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Metastasis is the leading cause of cancer-related death in cancer patients. Tumor
cells primarily spread through the hematogenous and lymphatic system. The
underlying mechanisms of hematogenous metastasis have been well described
over the past few decades. However, the understanding of the molecular
mechanisms involved in lymphatic metastasis is still at an early stage. Tumor
microenvironment (TME), primarily consisting of T cells, B cells, tumor-associated
macrophages, neutrophils, and cancer-associated fibroblasts, has been
implicated in the development of lymphatic metastasis. Recent studies have
been reported that the dynamic and complex interplay between these cellular
components of TME has great effects on lymphatic metastasis. Here, we
discussed the paradoxical roles of these cellular component within the TME
during lymphatic metastasis, as well as potential therapeutic opportunities to re-
educate these cells within the TME to have anti-tumorigenic effects.
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Introduction

Tumor metastasis is the primary cause of tumor-related death, referring to the
dissemination of tumor cells from the primary tumor to organs to initiate tumor
outgrowth (Valastyan and Weinberg, 2011). Tumor metastasis primarily depends on
the blood and lymphatic system. In recent years, the research on the molecular
mechanism of hematogenous metastasis of tumor has been more in-depth. However,
the molecular mechanism of lymphatic metastasis is still at an early stage. Growing evidence
revealed that lymphatic vessel growth (also named as lymphangiogenesis) is an important
prognostic indicator of distant metastasis risk and overall survival in multiple cancer types
(Sundar and Ganesan, 2007). Epithelial tumors usually first spread through lymphatic
vessels to their draining lymph nodes, and the microenvironment of lymph node metastatic
tumor is critical for tumor development and response to treatment (Liu et al., 2022; Chan
and Zhang, 2022). Herein, it is necessary to explore the molecular mechanism of lymphatic
metastasis in different cancer types, which may lay a theoretical foundation for promising
anti-tumor strategies.
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It has been reported that the dynamic and complex interplay
between the cellular components of tumor microenvironment
(TME) has great effects on lymphatic metastasis. TME
remodeling could induce macrophages-dependent
lymphangiogenesis in breast cancer (Du et al., 2022). In gastric
cancer, cysteine-rich intestinal protein-1 reshapes the TME by
CCL5-mediated macrophage recruitment to induce
lymphangiogenesis and increases lymphatic permeability for
lymphatic metastasis (Wu et al., 2023). TME is a complex
cellular environment composed by various types of cells,
including multiple immune cells and stromal cells, which may
play an essential role on lymphatic metastasis (Quail and Joyce,
2013). Single-cell RNA sequencing is a powerful method to dissect
the dynamics of different cellular components and their complex
interplay in the TME during lymphatic metastasis. Liu et al.
conducted single-cell analysis of primary breast tumors and
paired lymph node metastases. Compared with paired breast
tumors, activated LAMP3+ dendrite cells exhibited higher
enrichment in lymph node metastases and strongly interacted
with Tregs through CCL17, which may lead to suppressed
activity of T cells in lymph node metastases (Liu et al., 2023). A
type of PLA2G2A + cancer-associated fibroblasts that was enriched
in HER2+ breast cancer and showed high expression levels of genes
that can interact with immune cells. Another single-cell RNA
sequencing of osteosarcoma and lymph node metastases revealed
that SPP1+macrophages and SELENOP + macrophages were
enriched in lymph node metastases and located adjacent to
osteoblast cells, interacting with CAFs to form a barrier that
blocks T cells and provide a favorable microenvironment for
tumor growth (Liu et al., 2024). In this review, we discussed the
complex role of diverse cellular components of TME in the
pathogenesis of lymphatic metastasis in tumors.

Mechanisms of lymphatic metastasis

The investigations on the lymphatic metastasis have long
been limited due to the lack of molecular markers to distinguish
lymphatic vessels from blood vessels within and surrounding the
primary tumors. In the recent decades, it has been gradually
recognized that lymphatic endothelial cells are characterized by
markers including lymphatic vessel endothelial receptor 1
(LYVE-1), prospero homeobox protein 1 (PROX1),
podoplanin (PDPN), vascular endothelial growth factor
receptor 3 (VEGFR3) etc., (Table 1). Malignant tumors release

