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Introduction:Most drugs fail during development and there is a clear and unmet
need for approaches to better understand mechanistically how drugs exert both
their intended and adverse effects. Gaining traction in this field is the use of
disease data linking genes with pathological phenotypes and combining this with
drugtarget interaction data.

Methods: We introduce methodology to associate drugs with effects, both
intended and adverse, using a tripartite network approach that combines
drug-target and target-phenotype data, in which targets can be represented
as proteins and protein domains.

Results:Wewere able to detect associations for over 140,000ChEMBL drugs and
3,800 phenotypes, represented as Human PhenotypeOntology (HPO) terms. The
overlap of these results with the SIDER databases of known drug side effects was
up to 10 times higher than random, depending on the target type, disease
database and score threshold used. In terms of overlap with drug-phenotype
pairs extracted from the literature, the performance of our methodology was up
to 17.47 times greater than random. The top results include phenotype-drug
associations that represent intended effects, particularly for cancers such as
chronic myelogenous leukemia, which was linked with nilotinib. They also
include adverse side effects, such as blurred vision being linked with tetracaine.
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Discussion: This work represents an important advance in our understanding of
how drugs cause intended and adverse side effects through their action on disease
causing genes and has potential applications for drug development and
repositioning.

KEYWORDS

drug effects, side effects, adverse effects, intended effects, networks, diseases, targets,
structural domains

1 Introduction

Although most pharmaceutical drugs interact with a primary
protein target, they also frequently interact with off-target proteins
(Moya-García et al., 2017; Chaudhari et al., 2017; Chaudhari et al.,
2020; Kabir and Muth 2022). Target interaction is usually
responsible for the intended effects of the drug. However, both
target and off-target reactions can lead to additional consequences,
like side effects and adverse effects (Lee et al., 2011; Chaudhari et al.,
2017; Chaudhari et al., 2020; Kabir and Muth 2022).

These unwanted effects are a problem for drug discovery. They
have led to a wide range of drugs being pulled from the market
(Onakpoya et al., 2016; Bremner, 2021; Czernichow and Batty, 2010;
Sharav and Benoliel, 2008; Furberg and Pitt, 2001; Li Wan Po and
Zhang, 1998) and have clear implications for patient health (Sultana
et al., 2013) as well as an important economic impact, given the
estimated average cost to take a new drug to market is around
$985 million (Wouters et al., 2020). The effect of a drug is due to the
interactions it establishes with various targets in different cells and
tissues throughout the body (Davis, 2020). One of the reasons drug
development often fails is that these interactions are not well
understood (Zhou et al., 2016). Therefore, there is an unmet
need to understand the mechanisms of action of drugs in order
to address the different challenges in current drug development
(Chaudhari et al., 2020; Lee et al., 2011; Iwata et al., 2013).

Previous studies have tried to repurpose drugs for new diseases
based on known and predicted targets (Jarada et al., 2020; Kinnings
et al., 2009; Yang et al., 2014; Sirota et al., 2011; Joshua Swamidass,
2011), as well as methods employing expression profile similarity
(Jarada et al., 2020; Huang et al., 2015; Rukov et al., 2014; Hu and
Agarwal, 2009; Lamb et al., 2006). Some studies have looked at
repurposing drugs based on similarities in terms of their side-effect
profiles (Zeng et al., 2019; Ye et al., 2014;Wang et al., 2013; Yang and
Agarwal, 2011; Campillos et al., 2008; Plenge, 2016). However, only a
few studies have combined data related to drug-target interactions
with data on how these targets can lead to pathological phenotypes
as a way to study their adverse effects, based on the central tenet that
the pathological phenotypes associated with variants in a given
protein can also occur when that protein is drugged. One such study
showed that drugs are more likely to lead to side effects in a given
organ system if that drug’s protein target has been associated with a
phenotype related to the same organ system (Nguyen et al., 2019).
This was achieved by combining drug-target and gene-phenotype
data frommultiple sources, linked via the Unified Medical Language
System (UMLS) (Bodenreider, 2004). In another study, Estrada et al.
proposed an approach to identify drug targets based on the
identification of genes with both gain-of-function (GF) and loss-
of-function (LOF) mutations associated with opposite effects on the

phenotype (selected targets with bidirectional effect) (Estrada et al.,
2021). Another approach exploits interactions between molecules to
develop a graph-based model for predicting side effects (Huang
et al., 2023).

Most previous studies into drug effects have tended to focus on
protein targets. However, there has been a strong push in recent
years to consider the target in terms of constituent functionally,
structurally and evolutionary independent units: protein domains
(Wang et al., 2012; Iwata et al., 2013; Moya-García et al., 2017),
allowing a more fine-grained mapping between drugs and their
targets (Kruger et al., 2012). In a recent study, Moya-García et al.
(2017) showed that CATH-Functional Families (FunFams) (Das
et al., 2021) that were overrepresented in druggable proteins tended
to have conserved drug-binding sites. Other domain-based work has
sought to infer domain-side effect interactions through a learning-
based approach based on a known set of drug-domain interactions
(Iwata et al., 2013). Moya-García and Ranea modelled drug-domain
networks to explore the role of protein domains as drug targets
(Moya-García and Ranea, 2013).

In this work, we combine information on drug-target
interactions and associations between phenotypes and proteins/
domains. This approach enables the generation of phenotype-
drug associations, providing a more comprehensive
understanding of drug effects, both intended and adverse.
Moreover, it facilitates insight into the molecular mechanisms
that mediate these effects. We aim to tackle the main challenge
of linking drugs to their effects—both desired and unintended side
effects—which is a key issue in drug development. We also seek to
understand the molecular details of how drugs interact with their
targets, leading to these effects.

