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Background: The role of focal amplifications and extrachromosomal circular
DNA (eccDNA) is still uncertain in prostate adenocarcinoma (PRAD). Here, we first
mapped the global characterizations of eccDNA and then investigate the
characterization of eccDNA-amplified key differentially expressed encoded
genes (eKDEGs) in the progression, immune response and
immunotherapy of PRAD.

Methods: Circular_seq was used in conjunction with the TCGA-PRAD
transcriptome dataset to sequence, annotate, and filter for eccDNA-amplified
differentially expressed coding genes (eDEGs) in PRAD and para-cancerous
normal prostate tissues. Afterwards, risk models were created and eKDEGs
linked to the PRAD prognosis were identified using Cox and Lasso regression
analysis. The immune microenvironment of the risk model was quantified using a
variety of immunological algorithms, which also identified its characteristics with
regard to immunotherapy, immune response, and immune infiltration.

Results: In this research, there was no significant difference in the size, type, and
chromosomal distribution of eccDNA in PRAD and para-cancerous normal
prostate tissues. However, 4,290 differentially expressed eccDNAs were
identified and 1,981 coding genes were amplified. Following that, 499 eDEGs
were tested in conjunction with the transcriptome dataset from TCGA-PRAD. By
using Cox and Lasso regression techniques, ZNF330 and PITPNM3 were
identified as eKDEGs of PRAD, and a new PRAD risk model was conducted
based on this. Survival analysis showed that the high-risk group of this model was
associated with poor prognosis and validated in external data. Immune infiltration
analysis showed that the model risks affected immune cell infiltration in PRAD,
not only mediating changes in immune cell function, but also correlating with
immunophenotyping. Furthermore, the high-risk group was negatively
associated with anti-CTLA-4/anti-PD-1 response and mutational burden. In
addition, Tumor Immune Dysfunction and Exclusion analyses showed that
high-risk group was more prone to immune escape. Drug sensitivity analyses
identified 10 drugs, which were instructive for PRAD treatment.

Conclusion: ZNF330 and PITPNM are the eKDEGs for PRAD, which can be used
as potential new prognostic markers. The two-factor combined risk model can
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effectively assess the survival and prognosis of PRAD patients, but also can predict
the different responses of immunotherapy to PRAD patients, which may provide
new ideas for PRAD immunotherapy.

KEYWORDS

prostate adenocarcinoma, extrachromosomal circular DNA, risk model, immune
infiltration, immunotherapy

1 Introduction

Prostate adenocarcinoma (PRAD) is the second most common
cancer and the fifth cause of cancer deaths in men throughout the
world (Sung et al., 2021), with its incidence increasing by 3% per
year since 2014 (Siegel et al., 2024). According to statistics, in the
United States, PRAD cases will be responsible for 11% of all fatalities
and 29% of all male cancer cases by 2024 (Siegel et al., 2024). Despite
the availability of several treatment options, including androgen
restriction, surgery, radiation, chemotherapy, and endocrine
therapy, 20%–30% of cases of PRAD advance to metastatic
prostate cancer (mPCa) (Sandhu et al., 2021) which ultimately
develops into metastatic prostate cancer that is resistant to
denudation (mCRPC) until death. The emerging research in
immunotherapy holds great promise for improving the lives of
PRAD patients (Rebello et al., 2021). Recent data indicates that
the tumour microenvironment (TME) has a major role in
determining the prognosis of PRAD (Xu et al., 2022). A better
prognosis for patients and enhanced immunological control of
PRAD are linked to immune infiltration in the TME (Fridman
et al., 2012). Immunotherapies, including immune checkpoint
inhibitors (ICIs) and chimeric antigen receptor T-cell therapies,
can improve anti-tumour outcomes and overall survival (OS) in
patients with advanced PRAD (Abida et al., 2019).
Immunotherapy for PRAD has made great progress in recent
years. A mendelian randomisation study has provided evidence
for a causal relationship between immune cells and PRAD, with
important implications for clinical diagnosis and treatment (Ye
et al., 2024). In addition, Recent studies have highlighted the
potential of PD-1 and PD-L1 inhibitors in treating metastatic
castration-resistant prostate cancer (Antonarakis et al., 2020;
Philippou et al., 2020). New vaccine strategies have emerged,
building on the success of sipuleucel-T (Sutherland et al., 2021).
Recent trials have explored vaccines targeting prostate-specific
antigens (PSA) (Lopez-Bujanda et al., 2021). Furthermore,
advances in cell-based therapies, such as chimeric antigen
receptor (CAR) T-cell therapy (Narayan et al., 2022) and
tumor-infiltrating lymphocytes (TILs) (Kaur et al., 2022), have
been reported. But only a small percentage of mPCa patients
respond to immunotherapies (Abida et al., 2019) for the main
possible reason that PRAD is an immunocold tumour with
defective tumour suppression and poor immune infiltration
(Melo et al., 2021). Consequently, it is critical to look for novel
biomarkers, targets, and characteristics in order to develop fresh
treatment approaches for breaking through the
immunotherapeutic obstacles associated with PRAD.

