increased ketone metabolism in HFrEF

Dramatic changes in energy metabolism are evident throughout the
entire process, from pathological myocardial remodeling to heart failure.
During heart failure, mitochondrial oxidative capacity is reduced by
increased reactive oxygen species (ROS), dysregulated mitochondrial
Ca2+ homeostasis, impaired mitochondrial dynamics, mitochondrial
autophagy and other adverse factors, leading to a reduced capacity
and efficiency of fatty acid and glucose oxidation (De Jong and
Lopaschuk, 2017). However, animal and human HF models have
demonstrated the increased utilization of ketone bodies (Aubert et al.,
2013), possibly because ketone oxidation bypasses the dysregulation of
the β-oxidation pathway and pyruvate dehydrogenase complex.

Many studies support the concept that ketones are alternative
metabolic substrates for failing hearts. During the progression of
HFrEF induced by myocardial infarction in mice, not only was the
expression of SLC16A1 increased to mediate the cardiac uptake of
ketones but also the expression of ketone oxidation enzymes, such as
BDH1, increased in cardiomyocytes (Aubert et al., 2016). By quantifying
the utilization rate of metabolic substrates in arterial and venous blood
samples, a study reported an approximately 100% increase in ketone
oxidation in patients with heart failure with a reduced ejection fraction
(HFrEF) (Funada et al., 2009). In addition, especially among patients
with end-stage heart failure, fasting-induced increases in circulating
ketone bodies are aggravated, and the content of the ketogenic derivative
β-hydroxybutyryl-CoA (βHB-CoA) is also dramatically increased
(Selvaraj et al., 2020). Overall, the specific mechanisms underlying
the increase in ketone metabolism during HF progression are not yet

clear but may be related to the following factors (Kolwicz et al., 2016): 1)
cardiac diseasemay lead tometabolic remodeling of the body, increasing
ketone synthesis in the liver; 2) pathological remodeling of the heart may
enable myocardial cells to more effectively take up ketone bodies from
the blood; and 3) certain metabolic pathway changes in myocardial cells
may activate the ketone utilization enzyme system.

Further research indicated that enhanced ketone body
metabolism is a compensatory change. Heart failure (HF) mice
with heart-specific BDH1 knockout exhibit more severe ventricular
remodeling and dysfunction. Conversely, in a pressure overload HF
model, overexpression of BDH1 can alleviate cardiac remodeling
and DNA damage (Uchihashi et al., 2017). Additionally, during the
progression of HFrEF, myocardial ketone body oxidation and
impaired fatty acid oxidation occur simultaneously. Heart-specific
SCOT knockout mice (in which terminal oxidation of β-
hydroxybutyrate is prevented) exhibit increased fatty acid
oxidation (Schugar et al., 2014), revealing the interrelated
characteristics of myocardial ketone oxidation and fatty
acid oxidation.

2.4 Ketone metabolism in HFpEF

The above studies examined the changes in ketone metabolism in
HFrEF patients, but there is no consensus on the changes in ketone
metabolism associated with heart failure with preserved ejection fraction
(HFpEF). The alterations in ketone oxidation in HFpEF patients remain
unclear. A 3-Hit mouse model revealed the complexity of HFpEF in

FIGURE 2
Metabolic Pathways of Hepatic Ketogenesis and Myocardial Ketone Utilization Free fatty acids transported from circulation undergo fatty acid
oxidation in the liver mitochondria to produce acetyl-CoA. Subsequently, ketogenesis process utilizes acetyl-CoA to ultimately generate two mature
ketone bodies: acetoacetate (AcAc) and β-hydroxybutyrate (β-HB). After released into the circulation and import it into cardiomyocytes by the
monocarboxylate transporter (MCT), AcAc and β-HB are converted back to acetyl-CoA via cardiomyocyte mitochondrial ketolysis, which can be
subsequently metabolized in the tricarboxylic acid cycle to generate ATP. Of note, acetyl-CoA is also produced by fatty acids and glycolytic pathways in
the early stages of failing heart, but decreased in end-stage HF. Abbreviations: β-HB, β-hydroxybutyrate; HMGCS2, 3-hydroxy-3-methyl-glutaryl-CoA
synthase; HMGCL, 3-hydroxy-3-methyl-glutaryl-CoA lyase; BDH, BHB dehydrogenase; MCT, monocarboxylate transporter; SCOT, succinyl-CoA: 3-
oxoacid CoA transferase; ACAT, acetyl-CoA acetyltransferase; PDH, pyruvate dehydrogenase; TCA, tricarboxylic acid.
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relation to myocardial ketone oxidation (Deng et al., 2021). Despite
increased circulating blood ketone levels,myocardial ketone oxidationdid
not increase in this HFpEF model, but a reduction in mitochondrial
dysfunction induced by proinflammatory cytokines was observed, which
is contrary to the findings in HFrEF. It is currently unclear whether
hyperketonemia inHFpEF patients is associated with increased oxidation
of other metabolic substrates in themyocardium (Du et al., 2014; Lommi
et al., 1996). Additionally, serum metabolomics revealed greater levels of
AcAc and β-HB in HFpEF patients than in HFrEF patients, suggesting
that HFrEF patients have increased ketone consumption and rely more
on ketones as an energy source than HFpEF patients do (Zordoky et al.,
2015). However, the role of ketones in the development of HFpEF
remains to be clearly determined, and future work is needed to elucidate
the role of ketone metabolism in the progression of HFpEF.