2 Materials and methods

The approach developed in this work, termed Drugeff-analyser,
associates drugs with potential effects, described in terms of
pathological phenotypes in the Human Phenotype Ontology
(HPO) (Köhler et al., 2021). This is performed by constructing
and analysing networks connecting drugs, targets and phenotypes.
The results are validated using known drug-effects data, as well as
data inferred from co-occurrence in the scientific literature.

We used two types of targets, proteins and protein domains.
When we refer to using the protein as a target, we are talking
about the complete protein. However, in reality, proteins are
composed of different domains, which are responsible for
carrying out the biological functions of the proteins, including
interactions with drugs. We used CATH FunFams as protein
domains. FunFams group different domains that share similar
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structures and functions, and have been used for predicting
functional sites, making them suitable for studying the effects
of drugs on proteins, and how this impacts on the phenotype
(Dawson et al., 2017; Sillitoe et al., 2020). Thus, two methods
were implemented, using the Autoflow workflow manager
(Seoane et al., 2016), to associate drugs with phenotypes,
based on protein-targets and protein domain-targets,
respectively (Figure 1).

The methods consist of two initial steps which result in
phenotype-target (Figure 1 Module A) and drug-target (Figure 1
Module B) pairs. These pairs are then combined to build a tripartite
network, which is analysed using NetAnalyzer (Rojano et al., 2017)
to produce a list of phenotype-drug pairs (Figure 1 Module C). By
analyzing shared connections between the layers, one can infer

relationships between the nodes, in this case between drugs and
phenotypes, based on shared targets.

2.1 Obtaining phenotype-target pairs

Both the protein and domain-target methods start by connecting
phenotypes and genes via shared diseases, according to either the
OMIM or Orphanet databases, following the methods described in
(Díaz-Santiago et al., 2021). Note that OMIM and Orphanet were
used independently to build separate networks and analysed
independently, as they gather information from different origins
and with different goals (Díaz-Santiago et al., 2021). Thus, genes and
phenotypes that are linked by common diseases can be deemed

FIGURE 1
Drugeff-analyser workflow. Module (A) Information from OMIM or Orphanet was used to build a network to obtain phenotype-target pairs (orange
hexagon). For the protein-target approach, these were taken directly from phenotype-target associations (lemon oval). For the domain-target approach
these pairs were then combined with FunFam-gene relationships from the CATH database to obtain phenotype-FunFam associations (green box). There
were two tripartite networks, as shown in blue boxes, both used to calculate associations. Module (B) The ChEMBL database was queried to obtain
drug-target pairs. For the protein-target approach, drug-gene pairs (lemon hexagon) were used directly. For the domain-target approach, FunFams that
were overrepresented among the drug targets were obtained (green box). (C)with the pairs obtained in previousmodules, a tripartite networkwas built to
associate phenotypes and drugs based on target overlap, resulting in phenotype-drug pairs (orange octagon). HyI: hypergeometric index.
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associated and considered phenotype-gene pairs. The significance of
the association is quantified using the NetAnalyzer software,
implementing the hypergeometric index, which has been shown
to outperform other metrics when connecting phenotypes with
genes and disease (Díaz-Santiago et al., 2021; Díaz-Santiago et al.,
2020; Bueno et al., 2018; Rojano et al., 2017).

The Hypergeometric Index is a statistical measure used to
evaluate the significance of the overlap between two sets, A and
B, and is based on the hypergeometric distribution, which calculates
the probability of observing a given overlap by chance. It represents
the log-transformed probability that the overlap between A and B is
equal or greater than what is observed. More formally, to assess the
overlap between two groups A and B using the hypergeometric
distribution, you typically calculate the probability of observing at
least k shared elements between them, assuming random sampling
from a larger population N. The equation for this hypergeometric
probability is:

P(X≥ k) � ∑
min(|A|,|B|)

i�k

|A|
i( ) N−|A|

|B|−i( )
N
|B|( )

WhereN: Total number of elements in the population, |A|: Size of
group A, |B|: Size of group B, k: Number of shared elements
between A and B, and (nr) the binomial coefficient, representing
the number of ways to choose r items from n. Essentially, it
quantifies how likely it is that the number of shared interactions
between the two sets could happen randomly. A lower probability
(and so higher Hypergeometric Index value) indicates that the
overlap is highly unlikely to be due to chance, suggesting a
meaningful or significant interaction between A and B. We
applied various thresholds, between 2 and 3.5, which
correspond to p-values of 0.01 to 0.0003, to filter weak
interactions (Bass et al., 2013).

By using a hypergeometric index threshold, we aim to filter out
unspecific phenotypes that can appear in a large number of diseases.
These phenotype-gene pairs are used directly as the phenotype-
target pairs for the protein-target based method, as shown in
Figure 1 Module A, in the sub-workflow on the left.

For the domain-target based method, we start with the
phenotype-target associations. Each gene is then paired with any
CATH FunFam (Sillitoe et al., 2021) that contains domains
belonging to the protein product of the gene (Figure 1 Module
A, sub-workflow on the right). FunFam functional domain data was
obtained from the CATH database (release v4.3.0). Each gene in the
set of phenotype-target pairs can contain one or more FunFams, and
domains from the same FunFam can be found in multiple proteins.
Therefore, we analyze the significance of the associations between
phenotypes and FunFams using the hypergeometric index
implemented in NetAnalyzer, using a threshold of 2, in the same
way as described above to associate phenotypes with genes.

2.2 Obtaining drug-target pairs

Drug-protein target pairs were obtained from the ChEMBL
database (version 29 Davies et al., 2015; Mendez et al., 2019),
using the following criteria based on a previous study (Moya-
García et al., 2017):

• Small molecule with therapeutic application (Therapeutic
Flag � 1).