The unique topology and genetic characteristics of
extrachromosomal circular DNA (eccDNA), a circular DNA
derived from chromosomes that may be chromosome-

independent (Hotta and Bassel, 1965), have led to new
understandings of cancer surveillance, diagnosis, treatment, and
prediction. EccDNA has been implicated in the development and
progression of cancer (Ling et al., 2021). For example, Turner KM
et al. (Turner et al., 2017) demonstrated that eccDNAs could act as
enhancer elements to mediate overexpression of oncogenes and
amplify more copies of oncogenes. Andrisani O et al. (Andrisani,
2024; Zou et al., 2024) found that eccDNAs acted as miR-17–92
amplicons in hepatocellular carcinomas (HCCs), which is a risk
factor for poor prognosis of patients. In addition, eccDNA is
frequently found in a variety of cancers (Chen et al., 2024a),
including PRAD.

Increasing evidence has revealed the immunostimulatory
activity of eccDNA in tumours, as well as its route and possible
therapeutic implications in the immune response (Wang et al.,
2021). For example, Ying Zhang et al. (Zhang et al., 2023) found
that risk models generated by eccDNA-amplified encoded genes
(eGenes) may affect the prognosis of ovarian cancer patients by
modulating some immune cells or immune checkpoints, suggesting
that eGenes are important factors in the immune infiltration and
immune response of tumour cells.

However, the expression profile of eccDNA in PRAD has
received little attention. Although Chen JP et al. (Chen JP et al.,
2024) and Luo X et al. (Luo et al., 2023) have identified the potential
of eccDNA in the diagnosis of PRAD, it is not clear whether there are
specific eccDNAs that are exclusively involved in the immune
response to PRAD. Therefore, in this study, in this investigation,
we developed a novel risk model based on eKDEGs in PRAD, which
was tested by sequencing eccDNA from PRAD and paracancerous
normal prostate tissues with the TCGA-PRAD transcriptome
dataset. We investigate the predictive features and their
involvement in immune infiltration and immune response, with
the goal of discovering new biomarkers and therapeutic targets for
PRAD immunotherapy.

2 Methods

2.1 Tissue specimen collection

This experimental study was approved by the Ethics Committee
of our hospital, and three cases of patients with limited prostate
adenocarcinoma were collected from the Department of Urology of
our hospital in the year of 2022, under the guidance of the physicians
of the Department of Pathology. The PRAD tumour tissue
specimens were used as the tumour group, and the
paracancerous normal prostate tissue specimens were used as the
normal group. Tissue specimens were collected and stored in liquid
nitrogen to send for eccDNA sequencing.
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2.2 eccDNA sequencing

PRAD and paracancerous normal prostate tissue specimens
were subjected to eccDNA sequencing assisted by CloudSeq
Biotech Inc. (Shanghai, China) using the circle-seq (Møller et al.,
2018) method. Briefly, cell deposits were resuspended in L1 buffer
(Plasmid Mini AX; A&A Biotechnology) supplemented with
protease K (ThermoFisher) prior to digestion at 50°C overnight.
Digested samples were alkali-treated and column-purified by
following the instructions of the Plasmid Mini AX kit. Column-
purified DNA samples were digested by FastDigest MssI
(ThermoFisher) at 37°C for 16 h to remove mitochondrial
circular DNA. Then, the samples were incubated with Plasmid-
Safe ATP-dependent DNase (Epicentre) at 37°Cfor 1 week to remove
the remaining linear DNA. The samples were then supplemented
with 30U of DNase and a proportional amount of ATP every 24 h.
The treated samples were used as templates for eccDNA
amplification by using the RCA DNA Amplification Kit (GenSeq
Inc.), followed by purification with the MinElute Reaction Cleanup
Kit (Qiagen). Library preparation of purified DNA was performed
with the GenSeq® Rapid DNA Lib Prep Kit (GenSeq Inc.). High-
throughput sequencing was performed on an Illumina NovaSeq
6000 sequencer in 150 bp double-ended mode to obtain the raw
data. Quality control was performed with Q30 as following
sequence, low-quality reads were removed firstly by using
cutadapt software (v1.9.1), and high-quality clean reads were
aligned to the reference genome by using bwa software (v0.7.12).
Next, all eccDNAs were identified with circle-map software (v1.1.4)
and then raw soft-clipped read counts of the break point were
obtained by using SAMtools (v1.9) software. Normalisation and
differential analysis were performed by using DESeq2 [7] (v1.38.3)
software. Annotation of eccDNA was performed by using bedtools
software (v2.27.1) and enrichment analyses were performed by
using the eDEGs. eccDNA visualisation was performed by using
IGV (v2.4.10) software.