3 Therapeutic effects of ketones in
heart failure

Numerous studies support the protective effect of ketone bodies on
the failing heart, and the cardioprotective effect of ketone bodies may
not only be related to energymetabolism. As shown in Figure 3, ketones
could have metabolic and non-metabolic beneficial effects on HF.

3.1 Energy supplement

The consumption of ketone bodies is approximately 3-fold
greater in patients with heart failure than in healthy controls. In
particular, when experiencing insufficient glucose supply (such as
during fasting), approximately 16.4% of the heart’s ATP generation
comes from ketone bodies in patients with HFrEF (Murashige et al.,
2020; Abdul Kadir et al., 2020). Numerous studies have revealed that
the cardiac uptake of β-HB and the content of β-HB-CoA are both
significantly increased in patients with HFrEF, end-stage heart
failure, or aortic stenosis (Bedi et al., 2016; Voros et al., 2018),
indicating that ketone bodies are important alternative substrates for
heart failure and that increased ketone metabolism is an adaptive
response of the heart to inadequate energy supply.

3.2 Cardiac remodeling

Research suggests that insufficient ketone production may be
associated with adverse ventricular remodeling, and ketone
supplementation may help improve cardiac remodeling (Schugar
et al., 2014; Yurista et al., 2021a), suggesting that ketone bodies may
be involved in the myocardial response to pressure overload.

FIGURE 3
Metabolic and Non-Metabolic Effects of Ketone Bodies In addition to energy supplement as alternative substrates, ketone bodies
(1–3 mmol/L β-HB) may have beneficial effects on oxidative stress, mitochondrial function, endothelial function, inflammation, cardiac
remodeling and other indirect systemic effects, such as body weight, blood pressure, serum glucose and lipids levels.
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Artificial aortic coarctation mice with cardiomyocyte-specific SCOT
knockout exhibited disrupted myocardial mitochondrial and
myofibril ultrastructures, increased left ventricular volume, and
decreased ejection fraction (Schugar et al., 2014). Furthermore,
several studies have revealed that ketone supplementation
significantly improves the left ventricular ejection fraction in
animals with myocardial infarction (MI) or heart failure and
reduces ventricular mass, myocardial cell cross-sectional area,
and atrial natriuretic peptide protein expression (Yurista et al.,
2021a), which further demonstrates the protective role of ketone
body metabolism on cardiac structure.

3.3 Mitochondrial integrity

Recently, studies have reported that ketone bodies play a role in
maintaining mitochondrial integrity in heart disease (Huynh, 2016).
Some research has shown that increasing ketone metabolism can
alleviate the damage to the heart caused by myocardial ischemia‒
reperfusion or myocardial infarction because ketone metabolism
prevents a reduction in mitochondrial quantity and deterioration of
mitochondrial function within cardiomyocytes (Al-Zaid et al., 2007;
Snorek et al., 2012). Additionally, ketogenic diets can significantly
extend the lifespan of mice with genetic lethal cardiomyopathy
because they help maintain the integrity of cardiomyocytic
mitochondrial structures and improve oxidative phosphorylation
(Krebs et al., 2011). Research on heart-specific SCOT knockout mice
with transverse aortic constriction (TAC) revealed disordered
mitochondrial and myofibrillar microstructures in
cardiomyocytes, accompanied by increased left ventricular
volume and decreased ejection fraction (Schugar et al., 2014).

3.4 oxidative stress

Oxidative stress plays a crucial role in the cardiovascular system,
participating in various signaling pathways contributing to
pathological processes such as cardiac hypertrophy and
myocardial cell apoptosis (Cinato et al., 2024; Liu et al., 2023).
However, elevated levels of β-HB may serve as a compensatory
response of the failing heart to oxidative stress (Nagao et al., 2016).
In H9c2 cells, BDH1 overexpression reduces the generation of
reactive oxygen species clusters, suggesting that increased
utilization of ketone bodies may help decrease oxidative stress
and improve cardiac remodeling (Uchihashi et al., 2017). In an
oxidative stress cardiomyocyte model, β-HB may also induce the
expression of the oxidative stress resistance gene FOXO3a and
increase the expression of catalase, superoxide dismutase, and
peroxiredoxin, thereby inhibiting the generation of reactive
oxygen species clusters and reducing cell apoptosis (Nagao
et al., 2016).

3.5 Anti-inflammation

Activation of the NOD-like receptor pyrin domain containing 3
(NLRP3) inflammasome in the heart leads to myocardial injury.
However, in a heart failure mouse model, prolonged elevation of

circulating ketone body levels alleviated NLRP3 inflammasome-
mediated myocardial inflammation and improved cardiac function
(Byrne et al., 2020; Youm et al., 2015). Elevated levels of β-
hydroxybutyrate (β-HB) bind to the NLRP3 inflammasome,
inhibiting its activity and thereby reducing the release of the
inflammatory factors IL-1β and IL-18, slowing myocardial
fibrosis and promoting the recovery of the ejection fraction
during heart failure progression (Deng et al., 2021).

However, acetoacetic acid (AcAc) is considered to have pro-
inflammatory effects. Elevated concentrations of AcAc, especially at
high glucose levels, aggravate endothelial cell injury through
oxidative stress and are associated with increased expression of
TNF-α and MCP-1 in monocytes, accumulation of reactive oxygen
species (ROS), and decreased cAMP levels (Jain et al., 2002).
Therefore, the role of ketone bodies in anti-inflammatory
mechanisms still needs further investigation.