lymphangiogenic growth factors to induce lymphangiogenesis in
primary tumors and in draining sentinel lymph nodes to drive
lymphatic metastasis (Hartiala and Saarikko, 2016).
Lymphangiogenic factors secreted by pre-metastatic tumors,
including VEGF-A, VEGF-C and VEGF-D, are absorbed by
lymphatic capillaries around the tumor and transported by the
collecting lymphatic vessels to the TDLNs, where they act directly
on pre-existing lymphatic vessels to induce lymphangiogenesis
(Alitalo and Detmar, 2012). The volume of lymphatic vessels
draining the tumor and lymph flow increases. Once metastatic
tumor cells spread to their draining lymph nodes, they act as a
primary source of lymphogenic factors that enhance
chromosome remodeling and structure maintenance (SMC),
lymphatic vessel rearrangement and lymphangiogenesis to
facilitate distant metastasis. It has been well-established that
TDLNs are the first sites of metastasis in various solid
tumors—including gastric cancer, breast cancer, colorectal
cancer etc., (Abdelfatah et al., 2018; Núñez et al., 2020).
Tumor cells located in TDLNs may disseminate to distant
organs, indicating a necessary requirement to target lymphatic
metastasis to prevent distant metastasis in some cancer patients.

Cellular components of tumor
microenvironment and lymphatic
metastasis

Given the increased understanding of the critical roles of the
TME in tumor initiation and progression, targeting cellular
components of the TME has been recognized as a promising
therapeutic target for developing anti-tumor strategies. The
cellular components of TME are primarily composed of immune
cells (Figure 1), including T cells, B cells, tumor-associated
macrophages, neutrophils, and cancer-associated fibroblasts
(Figure 2). In this section, we summarized current progress in
understanding the interplay between cellular components of TME
and lymphatic metastasis in different cancer types, highlighting
novel opportunities for therapeutic targeting of the TME.

T cells and lymphatic metastasis

Tumor draining lymph nodes (TDLNs) are essential for the
production of tumor antigen-specific T cells and effective anti-
tumor immune responses (Schenkel et al., 2021; Huang et al.,

TABLE 1 Specific markers of lymphangiogenesis.

Molecules Function Reference

LYVE-1 The lymphatic receptor for the extracellular matrix mucopolysaccharide hyaluronan Jackson (2004)

PROX1 A transcription factor for lymphatic endothelial cell differentiation Wilting et al. (2002)

PDPN A mucin-type transmembrane glycoprotein specific to the lymphatic system Bieniasz-Krzywiec et al. (2019)

VEGFR3 A receptor tyrosine kinase that binds with VEGFC for lymphatic proliferation, migration, and survival Kuonqui et al. (2023)

VEGFA The ligand of VEGFR2 that regulates lymphatic proliferation, migration, and survival Claesson-Welsh and Welsh (2013)

VEGFC The ligand of VEGFR3 that regulates lymphatic proliferation, migration, and survival Kuonqui et al. (2023)
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2022). Lei et al. found that a subset of breast tumor cells in the
TDLNs is characterized by MHC-II upregulation in the absence of
co-stimulatory molecules, leading to the expansion of
immunosuppressive Treg cells, immune tolerance and evasion of
anti-tumor immunity (Lei et al., 2023). MHC-II + tumor cells in the
TDLNs induce the generation and activation of Tregs, ultimately
leading to the establishment of an immunosuppressive
microenvironment in the TDLNs to impair anti-tumor immune
responses. Genetic knockout of MHC-II could impair lymphatic
metastasis and Treg expansion, and overexpression of the MHC-II
trans-activator, Ciita, accelerates lymphatic metastasis (Lei et al.,
2023). The effect of cytotoxic T cells on the lymphatic vessels during
anti-tumor responses is also important for the process of lymphatic
metastasis. Tumoral T cells not only induce immunosuppressive
functions of tumoral lymphatic endothelial cells (LECs) but also
leads to LEC apoptosis. LEC apoptosis and destruction of lymphatic
vasculature by cytotoxic T cells leads to impaired lymphatic flow
drainage and metastatic dissemination into lymph nodes.
Mechanistically, T cells depend on the Interferon-γ (IFN-γ)
signaling to reduce tumoral lymphatic vessels. Reduction of
tumoral lymphatic vessels induced by cytotoxic CD8+ T cells
impair lymph node metastasis in an IFN-γ receptor–dependent
manner. Once LECs are lack of the expression of IFN-γ, LEC

apoptosis is inhibited, suggesting that IFN-γ is critical for
decreasing lymphatic vessel (Garnier et al., 2022).