2.3 Analysis of TCGA-PRAD dataset

Transcriptional profiles, clinical features, tumour mutation
burden (TMB) and microsatellite instability (MSI) scores of PRAD
were downloaded from The Cancer Genome Atlas Program (TCGA,
https://portal.gdc.cancer.gov/) database. Validation set data were
obtained from cBioPortal-SU2C/PCF (https://www.cbioportal.org/)
and GEO70770 (https://www.ncbi.nlm.nih.gov/geo/). Data
preprocessing and DEGs analysis were perfoemed by the “limma”
and “affay” packages in the R environment. The coding genes
amplified by differential eccDNA were taken to intersect with the
DEGs of TCGA-PRADt to obtain eccDNA-amplified differentially
expressed coding genes (eDEGs). Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) functional
enrichment analyses were performed using the “clusterProfiler”
package. GO enrichment analysis described the potential functions
of genes in terms of Molecular Function (MF), Cellular Component
(CC) and Biological Process (BP). KEGG analysed the major
metabolic and signal transduction pathways in which the genes
were involved through pathway annotation. Cox regression
analysis and Lasso analysis were used to further identify prognostic

genes and construct risk models. Cox regression analysis was
performed using the “survival” package and Lasso analysis was
performed using the “glmnet” package. Kaplan-Meier (KM)
survival analysis plots and risk factor association plots based on
the risk models were constructed using the “survival” and
“ggplot2” packages. Nomograms were used to visualise the 1-year,
3-year, and 5-year survival predictions of the risk model. Time-
dependent ROC curves were used to verify the model accuracy.
Gene Set Enrichment Analysis (GSEA) was performed using the
“Cluster Profiler,” “org. Hs.eg.db”, and “enrichplot” package to
identify biological processes and enrichment pathways of the key
gene. Quantification of the immune microenvironment was
performed using XCELL, MCPCOUNTER, CIBERSORT, TIMER,
EPIC, and QUANTISEQ algorithms. Identify the characteristics and
differences in immune infiltration (performed with the
“CIBERSORT” and “reshape2” packages), immune function
(performed with the “RColorBrewer” package), and immune
subtypes (performed with the “RColorBrewer” package) of risk
models based on quantitative immune microenvironment results.
ESTIMATE analysis identified specific signals associated with
stromal and immune cell infiltration in tumour tissue and
predicted the level of infiltrating stromal and immune cells by
calculating stromal and immune scores, which were performed
with the “utils” package. Gene mutation frequency and mutation
burden of the risk models were analyzed with the“maftools” package.
Immunophenotype score (IPS) was obtained from The Cancer
Immunome Database (TCIA) (Charoentong et al., 2017), which
was used to show the response of PRAD patients to
immunotherapy. Also, Tumor Immune Dysfunction and Exclusion
(TIDE) (Jiang et al., 2018) algorithm was used to assess patients’
immunotherapy response. Data for drug sensitivity analysis were
obtained from Genomics of Drug Sensitivity in Cancer (GDSC)
(Yang et al., 2013) by using the “oncoPredict” package. All the
above data visualisations relied on R language implementation.

3 Results

3.1 Genome-wide analysis of eccDNA in
prostate adenocarcinoma tumor tissues and
parecancerous normal prostate tissues

The eccDNA expression profiles in PRAD tumour tissues and
paracancerous normal prostate tissues were obtained by eccDNA
sequencing. The results showed that the tumour group contained
76,636 eccDNAsand 11,967 eGenes (Figure 1A; Supplementary
Table 1), and 58,781 eccDNAs and 10,694 eGenes were identified
in the normal group (Figure 1A; Supplementary Table 2). The
eccDNA can encode some or all exons of a gene to affect protein
expression, and different eccDNA can encode the same gene. In the
normal group, we found 9,460 eGenes derived from 1-5 eccDNAs,
885 eGenes derived from 6–10 eccDNAs, 216 eGenes derived from
11–15 eccDNAs, 74 eGenes derived from 16–20 eccDNAs,
33 eGenes derived from 21–25 eccDNA derivatives, 17 eGenes
were derived from 26–30 eccDNA types, 5 eGenes were derived
from 31–35 eccDNA types, 3 eGenes were derived from
36–40 eccDNA types. The number of eccDNA types amplifying
the CNTNAP2 gene are even more than 45, reaching up to 47
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(Figure 1B; Supplementary Table 3). In the PRAD tumour group,
10,174 eGenes were detected to be derived from 1-5 eccDNA types,
1,151 eGenes were derived from 6–10 eccDNA types, 359 eGenes
were derived from 11–15 eccDNA types, 141 eGenes were derived
from 16–20 eccDNA types, 65 eGenes were derived from
21–25 eccDNAs, 37 eGenes were derived from 26–30 eccDNAs,
17 eGenes were derived from 31–35 eccDNAs, 8 eGenes were
derived from 36–40 eccDNAs, 10 eGenes were derived from
40–45 eccDNAs, and five eGenes were derived from more than
45 eccDNA types, namely CNTNAP2, TRAPPC9, DAB1,
RBFOX1 and CAMTA1 (Figure 1C; Supplementary Table 4).