3.6 Angiogenesis

In heart failure, angiogenesis is crucial for slowing myocardial
injury and protecting the heart. Ketone oxidation can effectively
prevent a decrease in vascular density in failing hearts, particularly
by promoting the proliferation, migration, and sprouting
angiogenesis of cardiac endothelial cells (Weis et al., 2022). In
healthy mice, transient elevation of circulating ketones only
induces proliferation of cardiac endothelial cells without affecting
cardiac vascular density. However, in models of cardiac hypertrophy
and heart failure, long-term elevation of ketone levels can further
increase the proliferation of endothelial cells in mice (Weis
et al., 2022).

4Molecular signaling of Ketone therapy
in heart failure

Lopaschuk and Ussher (Ho et al., 2019; Mayr et al., 2008)
suggested that as an additional energy substrate, the amount of
ATP produced by ketone oxidation does not exceed 20% of the total
demand of the heart, which seems insufficient to meet the need for
cardiac function (Figure 1). In other words, ketone bodies may exert
their effects on the heart through mechanisms other than oxidative
metabolism. Here, we review the metabolic and non-metabolic
mechanisms of ketone bodies in resisting the pathological
remodeling of failing hearts.

4.1 The oxidative metabolism of
ketone bodies

Although the protective effects of ketone oxidation on the heart
have been supported by several studies, the specific mechanisms
involved have not been fully elucidated. According to current
research, the protective effects of ketone oxidation in the heart
may involve the following two processes. First, myocardial cells
utilize energy produced by ketone oxidation more efficiently than
fatty acid and glucose oxidation. Therefore, when the efficiency of
fatty acid and glucose oxidation in myocardial cells decreases,
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ketones can serve as a “super fuel” to promptly replenish energy
(Cotter et al., 2013). Second, ketone metabolism alleviates oxidative
stress reactions, prevents excessive generation and accumulation of
reactive oxygen species (ROS), inhibits lipid peroxidation reactions,
and increases the antioxidant capacity of proteins, thereby
improving mitochondrial function and enhancing ATP synthesis
efficiency in cardiomyocytes (Puchalska and Crawford, 2017).

However, some studies have reached opposite conclusions.
Wang et al. (2008) found that cardiac systolic function in mice
with myocardial ischemia did not improve and may even be
worsened by ketogenic diets. In another in vitro experiment
where ketones were the sole energy source for cardiomyocytes,
acute contractile dysfunction was observed. However, after
supplementation with glucose, cardiac function significantly
improved. This may be because ketones cannot provide
important intermediates produced by glucose oxidation, which
are crucial for the tricarboxylic acid cycle (Taegtmeyer, 2016).
Additionally, Mayr et al. (2008) showed that increased ketone
metabolism altered the excitability of myocardial cellular
membranes, promoting the occurrence of arrhythmias. β-HB
blocks transient K+ efflux in ventricular myocytes, resulting in
prolonged action potential duration. Taken together, these
findings indicate that the impact of ketone metabolism on
cardiac function is not entirely consistent and may be regulated
and influenced by multiple factors.

In conclusion, there is currently no consensus on the role and
mechanisms of ketone oxidation metabolism in heart disease. This
may be due to differences in disease states and the proportion of
ketones in the energy substrate. Additionally, the above studies have
some notable limitations, such as the lack of assessment of the
relationship between increased ketone metabolism and ATP
generation. Further research is needed to explore whether
increased ketone oxidation metabolism in heart disease is
accompanied by sufficient ATP production and to investigate the
mechanisms of ketone metabolism in heart disease to better
understand its potential therapeutic effects and safety.

4.2 Anti-oxidative stress

The protective effects of ketone bodies against oxidative stress
injury not only result from their direct chemical targeting of reactive
oxygen species (ROS) and free radicals but also from their regulation
of gene expression to maintain redox homeostasis. In
cardiomyocytes, ketone bodies can reduce oxidative stress-
induced cell damage and apoptosis by attenuating ROS and
enhancing antioxidant defense (Oka et al., 2021). β-HB can act
as a direct antioxidant against hydroxyl radicals (Haces et al., 2008)
and oxidize coenzyme Q (Veech et al., 2001; Kashiwaya et al., 2000),
reducing the content of semiquinone in coenzyme Q. As important
factors for resisting oxidative stress and electrophile attack, nuclear
factor erythroid 2-related factor 2 (Nrf2) and other antioxidant
defense target genes can be transcriptionally promoted by β-HB to
prevent oxidative stress (Kolb et al., 2021).

However, several conflicting reports indicate that ketone bodies
induce oxidative stress in various cardiovascular cells, including
cardiomyocytes, smooth muscle cells, and endothelial cells (Pelletier
and Coderre, 2007; Tian et al., 2014). However, some studies have

shown the beneficial effects of ketone body-induced oxidative stress,
as ketone bodies can initiate adaptive responses by activating major
regulators of cytoprotection, including Nrf2, Sirt1/3, and
AMPK(Kolb et al., 2021; Milder and Patel, 2012; Abdelmegeed
et al., 2004).

4.3 Signaling transduction modulation

Recent research has shown that ketones can regulate cellular
physiological and pathological processes by modulating signaling
pathways (Newman and Verdin, 2014; Rojas-Morales et al., 2016).
Among them, ketone bodies have been proven to be agonists of
GPR81, GPR109A and GPR109B, which are defined as
hydroxycarboxylic acid 1, 2 and 3 receptors (HCARs) and are G
protein-coupled receptors (GPCRs), respectively.