• Direct binding interaction with single protein (Assay Type �
B; Relationship Type � D; Target Type � Single Protein).

• Filtering out weak activities (pchembl value ≥ 6).
• Drugs in every stage of development were considered.

The drug-protein pairs were used to associate drugs with
phenotypes in the protein-target method (Figure 1 Module B,
sub-workflow on the right). For the domain-target method, the
drug-protein pairs were further decomposed into drug-FunFam
pairs, where FunFams represent functional domain families
(Figure 1 Module B, sub-workflow on the left). Given that each
protein in the drug-protein pairs list can contain one or more
FunFams, and domains from the same FunFam can be found in
multiple proteins, we evaluated whether each FunFam is
significantly overrepresented among the targets of a given drug
using the expected probability and binomial test. As such, we could
associate the drugs with the FunFams significantly overrepresented
among their respective targets, obtaining a set of drug-FunFam pairs
using a p-value threshold of 0.05. Full details are given in (Moya-
García et al., 2017).

2.3 Combining pairs and associating drugs
with intended and adverse effects via
tripartite network analysis

The phenotype-target and drug-target pairs are then combined
to produce phenotype-target-drug tripartite networks (Figure 1
Module C). This is performed separately for the protein and
domain-target workflows. Phenotypes were associated with drugs
based on overlap across shared targets, again using the
hypergeometric index. Different thresholds of this index were
used in order to assess the effect on the numbers of phenotype-
drug associations found and the performance of the method. We
used all drugs obtained from ChEMBL connected to at least one
target in the drug-target pairs, and all phenotypes connected to at
least one target in the phenotype-target pairs.

2.4 Assessing the overlap between the
phenotype-drug associations obtained and
known drug-effects

To assess the overlap between the phenotype-drug associations
obtained with our methodology and known phenotype-drug
associations, two different analyses have been conducted. The
first one assesses the overlap of the obtained phenotype-drug
pairs with SIDER (Kuhn et al., 2016), a gold standard database
of drug effects. The second analysis examined the overlap between
the obtained phenotype-drug associations with those associations
derived from co-occurrence in the scientific literature.

Our two workflows associate HPO phenotypes with drugs in
order to better understand potential phenotypes that might result
from the intake of these drugs, under the assumption that these
phenotypes represent potential adverse/side effects, as well as
phenotypes that the drug is intended to combat.

Frontiers in Pharmacology frontiersin.org04

Díaz-Santiago et al. 10.3389/fphar.2024.1470931

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1470931


For the SIDER comparison, a list of drug-effects was taken from
the SIDER database (version 4.1 Kuhn et al., 2016). SIDER is
considered a gold-standard database of drugs effects; however, it
does not annotate its drugs with ChEMBL IDs, nor does it contain
effects in terms of pathological phenotype HPO terms; rather it uses
UMLS terms. Therefore, in order to compare our phenotype-drug
pairs (i.e., HPO-ChEMBL) with SIDER, we had to perform the
following steps: Firstly, the Biothings Client (v0.2.6 https://pypi.org/
project/biothings-client) was used to query SIDER directly through
the MyChem.Info database, which allowed us to connect ChEMBL
IDs directly with their associated effects in the SIDER database
(Kuhn et al., 2016). Secondly, the UMLS terms were mapped to HPO
phenotypes using the OXO ontology mapping tool, via the OxO
REST API (https://www.ebi.ac.uk/spot/oxo/). These steps led to the
construction of a SIDER-derived list of gold standard phenotype
(effect)-drug pairs that could be compared directly to our
phenotype-drug associations.

An important caveat must be considered when using SIDER to
assess our data: its contents are limited only to marketed drugs. As
such, only a small percentage of drugs from our phenotype-drug
lists, which are constructed using drugs from ChEMBL database in
all phases of development, are included in SIDER. Therefore, when
comparing overlap between our lists and the gold-standard list, we
initially refined our dataset by considering all pairs that comprised
drugs and phenotypes that appeared at least once in SIDER.

To evaluate the significance of the overlap between our
phenotype-drug associations and SIDER, we generated
randomized lists of phenotype-drug association, following the
links-based randomization method described in previous work
(Díaz-Santiago et al., 2020). The phenotypes and drugs were kept
the same, but the connections between them were randomized.
Randomization was performed in this way to ensure that the
prevalence of phenotypes and drugs remained the same. We
estimated the performance of our methods by repeating this
100 times and comparing the overlap of these randomized lists
with SIDER by calculating the ratio of real vs. random, where real
refers to the number of associated phenotype-drug pairs in our list
that are also found in SIDER and random refers to the average
overlap between the randomized pairs list and SIDER.

As a second validation we also looked at overlap between our
lists of phenotype-drug associations and lists of phenotype-drug
associations based on co-occurrence in the scientific literature. To
achieve this, we used the methodology described previously (Pazos
et al., 2022). In brief, we obtained the list of PubMed entries
mentioning a specific drug by querying the NCBI Entrez API for
articles that include the name of each drug or any of its ChEMBL
synonyms in any field. The same was done for each HPO term name
and its synonyms. Then, the set of PubMed entries mentioning an
HPO term together with a given drug is inferred as the intersection
of the sets mentioning each individually. Taking into account the
number of articles mentioning the drug, the number mentioning the
HPO and the number mentioning both, as well as the whole size of
PubMed, a statistical test is applied to assess the significance of each
HPO-drug pair in terms of co-occurrence (Pazos et al., 2022). Co-
occurring HPO-drug pairs with a p-value < 0.001 were considered
significant.