In human cancer, lymphangiogenic growth factor VEGF-C
expression is correlated with lymphatic metastasis and shorten
survival, while tumoral expression of VEGF-C promotes lymphatic
metastasis and blocking VEGFR-3 signaling could inhibit
lymphatic metastasis (Chen et al., 2020; Kong et al., 2020;
Paillasse et al., 2022). Lund et al. found VEGF-C functions as a
pro-tumor immune-modulatory factor and plays an
immunosuppressive role for LECs to scavenge and cross-present
antigens for inhibition of cytotoxic T cells. VEGF-C-associated
lymphangiogenesis impairs anti-tumor immunity, which further
promotes metastasis. In B16 F10 melanomas expressing foreign
antigens (OVA), VEGF-C protects melanoma from pre-existing
anti-tumor immunity and promotes loss of OVA-specific CD8 (+)
T cells. Transfer of naive OVA-specific CD8 (+) T cells leads to
dysfunctional activation and apoptosis in murine models. LECs
cross-present OVA in TDLNs, and immature LECs clear cross-
present OVA. Cross-presented LECs drive proliferation and
apoptosis of OVA-specific CD8 (+) T cells. In B16 melanoma,
VEGF-C-mediated activation of LECs can cross-present tumor
antigens, resulting in dysfunction of CD8+ T cells (Lund
et al., 2012).

FIGURE 1
The role of immune cells in the lymphatic metastasis.
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B cell and lymphatic metastasis

B cells are responsible for the production of immunoglobulin and
antibodies (Spencer et al., 2022). As one of the primary cellular
components of lymph nodes, B cells are critical for
lymphangiogenesis via lymphangiogenic growth factors, indicating
that B cells play an essential role in lymphatic metastasis. Gu et al.
found that B cells promote the invasive potential of tumor cells to
facilitate lymphaticmetastasis via producing pathogenic IgG. In amurine
model of spontaneous lymphatic metastasis of breast cancer, primary
breast tumor mediates the accumulation of B cells in the TDLNs, and
B cells promote lymphatic metastasis by producing pathogenic IgG that
targets glycosylatedmembrane proteinHSPA4 and activates theHSPA4-
binding protein ITGB5 in tumor cells and the downstream Src/NF-κB
pathway to achieve CXCR4/SDF1α-induced lymphatic metastasis. The
critical role of tumor-educated B cells and pathogenic IgG in the niche
formation during lymph node metastasis provides potential targets for
anti-tumor strategy (Gu et al., 2019).

Tumor-associated macrophages and
lymphatic metastasis

Macrophages are the most abundant phagocytes in the TME and
are often correlated with poor prognosis and therapy resistance

(Wang et al., 2021). However, the TME can reprogram the function
and activation of macrophages to form tumor-associated
macrophages (TAMs). M1 macrophages (Classically activation)
are activated by pro-inflammatory factors and regulate anti-
tumor responses, while M2 macrophages (Alternating activation)
are induced by cytokines including IL-4, IL-13, IL-10. TAMs are
typically a subtype of M2 and act as a pro-tumor role (Li et al., 2021).
Recent studies have gradually recognized the important role of
TAMs in lymphatic metastasis.

The distribution of sinus macrophages across the lymph nodes is
not uniform, and they can be subdivided into two categories
according to their anatomical location in the lymph nodes:
subcapsular sinus macrophages and medullary sinus
macrophages. Subcapsular sinus macrophages are the first layer
of immune cells exposed to metastatic tumor cells and tumor-
derived antigens from afferent lymphatic vessels. It has been
found that subcapsular sinus macrophages promote lymphatic
metastasis of melanoma via the IL1α-STAT3 axis. Elimination of
macrophages in lymph nodes or the administration of an IL1α-
specific blocking antibody could reduce metastatic spread (Virgilio
et al., 2022).

A large number of VEGFR3-expressing macrophages home in
tumors after chemotherapy. Macrophages facilitate
lymphangiogenesis and lymphatic metastasis via the VEGF-C/
VEGFR3 axis. VEGFR3-expressing macrophages promote