One study identified β-HB as the only known endogenous ligand
for GPR190A (Offermanns et al., 2011; Zhang et al., 2021a). When
undergoing ketogenic diets, starvation, or ketoacidosis, the blood
concentration of β-HB increases, which activates GPR190A to
reduce lipolysis in adipose tissue, thereby decreasing the entry of
nonesterified fatty acids into the liver for ketone synthesis and
forming a negative feedback mechanism (Ahmed et al., 2009).
Additionally, activation of GPR190A can enhance macrophage
cholesterol efflux, reducing the formation of atherosclerotic
plaques. In addition to being a GPR190A activator, β-HB has
also been proven to antagonize GPR41, which can induce a
decrease in intracellular cyclic adenosine monophosphate
(cAMP), thereby reducing lipolysis. Furthermore, β-HB can also
reduce sympathetic excitability and slow heart rate by activating
GPR41, which has an impact on heart disease (Kimura et al., 2011).

In addition to the above targets, in various disease models,
ketone bodies can also act on AMPK-FOXO3 (Forkhead box O3),
FOXO1 (Bae et al., 2016), PPARγ coactivator 1 alpha (PGC-1α)
(Kim et al., 2019), NADPH oxidase 4 (NOX4) (Kanikarla-Marie and
Jain, 2015), Akt-mTOR (Li et al., 2017) and the MAPK signaling
pathway (Li et al., 2022) to exert anti-inflammatory effects,
endoplasmic reticulum stress and other pathophysiological
processes, which are closely related to the occurrence and
development of heart diseases.

4.4 Epigenetic and transcriptional regulation

Transcriptional reprogramming is one of the molecular
mechanisms driving the pathophysiology of heart failure (HF), in
which epigenetic events serve as molecular transducers of gene
expression. Many reports have shown that ketones regulate gene
expression in heart failure through epigenetic mechanisms,
including posttranslational modifications of histones, DNA
modifications, and posttranscriptional regulation of noncoding
RNAs (He et al., 2023). (Figure 4)

4.4.1 Posttranslational modifications of histones
Among the explored epigenetic factors, post-translational

modifications of histones, especially histone acetylation and
methylation, which can be modulated by ketone bodies, have
attracted the most attention due to their potential as therapeutic
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targets for heart failure (Eom and Kook, 2014; Li et al., 2020a; Yang
et al., 2020).

Shimazu et al. (2013) reported that β-HB can promote histone
acetylation by inhibiting class I histone deacetylases (HDACs),
thereby increasing the expression of antioxidative stress genes.
Furthermore, acetyl-CoA generated from ketone oxidation is a
potential factor leading to protein hyperacetylation and
impacting organismal metabolism (Menzies et al., 2016). Recent
studies have shown that in mice experiencing long-term fasting or
diabetic ketoacidosis, β-HB can directly modify lysine residues in
histone and nonhistone substrates through a newly discovered PTM
called β-hydroxybutyrylation, thereby regulating organismal
function (Xie et al., 2016; Liu et al., 2019). However, although
relevant studies have demonstrated that ketone metabolism can
regulate physiological processes through PTMs, there is currently no
direct evidence of its impact on heart disease, and further research is
needed in this area.

Indeed, recent evidence supports the notion that HDAC
inhibitors, which were initially developed for various cancer
treatments, can improve cardiac and pulmonary function in
HFpEF animal models (Li et al., 2020a; McKinsey, 2012; Wallner
et al., 2020). It is crucial to note that further research is needed to
differentiate the effects of these inhibitors, as they could either
directly target epigenetic regulation via histones or indirectly

through non-histone targets, such as gene expression modulation
and enzyme activity regulation (Jeong et al., 2018; Khan et al., 2018).

Recent studies have explored β-HB as a metabolic mediator of
histone H3 methylation remodeling in the ischemic heart using
human heart specimens and mouse and cardiomyocyte models
(Gambardella et al., 2023). This study revealed that
H3K27me2 and H3K36me1, which are specifically upregulated
histone modifications in ischemic heart failure, are sensitive to β-
HB levels. The increase in H3K27me2 and H3K36me1, as well as the
mitochondrial dysfunction caused by the downregulation of the
downstream transcription factor PGC1α, was significantly reduced
by β-HB treatment, revealing a novel epigenetic regulatory pathway
coupling ketone metabolism with histone methylations and that
PGC1α is an important target of its epigenetic effects.

In addition to the direct regulation of histone post-translational
modifications by ketone bodies, many metabolites of the ketone-
TCA cycle pathway can also regulate histone PTMs (Abdul Kadir
et al., 2020). These mechanisms include the regulation of citric acid
signaling to histone acetyltransferases (HATs) (Deb et al., 2017), α-
ketoglutaric acid conversion to histone methyltransferases (HMTs)
(Karlstaedt et al., 2016), and auxiliary glucose signaling pathways
(Medford et al., 2013; Kronlage et al., 2019), such as the hexosamine
(UDP-GlcNAc) biosynthesis pathway, which affects histone PTMs
through direct O-GlcNAcylation of histones or indirect

FIGURE 4
The potential mechanisms of BHB regulation of epigenetics include 1) BHBmetabolism inmitochondria increases Ac-CoA, which acts as a substrate
for histone acetyltransferases (HATs) to promote histone lysine acetylation. 2) Excessive NAD activates Sirts to promote histone lysine deacetylation. 3)
BHB directly inhibits histone deacetylases (HDACs) to increase histone lysine acetylation. 4) BHB can be converted to BHB-CoA, and HATs promote
histone lysine β-hydroxyisobutyrylation. 4) BHB promotes histone lysine methylation through cAMP/PKA signal, but indirectly inhibits histone lysine
methylation through the upregulation of JMJD3. 5) BHB inhibits DNA methyltransferases (DNMTs) to block DNA cytosine methylation or
hydroxymethylation. 6) Additionally, BHB regulates microRNA, circRNA, and lncRNA and affects gene expression. Dashed lines indicate the process
requires further validation, and solid lines indicate the process has been proven.
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O-GlcNAcylation of HDAC4. However, the regulatory mechanisms
of these histone post-translational modifications in failing hearts
require further investigation.