At the same time, multiple coding genes could be amplified from
the same eccDNA. In the normal group, there were 27,150 eccDNAs
amplified 1 eGene, 1,983 eccDNAs amplified 2 eGenes, 99 eccDNAs
amplified 3 eGenes, 12 eccDNAs amplified 4 eGenes, 2 eccDNAs
amplified 5 eGenes, and 4 eccDNAs amplified 6–10 eGenes,
7 eccDNAs amplified 11–15 eGenes, 1 eccDNA amplified

16–20 eGenes, and 4 eccDNAs amplified more than 20 eGenes
(Figure 1D; Supplementary Table 5). In the PRAD tumour group,
there were 35,812 eccDNAs amplified 1 eGene, 1,958 eccDNAs
amplified 2 eGenes, 156 eccDNAs amplified 3 eGenes, 17 eccDNAs
amplified 4 eGenes, 1 eccDNA amplified 5 eGenes, and 8 eccDNAs
amplified 6 to 10 eGenes, 7 eccDNAs amplified 11–15 eGenes,
4 eccDNAs amplified 16–20 eGenes, and 2 eccDNAs amplified more
than 20 eGenes (Figure 1E; Supplementary Table 5).

In addition, we found that the size distribution of eccDNA in the
normal group ranged from 10 bp to 14,000 kb (Figure 1F), and that
in the tumour group ranged from 10 to 6,000 bp (Figure 1G). Both
groups had an emergent peak at 300 bp (Supplementary Figures
S1A–C), and there was no significant difference in the size
distribution of eccDNA between the tumour and normal groups
(Supplementary Figure S1D). The GC content enrichment of
eccDNA in normal and tumour tissue were both significantly
higher than other genomic regions (Figures 1H, I).

FIGURE 1
Features of eccDNAs detected in PRAD and paracancerous normal prostate tissues. (A) Number of eccDNA types and amplified genes from PRAD
(tumor) and paracancerous normal prostate (normal) groups. (B) Number of genes derived from 1 to 45 and more than 45 different types of eccDNAs in
normal groups. (C) Number of genes derived from 1 to 45 and more than 45 different types of eccDNAs in tumor groups. (D) Number of eccDNA types
amplifying 1 to 20 and more than 20 different genes in normal groups. (E) Number of eccDNA types amplifying 1 to 20 and more than 20 different
genes in tumor groups. (F) Size of eccDNA in normal groups. (G) Size of eccDNA in tumor groups. (H–I)GCcontents compared to the genomic average in
eccDNA, upstream, downstream and random groups from the genomic locus and regions. H, normal groups. I, tumor groups.

Frontiers in Pharmacology frontiersin.org04

He et al. 10.3389/fphar.2024.1464145

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1464145


3.2 Genomic distribution of eccDNA on
different chromosomes

We further analyzed the genomic distribution of eccDNA on
different chromosomes, including intact eccDNA (Figures 2A,
B), eccDNA amplifying coding genes (Figures 2C, D), and
eccDNA with unamplifying coding genes (Figures 2E, F). The
results show that gene-rich chromosome contributed to a higher
average frequency of eccDNAs per Mb than other chromosomes,
such as chromosome 1, while gene-poor chromosome
contributed to a lower average frequency of eccDNAs per
Mb, such as chromosome Y. It suggests that regions with
gene-rich are more preferentially producing eccDNA.
eccDNA distribution on chromosomes between the normal
group and PRAD tumour group was not significant
differentiation (Figure 2G).

Finally, we explored the possible origins of eccDNAs by
mapping the eccDNAs to different genomic elements (Figure 2H)

and repetitive elements (Figure 2I). Notably, eccDNA was more
significantly enriched in both 5′ UTR genomic region and repetitive
elements, such as long interspersed elements (LINEs) and short
interspersed elements (SINE), suggesting that these regions are more
preferentially producing eccDNA in PRAD.

3.3 Differential expression of eccDNA in
tumour and normal tissues

Based on the eccDNA sequencing results, a total of
4,290 differentially expressed eccDNA were screened in PRAD
tissues compared with normal tissues (Figure 3A; Supplementary
Tables 6, 7). Among them, 1,667 eccDNAs were higher expressed
in the tumour tissues, and these eccDNAs amplified 798 eGenes.
2,623 eccDNAs were lowly expressed and amplified 1,183 eGenes (|
FC(fold change)| ≥ 2, P < 0.05) (Supplementary Figures S1E, F).
The transcriptome data of PRAD and normal samples were

FIGURE 2
Characterization of the chromosomal and genomic distribution of eccDNAs in tumor and normal groups. (A–F) The radar plots showing
chromosomal genome distribution of all eccDNAs, eccDNAs with and without encoding genes. A, all eccDNAs in normal group. B, all eccDNAs in tumor
group. C, eccDNAwith encoding genes in normal group. D, eccDNAs with encoding genes in tumor group. E, eccDNAwithout encoding genes in normal
groups. F, eccDNAs without encoding genes in tumor groups. (G) EccDNA frequency counted with average mapped reads per Mb of all
chromosomes in normal and tumor groups. (H) Genomic distributions of eccDNAs in normal and tumor groups. CpG2kbD, 2 kb downstream of CpG
islands; CpG2kbU, 2 kb upstream of CpG islands; Gene2kbD, 2 kb downstream of genes; Gene2kbU, 2 kb upstream of genes. (I) Repetitive regions from
total mapped reads for eccDNAs derived from each sample.
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obtained from the TCGA database, and 5,960 DEGs were obtained
by screening (Supplementary Figure S1G). The coding genes
amplified by differential eccDNA and the DEGs of TCGA-
PRAD were taken to be intersected (Figure 3B), and 499 eDEGs
were obtained. Further analysis of the distribution of eDEGs on
chromosomes (Figure 3C) showed that eDEGs were enriched on
chromosomes 1 to 22 without appear on the Y chromosome.
Functional enrichment analysis of eDEGs (Figure 3D) showed
that their roles were mainly focused on post-translational
modification, signal transduction, and cell intercellular
communication pathways.