Once this list of HPO-drug pairs co-occurring in the literature
was obtained, we calculated the overlap between these pairs and our

lists of phenotype-drug associations, generated using our analysis
workflow. Overlap was also calculated using randomized
phenotype-drug pairs, obtained by randomizing the connections
between the pairs in the lists generated by our analysis workflow,
performing each randomization procedure 100 times. The ratio
between real and random was then calculated, in the same manner
as for the SIDER data described above.

3 Results

We used two workflows to associate drugs with pathological
phenotypes. One used shared proteins as a way to link these entities,
while the other used protein domains (Figure 1).

3.1 Phenotype-target pairs

The first step in these workflows was to obtain phenotype-target
pairs. For the protein-target workflow, the total numbers of pairs
and phenotypes found for different hypergeometric index
thresholds are shown in Table 1 (Phenotype-Gene Pairs).

As expected, these numbers decrease at more restrictive
association thresholds. This pattern is consistent for both OMIM
and Orphanet. The pairs with the highest association scores using
the OMIM data are shown in Table 2. The two associations with the
highest scores are between HPO term somatic mutation and two
genes encoding proteins with clear roles in this process, KRAS and
PIK3CA (Luo et al., 2020; Palomba et al., 2012). In fact, of the
13 OMIM diseases associated with PIK3CA, 10 hold this phenotype.
Similarly, of the 12 OMIM diseases associated with KRAS, 9 hold
this phenotype. Moreover, of the 75 OMIM diseases with this
phenotype, 10 are associated with PIK3CA and 9 are associated
with KRAS. As a more specific example, the pair with the third
highest score is between the geneGLB1 and the HPO termDecreased
β-galactosidase activity. This gene encodes the β-galactosidase gene,
crucial for breaking down GM1 gangliosides. This gene is associated
with four OMIM diseases [GM1-Gangliosidosis Type I (OMIM:
230500), GM1-Gangliosidosis Type II (OMIM:230600), GM1-
Gangliosidosis Type III (OMIM:230650), Mucopolisaccharidosis
Type IVB (OMIM:253010)], all of which hold this phenotype. In
fact, this phenotype is only displayed by these four diseases plus
one other.

The results for Orphanet are shown in Supplementary Table 1.
The top association is between the HPO term Milia and the gene
COL7A1. The gene is associated with 9 diseases, of which 8 hold this
phenotype. The phenotype is found in a total of 21 Orphanet
diseases. The results for Orphanet show repeated categories in
the top 20, such as Cyclopia. This phenotype is associated with a
range of important developmental genes. The prominence of high-
score associations involving this phenotype is due to it being present
in only 6 Orphanet diseases, but these 6 diseases are associated with
many of the same genes.

For the domain-target workflow, the total numbers of
phenotype-target pairs found are shown in Table 1 (Phenotype-
FunFam Pairs). The top pairs in terms of score are shown in Table 3.
The top associations are between the phenotypes related to sperm
flagella abnormalities and the FunFam 3.40.50.300-ff-49, named
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Dynein axonemal heavy chain 5. Of the 19 genes associated with the
phenotype Absent sperm flagella 5 encode proteins that contain this
functional domain according to the CATH resource (Sillitoe
et al., 2021).

Multiple FunFams from the same superfamily were also
associated with HPO term Nevus sebaceous, however this
FunFam was named KRAS proto-oncogene, GTPase. KRAS
mutations have been associated with nevus sebaceous in previous
work (Groesser 2012). All three genes that are associated with this
phenotype contain this FunFam according to CATH.

For the Orphanet analysis (Supplementary Table 2), the
association with highest score was between 1.20.5.500-ff-1 and
Follicular hyperkeratosis. This FunFam was in the CATH
superfamily Single helix bin, and the FunFam is named Keratin
23 – showing clear relevance for this phenotypes. This phenotype is
associated with 13 genes, of which 7 encode proteins that contain
this FunFam according to CATH (Sillitoe et al., 2021).

3.2 Drug-target pairs

For the protein-target based workflow, the drug-target pairs
were obtained directly from ChEMBL as described in methods.
This resulted in 264,690 drugs, which could be mapped to a total
of 2,029 protein targets (367,934 drug-protein pairs). For the
domain-target workflow, there was an extra step, whereby the
drugs were mapped to FunFam domains, under the premise that a
drug mapped to a number of proteins with the same domain is
more likely to be interacting with that domain. This resulted in a
total of 254,791 drugs/compounds that could be potentially
associated with 3,420 domain targets (894,263 drug-
domain pairs).

3.3 Drug-phenotype associations

Once we had obtained phenotype-gene pairs and the drug-target
pairs we could combine them to associate drugs with phenotypes
based on shared targets/genes. The total numbers of pairs, i.e., drugs
linked to phenotypes via at least one shared target, and the numbers
of pairs retained at different score thresholds are shown in Table 4
for the protein and domain-target workflows, respectively.

In order to validate these results, we filtered them to only include
drug-phenotype pairs for drugs and phenotypes that are annotated
within the SIDER database. Only a small number of drugs from
ChEMBL actually have any documented effects.

3.4 Overlap with known effects from the
SIDER database

Of the large number of phenotype-drug pairs obtained by our
methods, the majority corresponded to drugs under early stages of
development and as such there is unlikely to be any representation
of the associated phenotype-drug pairs within SIDER due to 1) the
lack of name for the drug (normally NA or potentially a
compound) 2) because the drug has not passed through a
sufficient number of stages of the development pipelines, its
effects have not yet been detected or determined. Therefore,
when we filtered the phenotype-drug pair results to only
include those for which the drug and phenotype exist within
SIDER, we retained comparatively small numbers of pairs. In
Table 5, the numbers of pairs that overlap with known drug-
effects from the SIDER database are shown in the column
Confirmed Pairs, for different hypergeometric index thresholds.
The column Random Overlapping shows the mean number of

TABLE 1 Total numbers of phenotype-gene and phenotype-FunFam pairs obtained at different hypergeometric index thresholds using the protein-target
workflow and domain-target workflow.