4.4.2 DNA modification
Changes in dietary patterns canmodulate the methylation of key

metabolic genes, thereby regulating their expression. 5-
Methylcytosine (5mC) and 5-hydroxymethylcytosine (5 hmC) are
common DNA modifications. Typically, 5mC at gene promoters
inversely correlates with gene expression, whereas the relatively
understudied 5 hmC, found within gene bodies, usually positively
correlates with gene expression.

Early studies linked DNA 5mC alterations to the expression
pattern of angiogenesis-related genes involved in the progression of
human heart failure (Movassagh et al., 2010). Some changes in DNA
methylation in human heart failure are strongly correlated with
coordinated alterations in enzymes responsible for the conversion of
fatty acid to glucose, which are potentially regulated by DNA
methyltransferase 3A (DNMT3A) (Pepin et al., 2019a; Pepin
et al., 2019b). Recent evidence suggests that a ketogenic diet with
high-fat and low-carbohydrate content can improve DNA
methylation-mediated gene expression changes (Kobow et al.,
2013). Several studies have shown that β-HB can increase
adenosine levels (Lusardi et al., 2015), leading to the formation
of S-adenosylhomocysteine (SAH) (Williams-Karnesky et al., 2013),
which inhibits DNA methyltransferases and reduces DNA
methylation (Williams-Karnesky et al., 2013; Chen et al., 2019a).
However, the relationship between ketone metabolism and the
pattern of DNA methylation and cardiac gene expression in
heart failure is complex (Lother et al., 2021). Therefore,
additional research is needed to understand the contribution and
adjustment of these pathways.

4.4.3 Non-coding RNA
Like histone PTMs, non-coding RNAs (ncRNAs), including

various pathways such as microRNAs (miRNAs), long non-
coding RNAs (lncRNAs), and circular RNAs (circRNAs), play a
dominant role in epigenetic regulation and have attracted increasing
interest in heart failure due to their ability to regulate gene
expression in heart failure (Gomes et al., 2020).

In a caloric restriction mouse model, the levels of serummiR-16-
5p, miR-196b-5p, and miR-218-5p were increased, and miR-16-5p
expression in the heart was also significantly elevated to suppress
inflammatory cytokines (Yamada et al., 2020), suggesting that
changes in microRNA levels during caloric restriction can
maintain immune homeostasis and regulate inflammation. A
study in obese volunteers revealed that a ketogenic diet led to
changes in the levels of microRNAs associated with antioxidant
and anti-inflammatory signaling pathways, but these levels returned
to normal after termination of the KD (Cannataro et al., 2019).
Despite the multiple regulatory roles of ketones on miRNAs in
various cardiovascular diseases, the detailed regulatory effects of
ketones in preventing and treating heart failure require
further study.

Compared to the expression profiles of mRNAs or miRNAs,
lncRNAs are considered sensitive regulatory factors associated with
HF and involve numerous regulatory pathways. The strong
correlation between lncRNAs and HF makes lncRNAs attractive

biomarkers for HF. For example, the HypERlnc is expressed in
pericytes and downregulated in the hearts of patients with heart
failure (Bischoff et al., 2017). Although circRNAs are expressed and
regulate cell proliferation and transformation in vascular smooth
muscle cells and endothelial cells (Chen et al., 2017; Zhong et al.,
2017), their role in the development of heart failure is still poorly
understood. Taken together, lncRNAs and circRNAs are attractive
targets for heart failure, but our insights into the molecular
pathology mechanisms dominated by lncRNAs and circRNAs
have not yet emerged in the prevention and treatment of heart
failure based on ketone bodies.

4.5 Gut microbiota

The gut microbiota is closely related to the occurrence of
cardiovascular diseases, especially the development of heart
failure (Mamic et al., 2023; Chen X. et al., 2019). Crawford and
colleagues (Masenga et al., 2023) reported that, compared to
conventional wild-type mice, germ-free mice had smaller hearts
and abnormal myocardial metabolism. However, these differences
could be eliminated by transplanting the gut microbiota or by
maintaining a 2-week ketogenic diet. This may be due to the
unique synthetic enzyme system of microbes, which affects the
production and utilization of energy substances such as ketone
bodies and subsequently promotes biological effects such as anti-
oxidation and anti-inflammation in heart failure. Most studies have
focused on the gut microbiota regulating the host’s cardiac
physiology and pathology by their metabolites, including
regulating heart size and physiological functions through ketone
bodies generation (Masenga et al., 2023; Masenga et al., 2022; Chen
X. et al., 2023). Additionally, acetate, microbial short chain fatty acid
metabolites, acutely lowers heart rate and blood pressure via
modulating sympathetic tone, cardiac contractility and the
transmission of endothelial GPR41-involved signaling (Crawford
et al., 2009; Poll et al., 2021; Natarajan et al., 2016; Hu et al., 2022).