To further explore the eKDEGs of PRAD, this study combined the
TCGA-PRAD transcriptome dataset and further performed one-way
Cox regression analyses (Figure 3E), LASSO analyses (Figure 3F), and
multifactorial Cox regression analyses (Figure 3G) on the eDEGs.
ZNF330 and PITPNM3 were finally identified as eKDEGs and
independent risk factors for PRAD. ZNF330 was highly expressed
and PITPNM3 was lowly expressed in PRAD (Supplementary Figure
S1H), which corresponded to eccDNA sources of ZNF330circle142141735-
142142329, PITPNM3circle6458635-6459156. In addition, the differential
expression was validated in the GSE70770 dataset set
(Supplementary Figure S1I) with consistent results.

FIGURE 3
Construction of a novel PRAD risk prediction model based on differentially expressed genes amplified by eccDNA. (A) Number of differentially
expressed eccDNAs and amplified coding genes obtained based on Circle-Seq results. (B) Differential eccDNA amplified coding genes and TCGA-PRAD
differentially expressed genes were taken to intersect to obtain 499 eccDNA-associated differentially expressed genes (eDEGs). (C) Distribution of the
499 eDEGs on the chromosomes. Red, high expression; blue, low expression. (D) eDEGs were analyzed for functional enrichment. BP, Biological
Process; CC, Cellular Component; MF, Molecular Function; KEGG, Kyoto Encyclopedia of Genes and Genomes. (E–G) eDEGs were sequentially
subjected to different analysis. E, univariate Cox regression analysis; F, Lasso analysis; G, multivariate Cox regression analysis. (H) Survival analysis of
ZNF330, PITPNM3. (I) Construction of the novel prostate risk model based on ZNF330, PITPNM3 and drawing risk factor plots. (J) Survival analysis of the
risk model. (K) Prognostic nomogram based on risk score. (L) Time-dependent ROC curves demonstrated the predictive performance of nomogram. (M)
Survival analysis of the validation group cBioPortal-SU2C/PCF. (N) GSEA functional enrichment analysis of the risk model. (O) The clinical correlation
analysis between risk model and risk factors of PRAD.
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3.4 Analysis of critical eccDNA
ZNF330circle142141735-142142329 and
PITPNM3circle6458635-6459156 at the
transcriptome level

Survival analysis (Figure 3H) showed that PRAD patients with
high expression of ZNF330, PITPNM3 had lower overall survival
(OS), which suggested that ZNF330, PITPNM3 may be a risk factor
for poor prognosis. A novel PRAD risk model was constructed by
basing on these two genes, and it was found that the risk score of
patients increased with higher expression of ZNF330 and PITPNM3
(Figure 3I). Patients were classified into high and low risk groups
based on the risk scores, and the higher risk group had lower OS
(Figure 3J), which may lead to poor prognosis. Nomograms were
plotted to predict patient survival based on risk scores (Figure 3K),
and the 1-year, 3-year and 5-year survival rates of patients gradually
decreased with increasing risk scores. The area under the curve
(AUC) of the time-dependent ROC at 1-year, 3-year and 5- years
were 1.000, 0.912, and 0.900 respectively (Figure 3L), suggesting that
the risk model had good predictive performance. cBioPortal-SU2C/
PCF data set validated the model, and survival analysis still showed
that the high-risk group was associated with poor prognosis
(Figure 3M). GSEA analysis (Figure 3N) showed that the high-

risk group was significantly enriched in the cytokine signalling
pathway (KEGG_CYTOKINE_CYTOKINE_RECEPTOR_
INTERACTION, KEGG_HEMATOPOIETIC_CELL_LINEAGE)
and cancer-related pathways (KEGG_JAK_STAT_SIGNALING_
PATHWAY). Meanwhile, clinical correlation analysis (Figure 3O)
showed that high risk scores were positively correlated with later
clinical T stage and higher Gleason scores, suggesting that PRAD in
the high-risk group were more malignant. KEGG_
HEMATOPOIETIC_CELL_LINEAGE) and cancer-related
pathways (KEGG_JAK_STAT_SIGNALING_PATHWAY).
Meanwhile, clinical correlation analysis (Figure 3O) showed that
high risk scores were positively correlated with later clinical T stage
and higher Gleason scores, suggesting that PRAD in the high-risk
group were more malignant.