Phenotype-gene pairs

OMIM Orphanet

Pairs Phenotypes Genes Pairs Phenotypes Genes

Total 103,030 7,304 4,485 134,021 6,670 3,173

HyI ≥ 2 41,224 7,279 4,351 48928 6,646 3,153

HyI ≥ 3 9,674 5,662 2,967 10512 4,121 2,294

HyI ≥ 3.5 3,458 2,480 1,475 4,132 1,653 650

Phenotype-FunFam Pairs

OMIM Orphanet

Pairs Phenotypes FunFams Pairs Phenotypes FunFams

Total 114,772 6,886 9,286 132,419 6,419 7,078

HyI ≥ 2 112,515 6,886 9,279 127,034 6,419 7,009

HyI ≥ 3 51,394 6,252 7,807 55,630 5,870 5,447

HyU ≥ 3.5 19,390 4,580 5,429 17,963 3,966 3,426

HyI, hypergeometric index; FunFam, CATH Functional Family.
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pairs found in the random pair lists, generated by shuffling
connections between the phenotypes and drugs in the
Confirmed Pairs list, that overlap with the known drug-effects.
The ratio between the Confirmed Pairs and the Random
Overlapping pairs is also shown. The numbers of pairs in the
overlapping lists compared to the random lists are plotted in
Figure 2 to make the trends clearer. For the protein-target
results there is a clear increase in terms of performance, as
measured by overlap with SIDER compared to random, with
higher hypergeometric index thresholds. This trend appears
more marked for OMIM than for Orphanet. For example, the
number of predicted pairs confirmed by SIDER are between
1.54 and 10 times higher than what would have been obtained
by chance for the protein-target approach with OMIM
annotations. It is also clear that the total number of pairs
obtained decreases with the increased threshold, again this is
more marked for the protein-target method results.

3.5 Overlap with drug-phenotype pairs
obtained from the biomedical literature

As well as overlap with known drug-effects data from SIDER, we
looked at the overlap between our phenotype-drug associations and
the biomedical literature, in order to see whether our pairs are more

likely to co-occur together in PubMed abstracts than they would if
we were to randomize the connections. Results are shown in Table 6,
for the protein-target and domain-target methods, and Figure 3.

We see that our predicted associations are several times more
likely to co-occur in abstracts than random, and that this tendency
increases when a higher hypergeometric index threshold is used to
determine the significantly associated drug-phenotype pairs.
Although our methods find many more known drug-phenotype
associations than random for both SIDER and the literature, both
the total numbers of pairs found and the ratios compared to random
are generally higher when benchmarked against the literature than
for SIDER. This is likely to do with the limitation of SIDER in terms
of only containing adverse effects for marketed drugs. In contrast,
the co-occurrence method is able to find both the side effects and
desired effects, and can potentially include drugs in different stages
of development.

3.6 Drug-phenotype associations with the
highest association values

The top 20 drug-phenotype associations are shown in Tables 7, 8
(OMIM results) and Supplementary Tables 3, 4 (Orphanet results).
These binary associations are also presented as networks in
Supplementary Figures 1, 2. For the protein-target based method

TABLE 2 Top phenotype-gene pairs according to the hypergeometric index, based on the OMIM dataset using the protein-target based methodology.

HPO Term ID Term Name Gene Entrez Gene symbol HyI

HP:0001428 Somatic Mutation 5290 PIK3CA 16.77

HP:0001428 Somatic Mutation 3845 KRAS 14.93

HP:0008166 Decreased β-galactosidase activity 2720 GLB1 13.00

HP:0004440 Coronal craniosynostosis 2263 FGFR2 12.66

HP:0003126 Low-molecular-weight proteinuria 1184 CLCN5 12.52

HP:0009737 Lisch nodules 4763 NF1 1,230

HP:0000590 Progressive external ophthalmoplegia 5428 POLG 11.80

HP:0000852 Pseudohypoparathyroidism 2778 GNAS 11.45

HP:0000114 Proximal tubulopathy 1184 CLCN5 11.18

HP:0003548 Subsarcolemmal accumulations of abnormally shaped mitochondria 5428 POLG 10.98

HP:0001839 Split foot 8626 TP63 10.68

HP:0001054 Numerous nevi 673 BRAF 10.61

HP:0007341 Diffuse swelling of cerebral white matter 220296 HEPACAM 10.53

HP:0000531 Corneal crystals 1497 CTNS 10.53

HP:0000166 Severe periodontitis 1075 CTSC 10.53

HP:0001284 Areflexia 4359 MPZ 10.50

HP:0008404 Nail dystrophy 1294 COL7A1 10.47

HP:0003689 Multiple mitochondrial DNA deletions 5428 POLG 10.42

HP:0008368 Tarsal synostosis 9241 NOG 10.00

HP: 0000926 Platyspondyly 1280 COL2A1 9.98

HPO, Human Phenotype Ontology; HyI, hypergeometric index.
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(Table 7), applied to the OMIM database, the top result is for the
drug nilotinib, associated with the phenotype Chronic myelogenous
leukemia. Nilotinib is a medication used to treat chronic
myelogenous leukemia. Clearly this is not an adverse effect,
rather the pathology that the drug is intended to treat. The
phenotype and drug are linked via the proteins encoded by genes
ABL1 and BCR. The next phenotype in the list isDry skin, associated
with the drug vemurafenib, used to treat melanoma. Dry skin is
indeed listed as one of the side effects–interestingly, the association
between this phenotype and the drug is mediated by the proteins
coded for by genes RAF1 and BRAF, both of which have been linked
with atopic dermatitis in previous work (Raguz et al., 2016).