Notably, the composition, diversity, and function of the gut
microbiota are also influenced by ketogenic diets (Chen H. C. et al.,
2023; Zambrano et al., 2023; Griffin et al., 2017; Tagliabue et al.,
2017; Swidsinski et al., 2017), and ketone-induced gut microbiome
remodeling is inducible and reproducible (Olson et al.,
2018).“Ketogenic microbiota” is defined as the characteristic of
the gut microbiota shaped by ketogenic diets (Cabrera-Mulero
et al., 2019), and it may be a crucial factor in the effectiveness of
ketone therapy for treating diseases. Numerous studies have shown
that ketogenic diets can reshape the gut microbiota in humans and
rodents; this ketogenic microbiota is essential for the efficacy of
therapeutic ketones (Olson et al., 2018; Spinelli and Blackford, 2018;
Hampton, 2018). Subjects can be classified as responders or non-
responders based on changes in their gut microbiota (Zhang et al.,
2018; Sanchez-Quintero et al., 2022), indicating that the
effectiveness of ketosis therapy is partly driven by the gut
microbiota. The resistance of germ-free animals to the
therapeutic effects of ketosis further elucidates the direct
correlation between the ketogenic microbiota and the therapeutic
efficacy of ketone bodies (Hampton, 2018). In summary, these
studies demonstrate that the gut microbiota plays an important
mediating role between ketones and host physiology.
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4.6 Other mechanisms

In addition to the above mechanisms, ketones have also been
reported to act as precursors for lipid synthesis rather than as energy
substrates, playing a positive role in cardiovascular diseases
(Lopaschuk et al., 2021; Grabacka et al., 2016; Hildebrandt et al.,
1995). Furthermore, studies have shown that ketones have an
endothelium-dependent vasodilatory effect. Clinically, the
administration of ketones to patients has been shown to increase
vasodilation and blood flow, thereby alleviating symptoms of heart
failure (Nielsen et al., 2019). Treatment with (R)-1,3-butanediol can
increase the activity of nitric oxide synthase in the resistant arteries
of Dahl salt-sensitive rats, although with undesirable side effects
(Yurista et al., 2021b). Moreover, mice fed ketogenic diets have also
shown increased protein levels of nitric oxide synthase (Ma et al.,
2018). These results reveal the multilevel and complex regulatory
effects of ketone bodies on the energy metabolism network of the
body and suggest that more rigorous research is needed to evaluate
the effects of ketone bodies on failing hearts.

Conclusively, the benefits of ketones for a failing heart are not
limited to energy metabolism, and exploring the protective
mechanisms of ketone bodies is important for further treating
heart failure and other diseases.

5 Clinical strategies for therapeutic
ketosis

Physiologically, the levels of circulating ketones in humans typically
range from 0.05 to 0.1 mmol/L. When ketone concentrations exceed
0.5 mmol/L, a state of ketosis is considered to be reached. Fasting or
long-term exercise can elevate ketone levels to over 1 mmol/L (Yurista
et al., 2021b). For improving heart failure, the dosage range of ketones is
crucial, with the optimal therapeutic concentration ranging from 1 to
3 mmol/L, as a concentration higher than 3 mmol/L (considered to

indicate acidosis due to ketosis) may have adverse effects on the body
(Chu et al., 2021).

Several methods are currently available to increase ketone body
levels in the heart, including ketogenic diets, ketone infusions, and
oral ketone supplements. These methods mildly elevate ketone levels
in the body, thereby improving heart failure symptoms (Figure 5).
Furthermore, as the duration of administration increases, the
protective effects of ketones on the cardiovascular system also
gradually increase. Table 1 summarizes the effects of different
ketogenic methods on the cardiovascular system.

5.1 Ketogenic diets

A ketogenic diet is a dietary pattern consisting of high-fat, low-
carbohydrate, and moderate-protein proportions (Gibson et al., 2015).
Restricting carbohydrate intake induces a hypoglycemic state, resulting in
decreased insulin levels and increased glucagon levels and stimulating
lipolysis and ketone production (Puchalska and Crawford, 2017). Animal
studies have shown improvements in myocardial hypertrophy and
systolic dysfunction in mice with heart failure on a ketogenic diet
(Nakamura et al., 2021; McCommis et al., 2020). In a small clinical
trial, two patients with left ventricular hypertrophy and heart failure
showed significant reductions in heart failure biomarkers and improved
cardiac function after 1 year of ketogenic diet therapy (Brambilla et al.,
2014). A KD stimulates endogenous ketone production by adjusting the
dietary structure and has protective effects on damaged hearts.

The classical ketogenic diet focuses on increased intake of long-
chain fats, which may lead to obesity. Therefore, ketogenic diets mainly
composed of medium-chain fatty acids are now more commonly used
(Mumme and Stonehouse, 2015; Kosinski and Jornayvaz, 2017).
Compared with long-chain triglycerides, medium-chain fatty acids
can produce ketones more rapidly and have the added benefit of
weight reduction. A ketogenic diet is currently emerging as a trend
for weight loss, but it is not suitable for long-term use due to poor

FIGURE 5
Clinical Strategies for Therapeutic Ketosis and Multiple Signal Effects on Cardiac Function. Ketogenic diets, ketone infusion, oral ketones, and
endogenous Ketogenic Drugs are currently available strategies to increase β-HB levels in the heart. Beyond its metabolic role, β-HB is also a signaling
metabolite to regulate cellular signaling by targeting different biomolecules, for improving cardiac function.
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patient compliance. Prolonged low-carbohydrate diets may increase
mortality rates (Seidelmann et al., 2018), and excessive intake of fatty
acids can also lead to dyslipidemia, posing significant risks for patients
with atherosclerosis and potentially causing non-alcoholic fatty liver
and insulin resistance (Kossoff and Hartman, 2012; Zhang W. et al.,
2021; Nordmann et al., 2006). Thus, maintaining high ketone levels
through a ketogenic diet is not a sustainable long-term solution.