FIGURE 2
The role of cancer-associated fibroblast in the lymphatic metastasis. CAF, cancer-associated fibroblast; ECM, extracellular matrix.
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lymphangiogenesis mainly via the production of cathepsin, resulting
in increased heparinase activity. Therefore, inhibition of the VEGF-
C/VEGFR3 pathway could inhibits the activity of chemotherapy-
induced macrophages, resulting in reduced lymphangiogenesis in
treated tumors (Alishekevitz et al., 2016). Besides, TAMs expressing
VEGF-C has been found to reduce the lung metastasis of breast
tumor cells, while increasing lymphatic metastasis. These TAMs are
characterized by the expression of podoplanin (PDPN), which could
interact with normalized tumor blood vessels expressing VEGFR3.
Indicating the paradoxical role of VEGF-C-expressing TAMs in
redirecting tumor cells to preferentially spread to the lymph nodes
rather than to lung, in part by normalizing tumor blood vessels and
inducing lymphangiogenesis (Banerjee et al., 2023). Bieniasz-
Krzywiec et al. discovered that PDPN is specifically upregulated
in a subgroup of TAMs and is involved in the attachment of this
subgroup of TAMs to LECs. PDPN binds to LEC-derived lectin 8
(GAL8) in a glycosylation-dependent manner to activate integrin β1.
PDPN-expressing macrophages (PoEMs) stimulate local matrix
remodeling, promoting lymphangiogenesis and lymphoinvasion.
Herein, blockade of integrin β1, macrophage-specific PDPN
knockdown or GAL8 inhibition can impair the adhesion of TAM
to LECs, inhibit lymphangiogenesis and reduce lymphatic metastasis
(Bieniasz-Krzywiec et al., 2019).

A long noncoding RNA, named as Lymph Node Metastasis
Associated Transcript 1 (LNMAT1), has been found to be
significantly upregulated in LN-positive bladder tumors and
correlated with LN metastasis. LNMAT1 has been found to drive
tumor-related lymphangiogenesis and lymphatic metastasis by
recruiting macrophages. Mechanistically, LNMAT1 epigenetically
activates CCL2 expression by recruiting hnRNPL to
CCL2 promoter, which leads to increased H3K4 tri-methylation
that ensures hnRNPL binding and enhances transcription.
Furthermore, LNMAT1-induced upregulation of CCL2 recruits
macrophages into the tumor, which promotes lymphatic
metastasis via VEGF-C excretion (Chen et al., 2018). Another
lncRNA, termed as lymph node metastasis associated suppressor
(LNMAS), is downregulated in LN-positive cervical cancer patients
and correlated with LN metastasis. LNMAS exerts its anti-LN
metastasis effect by competitively interacting with HMGB1 and
abrogating the chromatin accessibility of TWIST1 and STC1 to
block epithelial-mesenchymal transition and STC1-dependent
immune escape from macrophage phagocytosis.

Proteomic analysis of TAMs isolated from laryngeal squamous
cell carcinoma (LSCC) tissue from patients with lymphatic
metastasis demonstrated that annexin A3 (ANXA3) was
upregulated. ANXA3 promotes the polarization of macrophages
into an M2-like phenotype via the AKT-GSK3β-β-catenin pathway.
ANXA3-rich exosomes from TAMs could inhibit ferroptosis in
LSCC cells via the ATF2-CHAC1 axis. Mechanically, ANXA3-
rich exosomes inhibit ubiquitination of ATF2 to upregulate the
expression of CHAC1, thereby inhibiting ferroptosis in LSCC cells
to promote lymphatic metastasis (Xu et al., 2024). Integrin-mediated
adhesion of macrophages plays a key role in lymphatic
dissemination of breast cancer. TNBC cells induce mRNA
alterations in macrophage, leading to β4 integrin-dependent
adherence to lymphatic vessels. β4 integrin retain macrophages
surrounding LECs, and the release of TGF-β1 drives LEC
contraction via RhoA activation. TGF-β1 drives the aggregation

of β4 integrins in the plasma membrane of macrophages and further
promotes the adhesion of macrophages, indicating the dual function
of TGF-β1 signaling in this context (Evans et al., 2019).

Neutrophils and lymphatic metastasis

Tumor-associated neutrophils (TANs) have emerged as a
critical cellular component of the TME. It has been found that
TANs infiltration is significantly elevated in lymph node-metastatic
bladder cancer and is correlated with poor prognosis. Neutrophil
depletion could impair lymphangiogenesis and popliteal lymphatic
metastasis. Mechanistically, transcription factor ETV4 enhances
bladder cancer cells-derived CXCL1/8 to recruit TANs, increasing
VEGFA and MMP9 secretion from TANs to promote
lymphangiogenesis and lymphatic metastasis of bladder cancer.
Therefore, ETV4 is a therapeutic target of TANs-mediated
lymphangiogenesis and lymphatic metastasis of bladder cancer
(Zhang et al., 2023). Neutrophil activation also plays a key role
in lymphatic metastasis of gastric cancer. Qian et al. found that the
expression level of neutrophils polarization-correlated genes
(LCN2 and HMGB1) decreases during the process of lymphatic
metastasis, while the expression of these genes in the primary tumors
is unchanged. It is suggested that neutrophil N2 polarization plays a
critical role in lymphatic metastasis of gastric cancer (Qian
et al., 2022).