The top results for Orphanet also show known effects, such as
the association between the kinase inhibitor cabozantinib and
nausea. The mechanism here is perhaps less clear, given that the
connection is via the proteins coded by KIT and RET.

For the domain-target methodology applied to OMIM (Table 8), the
top result is the same as for the protein-target method: Chronic
myelogenous leukemia and nilotinib. For this methodology, the drug
and phenotype are connected by multiple domains belonging to
FunFams related to kinase activity or breakpoint cluster regions. The
secondpair, blurred vision associatedwith tetracaine, was not found in the
top 20 using the protein-target method. These entities are linked via
domains belonging to FunFams related to sodium channels. For
Orphanet, the top result is for thrombocytosis associated with

nilotinib, again via tyrosine kinase domains and breakpoint cluster
region-related domain. Nilotinib has great affinity for the breakpoint
cluster regionAbelsonmurine leukemia (BCR-ABL) viral protooncogene
(Cervantes and Mauro, 2011; DeRemer et al., 2008), which has an
important role in the stimulation of growth and prevention of
apoptosis in hematopoietic cells (Neshat et al., 2000), including
platelets levels (Bennour et al., 2013), suggesting a potential
mechanistic link. In fact, previous studies have looked at the
relationship between nilotinib and platelet function (Alqasim et al., 2018).

The top 20 drug-phenotype associations for comention analysis
are shown in Supplementary Tables 5, 6 for OMIM results and
Supplementary Tables 7, 8 for Orphanet results.

4 Discussion

By combining drug-target and target-phenotype information
from different sources, our approach generates an exhaustive list
of putative drug effects. This allows us to identify known effects
and to predict novel putative effects for drugs, including both
unwanted adverse side effects and intended effects (i.e., the
pathological phenotype the drug was designed to treat). In
addition to these putative effects, our approach provides
information on the involved genes and protein-domains,
offering clues as to the molecular mechanisms underlying them.

TABLE 3 Top phenotype-FunFam pairs according to the hypergeometric index, based on the OMIM dataset using the domain-target based methodology.

HPO Term ID Term Name FunFam HyI

HP:0032558 Absent sperm flagella 3.40.50.300-ff-49 12.96

HP:0032560 Coiled sperm flagella 3.40.50.300-ff-49 12.84

HP:0032559 Short sperm flagella 3.40.50.300-ff-49 12.84

HP:0032558 Absent sperm flagella 1.10.8.1220-ff-1 11.82

HP:0010817 Linear nevus sebaceous 3.40.50.300-ff-96 11.74

HP:0010815 Nevus Sebaceous 3.40.50.300-ff-96 11.74

HP:0001167 Abnormality of finger 3.40.50.300-ff-96 11.74

HP:0032560 Coiled sperm flagella 1.10.8.1220-ff-1 11.69

HP:0032559 Short sperm flagella 1.10.8.1220-ff-1 11.69

HP:0032558 Absent sperm flagella 3.40.50.300-ff-38 11.61

HP:0032560 Coiled sperm flagella 3.40.50.300-ff-38 11.48

HP:0032559 Short sperm flagella 3.40.50.300-ff-38 11.48

HP:0011073 Abnormality of dental color 3.40.50.300-ff-96 11.13

HP:0003795 Short middle phalanx of toe 3.30.200.20-ff-11 11.13

HP:0001780 Abnormality of toe 3.40.50.300-ff-96 11.13

HP:0000267 Cranial asymmetry 3.40.50.300-ff-96 11.13

HP:0002676 Cloverleaf skull 3.30.200.20-ff-11 10.74

HP:0003795 Short middle phalanx of toe 2.60.40.10-ff-20 10.53

HP:0003795 Short middle phalanx of toe 1.10.510.10-ff-7 10.53

HP:0006482 Abnormality of dental morphology 3.40.50.300-ff-96 10.43

HPO, Human Phenotype Ontology; FunFam, CATH functional family; HyI, hypergeometric index.
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These results reinforce the premise on which this study is based:
the pathological phenotypes associated with variants in each protein
can also occur when the protein is drugged. For loss-of-function
mutations and drugs that inactivate or inhibit proteins, this tenet
holds. However, in other cases, such as many cancers, the variants

may lead to a gain of function. Moreover, whilst most drugs are
deemed inhibitors, many are potentiators or activators (Wishart
et al., 2018). As such, by combining drug-target and phenotype-
target pairs, we also find links between drugs and phenotypes that
are caused by the activation of the protein, rather than its inhibition.

TABLE 4 Numbers of phenotype-drug pairs within the tripartite network and at different association thresholds for the protein-target workflow and for the
domain-target workflow.

Protein-target method

OMIM Orphanet

Pairs Phenotype Drugs Pairs Phenotype Drugs

Total 2,012,260 3,666 141,418 2,260,499 3,830 112,693

HyI ≥ 2 1,827,126 3,597 140,615 1,956,625 3,711 111,809

HyI ≥ 3 458,240 1,828 95,851 377,189 1,509 76,897

HyI ≥ 3.5 111,608 728 39,397 99,566 691 31,625

Domain-Target Method

OMIM Orphanet

Pairs Phenotype Drugs Pairs Phenotype Drugs

Total 3,283,330 4,119 159,282 3,683,928 4,257 143,879

HyI ≥ 2 2,943,821 4,039 159,036 3,383,424 4,195 143,183

HyI ≥ 3 2,395,901 3,774 143,523 2,727,330 3,804 123,787

HyI ≥ 3.5 2,290,236 3,599 122,882 2,564,173 3,618 117,703

HyI, hypergeometric index.