5.2 Ketone infusion

Ketone infusion is a method of directly supplementing ketones into
the body. Unlike a ketogenic diet, a ketogenic diet does not rely on
endogenous fatty acids or glucose and can rapidly increase ketone levels
without the process of fatty acid β-oxidation. Studies have shown that
ketone infusion can significantly reduce the myocardial infarct size and
apoptosis rate in rats with ischemia‒reperfusion injury (Zou et al.,
2002). Horton et al. (2019) reported that long-term infusion of β-HB
significantly improved cardiac conditions in dogs, increasing the left
ventricular ejection fraction (LVEF) and reducing the left ventricular
end-diastolic diameter (LVEDD). Moreover, human studies have
shown that ketone infusion in heart failure patients can improve
cardiac function without increasing myocardial energy consumption
when circulating ketone levels reach 3.3 mmol/L (De Jong and
Lopaschuk, 2017; Selvaraj et al., 2020; Bedi et al., 2016; Nielsen
et al., 2019; Horton et al., 2019).

Compared to ketogenic diets, ketone infusions have fewer
drawbacks, are more controllable, and can rapidly elevate ketone
levels. However, ketone infusion is not suitable for patients with
chronic heart failure due to limitations in the treatment modality, but
it is a promising therapeutic option for patients with acute heart failure.

5.3 Oral ketones

Oral ketone supplements can be divided into ketone salts and
ketone esters, but ketone salts are not suitable for long-term oral

consumption due to their high sodium content. In contrast, ketone
esters have greater therapeutic significance for chronic heart failure.
Ketone esters include (R)-1,3-butanediol and (R)-3-
hydroxybutyrate ethyl ester. A study on heart failure mice
revealed that ketones can restore ATP levels in damaged hearts
and ameliorate heart failure symptoms (Yurista et al., 2021a),
indicating that ketones alleviate impaired cardiac function by
providing energy to the failing heart. The role of ketone bodies
in the treatment of heart failure was further demonstrated by
Takahara et al. (2021). Long-term supplementation with ketone
esters significantly increases circulating ketone levels, improves
myocardial hypertrophy, and significantly increases cardiac
output in heart failure mice. Currently, ketone ester trials are
mainly conducted in healthy individuals (Selvaraj et al., 2022),
with limited research on heart failure patients. Monzo et al.
(2021) reported that heart failure patients exhibit increased
cardiac uptake and utilization of ketones after taking ketone
esters. However, long-term studies on the effects of ketone esters
on heart failure are still lacking and require further exploration.

As the most advanced method for supplementing internal
ketones, the ketone ester diet is superior to other methods in
terms of safety and efficacy, with fewer disadvantages. Although
(R)-1,3-butanediol may cause euphoria, dizziness, and
gastrointestinal reactions (Shaw et al., 2019), these adverse effects
are not common (Stubbs et al., 2019). Therefore, future research can
investigate the protective effects of a ketone ester diet on
heart failure.

5.4 Endogenous Ketogenic Drugs

5.4.1 SGLT2 inhibitors
SGLT2 inhibitors are a novel class of anti-diabetic drugs that

work by inhibiting the reabsorption of glucose in the proximal
tubules of the kidneys, increasing glucose excretion in the urine,
and thereby exerting hypoglycemic effects. SGLT2 inhibitors
provide certain cardiovascular protection, among which

TABLE 1 Different ketogenic methods and their cardioprotive effects.

ketogenic
methods

objects Interventions Major outcomes

Human

Ketone Infusion Patients with chronic HFrEF (Nielsen
et al., 2019)

β-HB infusion Ketone body increases energy supply and cardiac output, and decreases systemic
vascular resistance in a dose-dependent manner

Oral Ketones Health populations (Selvaraj et al.,
2022)

Ketone ester

Animals

Ketogenic Diets mice with myocardial
hypertrophy (Nakamura et al., 2021)

High-fat and low-carb
diets

Reduce cardiac hypertrophy and myocardial fibrosis; Improve cardiac systolic
dysfunction; Slow down the rational remodeling of heart disease; Reduce left ventricular
dilatation; Inhibite cardiomyocyte hypertrophy; Enhance the contractility of
cardiomyocytes; Increase the number of mitochondriaKetogenic Diets rats with ischemic injury (Al-Zaid

et al., 2007)
High-fat and low-carb
diets

Ketone Infusion dogs with dilated
myocardium (Horton et al., 2019)

β-HB infusion

Oral Ketones Rats and mice with HF (Yurista et al.,
2021a)

Ketone ester drinks
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empagliflozin and dapagliflozin have been approved for the
treatment of heart failure (Zannad et al., 2020). The exact
mechanisms underlying the cardioprotective effects of
SGLT2 inhibitors in heart failure are not fully understood.
However, these benefits are unlikely to be solely explained by
improved blood glucose control, as other antidiabetic
medications have not shown similar protective effects on the
damaged heart, and SGLT2 inhibitors have also demonstrated
cardioprotective effects in non-diabetic heart failure animals or
patients (Yurista et al., 2019; Escobar et al., 2023). Furthermore,
SGLT2 receptors are hardly expressed in the heart, suggesting a
lesser possibility of direct cardioprotection through receptor‒
ligand interactions (Lytvyn et al., 2017).