3.5 Risk model can reshape PRAD immune
microenvironment

Quantitative analysis of the immune microenvironment was
performed on the PRAD risk model based on multiple
immunological algorithms. Different immune infiltration patterns
were observed in patients with the high and low-risk groups. The

FIGURE 4
The immune landscape and mutation of risk model. (A) Immune infiltration analysis of risk model. (B) Immune function analysis of risk model. (C)
Immunophenotyping analysis of risk model. C1, wound-healing phenotype; C2, IFN-γ dominant phenotype; C3, inflammatory phenotype; C4,
lymphocyte-depleted phenotype. (D) Correlation of risk model with stromal score, immune score and estimate score. (E) Correlation of risk model and
IPS score. (F)Waterfall plot showing the most frequently mutated genes in the risk model. (G)Mutation analysis of risk model. TMB, tumor mutation
burden; MSI, microsatellite instability. (H) Correlation analysis of mutations and Gleason score ratio in PRAD under radical prostatectomy.
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immune infiltration analysis (Figure 4A) showed that the immune
microenvironment in the high-risk group had increased levels of
T cells CD4 memory resting, Macrophages M0, Macrophages
M2 and Tregs, and decreased levels of T cells follicular helper
and NK cells activated. Meanwhile, the infiltration abundance of
some immune cells correlated with prognosis (B cells naive and
Tregs infiltration were associated with poor prognosis, and
Macrophages M1 and M2 infiltration were associated with better
prognosis) (Supplementary Figure S2A). Single gene immune
infiltration analysis of ZNF330 and PITPNM3 (Supplementary
Figures S2B, C) also revealed multiple immune cell content
changes. Interestingly, differential analysis of immune cell
function showed that the majority of immune cells were
functionally active in the high-risk group (Figure 4B), and altered
immune function was associated with patient prognosis (DCs
functionally active was associated with a poorer prognosis, and

APC_co_inhibition, Mast_cells and Tfh functionally active were
associated with a better prognosis) (Supplementary Figure S2D).
In addition, there were differences of immune subtypes
distribution in the risk model (Figure 4C). ESTIMATE analysis
found a negative correlation between the risk model and stromal
score, immune score and estimated scores (Figure 4D), suggesting
that tumour purity was higher in the high-risk group. IPS scores
were calculated to predict response of PRAD patients to two ICIs,
anti-CTLA-4 and anti-PD-1 (Figure 4E). We found a positive
correlation between the high-risk group andips-CTLA4 (−)/PD1
(−), while a negative correlation was existed between the high-risk
group and ips-CTLA4 (−)/PD1 (+) and ips-CTLA4 (+)/PD1 (+) in,
indicating that the PRAD model risk can influence the
immunotherapy response and the high-risk group of PRAD
patients had poor responses to ICIs. These results suggested
that tumour immunity may play a key role in PRAD.

FIGURE 5
Immunotherapy and drug sensitivity to PRAD of risk model. (A) Correlation of risk model with TIDE score and immune exclusion. (B–F) Correlation
analysis of mutations and immune infiltration in PRADwith gene set CNV. B, infiltrationscore infiltrates. C, exhausted infiltrates. D, iTreg infiltrates. E, B cell
infiltrates. F, DC cell infiltrates. (G) Correlation of risk model and drug sensitivity to PRAD.
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3.6 Correlation analysis of mutation with
immunotherapy response in risk models

TMB and MSI are molecular markers for determining the
suitability of immunotherapy for tumour patients, which also
suggest genomic instability. In the risk model, we observed that
the mutation rate was lower in the high-risk group (Figure 4F), and
the same five most mutated genes in two risk groups were SPOP,
TTN, TP53, KMT2D, and FOXA1. What’s more, the TMB and MSI
scores were negatively correlated with the risk scores (TMB:
R = −0.15; MSI: R = −0.2) (Figure 4G). In addition, Correlation
analysis of mutations in the risk model gene set and Gleason scores
(Figure 4H) showed that advanced Gleason scores were higher
ratioin the mutation group in PRAD patients, which may be
associated with a poor prognosis.

Subsequently, the TIDE score and immune exclusion was
calculated for each PRAD patient based on the TIDE analysis
(Figure 5A), and the risk scores were positively correlated with
them. It is suggested that patients in the high-risk group are more
likely to experience immune escape and poor immunotherapy. Based
on the previous analysis, we found that both immune infiltration and
mutation have important roles in the risk model. Therefore, we further
explored the correlation between mutation and immune phenotype
through themutation profile of the gene set in the riskmodel. Both gene
amplification (Amp) and deletion (Dele) were types of copy number
variation (CNV) (Zhang et al., 2009), which were belongs to mutations.
The results showed that the infiltration score was higher in the gene
amplification and deletion groups compared with the wild type (WT)
(Figure 5B), and the deletion group had lower exhausted abundance,
whereas there was no significant difference in exhausted abundance
between the wild type and amplification group (Figure 5C). The
abundance of iTreg (Figure 5D) in the amplification group, and
B cell (Figure 5E) and DC cell (Figure 5F) in the deletion group
were higher compared to the wild type.

Drug sensitivity analysis based on the PRAD risk model gene set
(Figure 5G) revealed that the high- Drug sensitivity analysis based
on the PRAD risk model gene set (Figure 5G) revealed that the high-
risk group decrease the sensibility of Ipatasertib, AZD5363,
Oxaliplatin, MK-2206, AZD8055, and AZD8186in PRAD, and
increase the sensibility of Sinularin, Cyclophosphamide,
AZD4547, and Osimertinib in PRAD.