Cancer-associated fibroblasts and
lymphatic metastasis

Cancer-associated fibroblasts (CAFs) are highly versatile cells
that actively participate in tumor initiation and development
through complex interplay with other cellular components in the
TME (Chen et al., 2021). CAFs are composed of diverse
subpopulations with distinct phenotypes and functions (Lavie
et al., 2022). Recent advances in single-cell RNA sequencing
technology have enabled detailed characterization of the
complexity and heterogeneity of CAF subpopulations across
various cancer types. Zheng et al. depends on single-cell RNA
sequencing and spatial transcriptomics to characterize the role of
PDGFRα+ITGA11+ CAFs in the lymphatic metastasis of bladder
cancer. PDGFRα+ITGA11+ CAFs are correlated with lympho-
vascular invasion in bladder cancer, and these CAFs promote
lympho-vascular invasion and lymphatic metastasis in bladder
cancer. Mechanistically, PDGFRα+ITGA11+ CAFs activate SRC-
p-VEGFR3-MAPK pathway to promote lymphangiogenesis by
recognizing ITGA11 surface receptor SELE on LECs. Further,
CHI3L1 from PDGFRα+ITGA11+ CAFs aligns the surrounding
matrix to promote tumor cell intravasation, promoting lympho-
vascular invasion and lymphatic metastasis of bladder cancer
(Zheng et al., 2024). Another single-cell sequencing of primary
tumors and paired lymph node metastasized tumors of breast
cancer conducted by Liu et al. found that a subtype of PLA2G2A
+ CAFs are enriched in HER2+ breast cancer patients that promotes
immune infiltration (Liu et al., 2022). In esophageal squamous cell
cancer, FAP + CAFs are strongly correlated with lymphatic
metastasis (Kashima et al., 2019). These studies illustrated the
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context-dependent roles of different CAF populations in lymphatic
metastasis of malignant tumors.

During the initiation and progression of tumors, tumor cells
secrete several factors to recruit CAFs, while CAFs secrete growth
factors, inflammatory factors and chemokines, to reconstruct TME
and foster lymphatic metastasis of tumor cells. In addition, tumor-
derived extracellular vesicles (EVs) are also critical for the
interaction between tumor cells and CAFs, leading to lymphatic
metastasis of tumors. Li et al. identified LINC00665 (a CAF-related
long non-coding RNA) functions as a critical regulator involved in the
lymphatic metastasis of bladder cancer. Mechanistically,
LINC00665 induces lymphatic metastasis via RAB27B-HGF-c-Myc
loop between bladder cancer cells and CAFs. LINC00665 upregulates
RAB27B expression and induces H3K4me3 modification on the
promoter of RAB27B. Furthermore, RAB27B-mediated EV
secretion activates fibroblasts to CAF phenotype, which
reciprocally induces LINC00665 overexpression to form a
RAB27B-HGF-c-Myc positive feedback loop, promoting
lymphangiogenesis and lymphatic metastasis of bladder cancer.
Blockade of EV-transmitted LINC00665 could abrogate
lymphangiogenesis of bladder cancer in vivo (Li et al., 2023). CAF-
secreted PAI-1 induces endothelial-mesenchymal transition
(EndoMT) of lymphatic endothelial cells in cervical squamous cell
carcinoma. Lymphatic endothelial cells undergoing EndoMT could
initiate tumor lymphangiogenesis that promote intravasation and
extravasation of tumor cells. Mechanistically, PAI-1 activates the
AKT/ERK1/2 pathways by directly interacting with low-density
lipoprotein receptor-related protein (LRP1), resulting in enhanced
EndoMT process in lymphatic endothelial cells. Targeting CAF-
secreted PAI-1 could impair EndoMT and ultimately block CAF-
mediated tumor lymphangiogenesis (Wei et al., 2023).

Conclusion and perspectives

It has been well-established that lymph node status has great
influence on the prognosis of tumor patients. Moreover,
lymphangiogenesis and lymphatic metastasis are important
prognostic markers of metastasis risk and overall survival.
Mechanistically, lymphatic metastasis is the result of the
cooperative effects of tumor cells, TME and pre-metastatic
niches. Given its potential contribution to tumor metastasis and
immune escape, lymphangiogenesis has emerged as an attractive

therapeutic target for developing novel anti-tumor therapies.
Therapies targeting the VEGF-C/VEGF-D pathway with anti-
lymphangiogenesis activity have entered clinical trials. The
cellular components of TME plays important roles in mediating
lymphatic metastasis, which may provide potential targets for novel
anti-tumor strategy in the future.
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