Currently, many researchers believe that SGLT2 inhibitors
exert their cardioprotective effects by increasing ketone bodies.
Studies have shown that patients using SGLT2 inhibitors have
elevated circulating ketone levels (Ferrannini et al., 2016). The
mechanisms by which SGLT2 inhibitors increase ketones may
involve two processes: on the one hand, by increasing glucose
excretion in the urine and mimicking a state of starvation,
SGLT2 inhibitors increase endogenous glucagon levels and
decrease the insulin/glucagon ratio by increasing the excretion
of glucose in the urine to simulate the starvation state (Wallenius
et al., 2022); on the other hand, SGLT2 inhibitors can directly act
on pancreatic β-cells to enhance glucagon secretion (Bonner
et al., 2015). Previous research has demonstrated that
SGLT2 inhibitors can exert cardioprotective effects by
increasing ketone metabolism. In a study on non-diabetic
myocardial infarction rats, empagliflozin increased circulating
ketone levels and upregulated the expression of key enzymes
involved in ketone metabolism (Yurista et al., 2019). Another
study of myocardial infarction pigs treated with empagliflozin
revealed increased cardiac ketone uptake rates and levels of
ketone metabolism enzymes, along with decreased glucose
uptake rates, indicating that empagliflozin shifts the cardiac
energy substrate from glucose to ketones, improving energy
deficiency and alleviating heart failure symptoms (Santos-
Gallego et al., 2019).

The ideal therapeutic concentration of ketones is between 1 and
3 mmol/L, and SGLT2 inhibitors elevate ketone levels within this
range (Chu et al., 2021). Therefore, the mechanism by which
SGLT2 inhibitors treat heart failure through increasing ketone
levels is highly important.

5.4.2 Other medications
In addition to SGLT2 inhibitors, some drugs have also been

observed to alter ketone levels in patients to varying degrees. Statins
competitively block the cholesterol synthesis pathway by inhibiting
HMG-CoA reductase, thereby increasing the amount of raw
materials available for ketone body synthesis and increasing the
level of ketone bodies in the body (Tsouli et al., 2008; Clearfield,
2002; von Haehling et al., 2003). However, the effects of statins on
heart failure remain highly debated, and to date, there have been no
definitive reports of statins improving heart failure outcomes. Two
large clinical trials have shown that while rosuvastatin reduces heart
failure hospitalization rates, it does not reduce cardiovascular
disease mortality (Florkowski et al., 2008; Tavazzi et al., 2008).
Some researchers have proposed that statins may cause

mitochondrial toxicity, which could worsen heart failure
(Okuyama et al., 2015a; Okuyama et al., 2015b). Clinical studies
have shown that after 3 months of statin therapy, patients’ ketone
levels increase from 0.16 mmol/L to 0.26 mmol/L (Baul et al., 2020),
which is far below the ideal therapeutic range for ketones. Although
it can be inferred from the mechanism of action that statins may
elevate ketone levels, their ability to do so is relatively weak in
practical applications, and they do not reach the effective
concentration range for ketone-mediated cardiac protection.

Sacubitril/valsartan is a novel drug for heart failure treatment
(Abdin et al., 2022; Ghionzoli et al., 2022). Its mechanism of action
involves inhibiting neprilysin and angiotensin receptors, increasing
the levels of atrial natriuretic peptide and angiotensin, enhancing
renin activity, and exerting diuretic, blood pressure-lowering, and
peripheral vasodilatory effects, thereby improving pathological
remodeling of the damaged heart and relieving heart failure
(Docherty et al., 2020; Aimo et al., 2022). Traditional heart
failure medications also act on the renin-angiotensin-aldosterone
system (RAAS), but their therapeutic effects are far from those of
sacubitril/valsartan. Sacubitril/valsartan can increase endogenous
glucagon levels, even up to twice the baseline, and glucagon can
increase ketone levels (Kjeldsen et al., 2021; Gori et al., 2021).
Therefore, sacubitril/valsartan may improve heart failure by
increasing ketone levels through elevated glucagon. However,
there is currently no research on this hypothesis, and further
exploration is needed.

Trimetazidine is an anti-anginal medication that improves
cardiac energy metabolism by modulating fatty acid oxidation
and exerting cardioprotective effects (Shu et al., 2020; Mahajan
and Mahajan, 2020). An experiment confirmed that trimetazidine
increased the levels of ketone metabolism-related proteins in heart
failure rats and reduced ketone levels after treatment, improving
pathological cardiac remodeling (Li H. et al., 2020). Therefore, it is
believed that trimetazidine improves heart failure by enhancing the
utilization of ketones in heart failure rats. Research on the
relationship between trimetazidine and ketones is still relatively
limited, but further exploration of the relationship between
trimetazidine and ketones, an energy-modulating drug,
is important.

5.4.3 Studies in perspectives
Increasing evidence suggests that elevated ketones have

beneficial effects on heart failure, improving heart condition and
slowing disease progression. However, it is important to note that
ketone levels during treatment need to be maintained within a
certain range, as both excessively high or low levels may be
detrimental. The ketone concentration range maintained by
SGLT2 inhibitors can serve as a reference. Currently, research on
the role of ketones in improving heart failure is still in its early stages
(Supplementary Table S1). Future studies need to explore the
protective mechanisms of ketones on the heart, identify safer
methods of ketone administration, and assess the long-term
safety and efficacy of ketone therapy.

In the realm of drug development, focusing on key enzymes and
transporters involved in ketone metabolism, such as BDH1 and
SCOT, novel therapeutics could provide more targeted and effective
treatment options for heart failure patients by targeting ketone
metabolism pathways.
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6 Conclusion

In conclusion, the cardiovascular protective effects of ketone
bodies will be more thoroughly investigated, and ketone bodies have
the potential to become an important new field for the treatment of
heart failure.
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