4 Discussion

EccDNA has long been discovered in both normal and
malignant cells (Ling et al., 2021). Using circle-seq, we
investigated the eccDNA profiles of PRAD and para-cancerous
normal prostate tissues. It was found that ZNF330circle142141735-
142142329 was significantly upregulated in PRAD and
PITPNM3circle6458635-6459156 was significantly downregulated, which
may be potential biomarkers in PRAD patients. We observed some
conclusions that are consistent with past investigations (Kumar
et al., 2017; Noer et al., 2022). For example, the size and type of
eccDNA did not change significantly between PRAD tumours and
normal tissues, with size distribution peaks of around 300 bp. At the
same time, we discovered that the amount of amplified eGenes was
identical, despite the fact that the number of eccDNA varied

dramatically between these two tissues. We then investigated the
matching shedding sites of eccDNA on chromosomes and
discovered that there was no significant change in the
chromosomal distribution of eccDNA across tissues. However,
the number of eccDNA loci differed substantially among
chromosomes, with chromosome 1 being the most prevalent and
the Y chromosome being the least common. In the differential
expression analysis of eccDNAs from PRAD tumours and normal
tissues, we found that 4,290 eccDNAs were differentially expressed,
and these eccDNAs amplified 1,981 eGenes. Some previous studies
(Jiang et al., 2023) have shown that the expression of eccDNAs varies
between cancer and normal tissues, eccDNA-amplified eGenes may
not be differentially expressed. This indicates that not all
differentially expressed eccDNAs play a role in disease
progression. Therefore, we further explored the changes in
expression levels of eccDNA-amplified eGenes in PRAD and
their underlying molecular mechanisms.

This study identified eccDNA-amplified eGenes ZNF330 and
PITPNM3 as key genes in PRAD. ZNF330circle142141735-142142329 was
significantly amplified in PRAD, and ZNF330 was also consistently
highly expressed in PRAD Whereas, PITPNM3circle6458635-6459156 was
upregulated in PRAD, but PITPNM3 was lowly expressed in PRAD.
This shows that eccDNA amplification may be an important,
although not determining, factor influencing eGenes expression
(Koche et al., 2020). Survival analysis revealed that high levels of
both ZNF330 and PITPNM3 were associated with a bad prognosis,
implying that they are independent risk factors for PRAD prognosis.
In one study, ZNF330 was identified as a potential oncogenic factor
in breast cancer (Zhang et al., 2021), and we also found that high
expression of ZNF330 in PRAD led to worse clinical prognosis,
which was associated with the occurrence of PRAD progressive
disease (PD), DSS event (Supplementary Figures S2E, F).
PITPNM3 has also been found to promote the progression of
various tumours, such as breast (Zeng et al., 2023) and
pancreatic cancer (Meng et al., 2015), which is an emerging
therapeutic target in cancer (Torphy et al., 2022). Our work also
reveals that PITPNM3 is a predictive risk factor for PRAD, and high
expression of PITPNM3 is related with poor clinical stage
(Supplementary Figure S2G). Thus, PITPNM3 may be related
with PRAD at the transcriptional level, which requires further
investigation with other samples. The above findings show that
ZNF330 and PITPNM3 could be predictive indicators for PRAD.

The PRAD risk model, which was based on ZNF330 and
PITPNM3, revealed that high risk was associated with a poor
prognosis, and the ROC curve indicated that the model was
prognostically reliable. Functional enrichment analysis revealed
that the high-risk group was primarily enriched for post-
translational modifications, cytokine signalling, and cancer-
related pathways. More crucially, we discovered that the risk
model might influence the immunological microenvironment
(TME) of PRAD, directing the immunotherapy response.

Cancer development is highly correlated with the physiological state
of TME (Roma-Rodrigues et al., 2019). In our study, we found that high
risk was positively with the increase level of T cells CD4 memory
resting, Macrophages M0, Macrophages M2, Tregs contents, and
negatively with the decrease level of T cells follicular helper, NK
cells in PRAD microenvironment. Tregs infiltration is also found in
ZNF330 and PITPNM3 single gene immune infiltration analyses
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(Supplementary Figures S2B, C), which is a major mechanism of
tumour immune escape, and its phenotypic and functional diversity
affects its response to therapy (Kang and Zappasodi, 2023). A study of
hepatocellular carcinoma (HCC) (Chen et al., 2024b) demonstrated that
SOX18 overexpression mediated infiltration of Tregs and promoted
HCC progression and metastasis. Macrophages M2 polarisation is a
driver of tumour progression (Christofides et al., 2022), and T cells
follicular helper (King, 2021) and NK cells activated (Park et al., 2023)
play an important role in anti-tumour immunity. The reduction of these
cellsmay allow tumour cells to escape immune surveillance.Meanwhile,
immune cell function was active in the high-risk group. These results
suggest that the risk model may be able to reshape the immune
microenvironment in PRAD patients. In addition, we found that
risk models influence immune subtyping, and different immune
subtypes may affect the response to immunotherapy (Petralia
et al., 2024).