TABLE 5 Overlap between the drug-phenotype pairs detected by the protein-target method, domain-target method and SIDER database.

Protein-target method

OMIM Orphanet

Confirmed pairs Random overlapping Ratio Confirmed pairs Random overlapping Ratio

Total 280 181.39 ±12.52 1.54 300 169.14 ± 11.16 1.77

HyI ≥ 2 116 66.84 ± 6.84 1.74 70 49.56 ± 6.54 1.41

HyI ≥ 3 15 3.20 ± 1.71 4.69 6 1.53 ± 1.23 3.92

HyI ≥ 3.5 11 1.10 ± 1.04 10 2 0.36 ± 0.61 5.56

Domain-target method

OMIM Orphanet

Confirmed pairs Random overlapping Ratio Confirmed pairs Random overlapping Ratio

Total 255 152.98 ± 12.46 1.67 200 145.07 ± 11.11 1.38

HyI ≥ 2 160 99.61 ± 9.12 1.61 145 103.44 ± 9.37 1.40

HyI ≥ 3 108 68.60 ± 7.57 1.57 112 73.74 ± 8.15 1.52

HyI ≥ 3.5 102 61.72 ± 8.21 1.65 98 65.93 ± 8.21 1.49

HyI, hypergeometric index.
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FIGURE 2
Numbers of pairs in the Confirmed Pairs lists from the SIDER database compared to the Random Overlapping lists. On the left are the pairs for the
protein-target method and on the right the pairs for the domain-target method. (A, C) show the ratio changes in the different hypergeometric index
thresholds. The red line corresponds to a ratio of 1. (B, D) represent the total number of pairs confirmed by SIDER per each hypergeometric
index threshold.

TABLE 6 Overlap between the drug-phenotype pairs detected by the protein-target target method, domain-target method and the co-occurrence dataset.

Protein-target method

OMIM Orphanet

Confirmed pairs Random overlapping Ratio Confirmed pairs Random overlapping Ratio

Total 2,111 570.52 ± 24.84 3.70 1,674 570.93 ± 20.08 2.93

HyI ≥ 2 1,283 273.48 ± 17.55 4.69 919 250.07 ± 16.81 3.67

HyI ≥ 3 215 17.12 ± 4.35 12.56 99 13.98 ± 3.84 7.08

HyI ≥ 3.5 87 4.98 ± 2.08 17.47 41 3.87 ± 1.86 10.59

Domain-Target Method

OMIM Orphanet

Confirmed pairs Random overlapping Ratio Confirmed pairs Random overlapping Ratio

Total 2,127 532.94 ± 22.13 3.99 1,784 576.63 ± 19.16 3.09

HyI ≥ 2 1,721 398.24 ± 17.78 4.32 1,536 469.76 ± 22.57 3.27

HyI ≥ 3 1,342 290.34 ± 15.89 4.62 1,178 344.55 ± 18.39 3.42

HyI ≥ 3.5 1,243 262.20 ± 16.49 4.74 1,067 312.90 ± 16.31 3.41

HyI, hypergeometric index.
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The clearest example of this is provided by the top results using both
protein-target and domain-target methods, where we show a
connection between Chronic myelogenous leukemia and
nilotinib–these are actually linked by potential oncogenes
(Sánchez-García and Grütz, 1995), which fits with the idea that it
is the activation of the protein that leads to the phenotype, and
therefore, their inhibition leads to the therapeutically intended effect
against this type of cancer.

The methodology, by initially associating drugs with targets, and
target with phenotypes, is intended to model how drugs lead to their
effects. This has potential applications for excluding drugs with
potential side-effects during the design process. For example, a drug
that is known to target a protein or domain linked to a phenotype
that would be particularly harmful in the intended patients could be
considered for exclusion. Conversely, when this effect is the
pathology that the drug was intended for, the methodology can
provide the user with additional information about the mechanisms
through which their drug works. Our results also have implications
for drug repurposing, as some of the predicted drug effects could be
of interest. There are many previous studies that attempt to link
drugs with known diseases, often with the aim of repurposing
existing drugs for different diseases (e.g., Sadegh et al., 2021;
Lotfi Shahreza et al., 2020; Zhang et al., 2018; Lee and Yoon,
2018; Liu et al., 2016; Gottlieb et al., 2011). Whilst the aim of
our method is quite different, the ability to obtain the intended

effects of drugs based on the combination of drug-target and target-
phenotype data means that it could potentially be used alongside
these methods. However, it should be considered that the effects we
find are not necessarily the desired ones. Further work could try to
differentiate intended from adverse/side effects, for example, by
stratifying drugs into different categories depending on their effects,
and potentially by further refining the phenotype-gene data to
consider mutation effects.

Although several studies look to detect drug-adverse/side effect
interactions directly using the biomedical literature (Kropiwnicki
et al., 2022; drissiya El-allaly et al., 2019; Song et al., 2019; Xu and
Wang, 2015; Shang et al., 2014; Coulet et al., 2010), few seek to
understand the interactions considering the protein drug targets and
the phenotypes they may lead to based on genetic diseases network.
Recent work (Nguyen et al., 2019) accumulated data to link
1,819 drugs with 1,046 targets to show how the genes encoding
drug targets could be used to make predictions about clinical side
effects, such as the organ system affected. This work has been
fundamental in showing the validity of combining data from
different sources. Our work differs from their approach in that
we take all drug-protein information available in the ChEMBL
database as starting material. It also differs in that it can consider
protein domain families as well as genes when building the networks
to link drugs, their targets, and potential side effects. As such it was
able to model relationships for up to 159,282 different ChEMBL

FIGURE 3
Numbers of pairs in the Confirmed Pairs lists from the literature derived co-occurrence data compared to the RandomOverlapping lists. On the left
are the pairs for the protein-target method and on the right the pairs for the domain-target method. (A, C) show the ratio changes in the different
hypergeometric index thresholds. The red line corresponds to a ratio of 1. (B, D) represent the total number of pairs confirmed by SIDER per each
hypergeometric index threshold.
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drugs with known protein targets. However, we must also point out
that we were only able to perform validation analysis on a subset of
drugs, as most of the ChEMBL drugs were at clinical trial phase 0 in
the drug-development pipeline and have no official name other than
their ChEMBL ID. As such, most of them have no documented
effects according to the SIDER resource.