Therefore, the impact of risk models on immunotherapy
response are highly concerned. PD-1, CTLA4, TMB and MSI are
all important markers for predicting the efficacy of immunotherapy.
High levels of PD-1 with or without CTLA4 are generally associated
with enhanced response to the corresponding targeted therapy
(Yarchoan et al., 2019), and patients with high TMB and MSI
scores are also more likely to benefit from immunotherapy
(Valero et al., 2021). The study found that high-risk groups
responded poorly to anti-PD-1 and anti-CTLA-4 therapies,
which are common immune checkpoint inhibitors. This suggests
that combining these immunotherapies with agents that target
ZNF330 and PITPNM3, or drugs that modulate the TME, could
potentially overcome resistance and improve patient outcomes. PD-
1 and TMB evaluation are mainly based on the characteristics of the
tumour cells, while ignoring the influence of the tumour
microenvironment and immune components, such as the tumour
cells themselves, the T lymphocytes and the antigen-presenting cells
and other multiple immune cells’ expression (Bruni et al., 2020).
Moreover, relevant factors such as tumour heterogeneity may also
lead to false-negative PD-1/PD-L1 expression. Therefore, we also
need to assess the tumour response to immunotherapy in terms of
other factors. Higher TIDE and immunological exclusion scores in
the high-risk group indicate a greater likelihood of immune escape,
suggesting that these patients may require more aggressive or
combination immunotherapy approaches. Additionally, the low
ESTIMATE scores imply higher tumor purity, which could be
factored into the development of pharmacological interventions
aimed at enhancing immune infiltration and activity. These
findings emphasize the need for a multifaceted approach in
treating PRAD, integrating novel genetic markers, immune
modulation, and personalized pharmacotherapy to improve patient
prognosis and response to treatment. The research identified several
drugs with varying sensitivities based on the PRAD risk model. High-
risk patients showed decreased sensitivity to drugs like Ipatasertib and
AZD5363 but increased sensitivity to drugs such as Sinularin and
Osimertinib. This highlights the importance of personalizedmedicine,
where drug selection is tailored based on the genetic and molecular
profile of the tumor.

Although our analysis is based on precise sequencing and high-
quality analyses, there are several limitations that must be
acknowledged. First, putative eccDNA-amplified genes were
selected and confirmed, excluding non-coding genes, which would

be investigated further. Second, additional in vitro investigations are
required to confirm the expression of ZNF330 and PITPNM3 in
PRAD. Moreover, the fundamental mechanism by which eccDNA
increases PRAD’s malignant tendencies is unknown and requires
further investigation. Finally, although eccDNA sequencing was
performed in this study, some of the analyses still originated from
data in public databases, so the results await more experimental
validation. We partially tested the two genes and confirmed their
role in prostate cancer, while more basic research is needed in the
future to better understand the role of eccDNA in PRAD.

5 Conclusion

In this study, we sequenced PRAD’s eccDNA and examined its
size distribution, chromosomal position, and expression level. Based
on eccDNA sequencing and transcriptome analysis, the important
coding genes ZNF330 and PITPNM were identified as potentially
transcribed from eccDNA. A unique PRAD risk model based on the
two-factor combination of ZNF330 and PITPNM3 was developed,
which not only predicts survival but also predicts the
immunotherapy responses of PRAD patients of varying risk.
These findings highlight the utility of the eccDNA-based PRAD
risk model in clinical settings.
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SUPPLEMENTARY FIGURE S1
(A–D) Comparison of eccDNA size distribution between tumor and normal
groups. A, group 1. B, group 2. C, group 3. D, all groups. (E) Heatmap of
differentially expressed eccDNAs. Red, high expression; Green, low
expression. (F) Distribution of differentially expressed eccDNAs on all
chromosomes. (G) Volcano plot of eccDNA amplified differentially
expressed genes. Red, high expression; Green, low expression. (H–I)
Relative RNA expression of eKDEGs (ZNF330, PITPNM3). H, TCGA-PRAD. I,
validation dataset GSE70770.

SUPPLEMENTARY FIGURE S2
(A) Immune infiltration and survival analysis. (B–C) Single gene immune
infiltration analysis of ZNF330 and PITPNM3. (D) Immune function and
survival analysis. (E–F) Clinical correlation analysis of ZNF330. E, primary
therapy outcome. F, DSS event. (G) Correlation analysis between PITPNM3
and clinical T stage.

SUPPLEMENTARY FIGURE S3
The expression and effect of ZNF330 in prostate cancer. (A) The mRNA
expressions of ZNF330 and PITPNM3 in prostate normal and cancer tissues
by qRT-PCR. (B) The protein expression of ZNF330 and PITPNM3 in
prostate normal and cancer tissues from HPA database. (C) The mRNA
expression of ZNF330 in prostate epithelial and tumor cell lines. (D) The
mRNA and protein expression of ZNF330 with silencing ZNF330 in 22Rv1.
(E) The effect of silencing ZNF330 and apoptosis inhibitor Z-VAD-FMK on cell
proliferation of 22Rv1 with heat shock. (F–G) The Co-immunoprecipitation
of ZNF330 with HSPA1 and HSPA8 in 22Rv1 cells.
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