Although the protein-target and domain-target methods
showed some similarity in terms of their results, the majority
of the top twenty phenotype-drug associations were different.
This is to be expected–one protein can be annotated with
multiple domains, and a given domain might belong to
multiple proteins. The domain-target method has the distinct

advantage that it allows finding the putative domain involved in
how drugs exert their phenotypic effects, providing information
at a finer molecular detail than the protein-target approach. It
also has the advantage of finding a larger number of significant
associations at all hypergeometric index thresholds, for both
OMIM and Orphanet diseases. Nevertheless, it should also be
pointed out that the protein-target method tends to perform
better than the domain-target method. This may be due to the
sheer number of steps in the domain-target workflow, which
contains extra steps in both modules A and B to map from
proteins to domains, and we may be losing information here. By
using FunFams we also potentially include noise by connecting

TABLE 7 Top drug-phenotype pairs according to the hypergeometric index, based on the OMIM dataset using the protein-target based methodology, only
including ChEMBL drugs with drug names that can be found within SIDER (all drugs are in phase 4).

HPO Term ID Term Name Drug Drug name HyI Evidence

HP:0005506 Chronic myelogenous
leukemia

CHEMBL 255863 NILOTINIB 4.72 PMID: 30547682, PMID: 33414482

HP:0005506 Chronic myelogenous
leukemia

CHEMBL 941 IMATINIB 4.65 PMID: 33414482, PMID: 24455116

HP:0000958 Dry skin CHEMBL
1229517

VEMURAFENIB 4.56 PMID: 26328215, PMID: 27699043

HP:0005506 Chronic myelogenous
leukemia

CHEMBL 288441 BOSUTINIB 4.24 PMID: 30446802, PMID: 39164407

HP:0005506 Chronic myelogenous
leukemia

CHEMBL
1171837

PONATINIB 4.19 PMID: 38287132, PMID: 38804723

HP:0000746 Delusions CHEMBL 589 ROPINIROLE 3.91 PMID: 21494343, PMID: 22953148

HP:0100723 Gastrointestinal stroma
tumor

CHEMBL 941 IMATINIB 3.88 PMID: 38886160, PMID: 37254018

HP:0100753 Schizophrenia CHEMBL 243712 AMISULPRIDE 3.84 PMID: 29406775, PMID: 12076408, PMID: 11803729

HP:0000746 Delusions CHEMBL 243712 AMISULPRIDE 3.69 PMID: 12076408, PMID: 11803729

HP:0005506 Chronic myelogenous
leukemia

CHEMBL 1421 DASATINIB 3.69 PMID: 19536317, PMID: 27784993

HP:0100723 Gastrointestinal stroma
tumor

CHEMBL 477772 PAZOPANIB 3.51 PMID: 34271307

HP:0000958 Dry skin CHEMBL
1946170

REGORAFENIB 3.41 PMID: 37666264

HP:0002019 Constipation CHEMBL 669 CYCLOBENZ-
APRINE

3.27 PMID: 20675978

HP:0000958 Dry skin CHEMBL
2028663

DABRAFENIB 3.16 PMID: 37610803

HP:0011034 Amyloidosis CHEMBL
2103837

TAFAMIDIS 3.15 PMID: 30145929 (Transthyretin Amyloid Cardiomyopathy)

HP:0000958 Dry skin CHEMBL 477772 PAZOPANIB 2.97 PMID: 25031940, PMID: 25592338 (Skin reactions but not
dry) skin

HP:0006721 Acute lymphoblastic
leukemia

CHEMBL 941 IMATINIB 2.93 PMID: 38581291, PMID: 31944221, PMID: 21575924

HP:0100753 Schizophrenia CHEMBL 71 CHLORPR-
OMAZINE

2.89 PMID: 28407198

HP:0100753 Schizophrenia CHEMBL 54 HALOPERIDOL 2.89 PMID: 31006114

HP:0000958 Dry skin CHEMBL 1336 SORAFENIB 2.86 PMID: 22551785, PMID: 24698672

Drug, ChEMBL database ID; HyI, hypergeometric index.
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drugs to multiple domain families, some of which might be
connected to many different functions.

It is also clear that the OMIM results tend to show higher overlap
with known associations than the Orphanet results. This is likely
because OMIM contains Mendelian diseases, with each disease
largely considered a separate entity. As such, the link between the
variant, gene and phenotype is arguably more direct, whereas for
Orphanet a given disease is more likely to be linked to multiple
genes. In fact, the mean number of genes per disease in Orphanet is
almost twice as high as for OMIM (2.19 vs. 1.12). Future work could
explore the use of Orphanet data in a different way, combining the data
from the different resources, or using resources such as MONDO/The
Monarch initiative (Shefchek et al., 2020; Vasilevsky et al., 2022).

Whilst other metrics exist beside the hypergeometric index, we
have shown in previous studies that it provides the best results when
applied to similar data (Bueno et al., 2018; Rojano et al., 2017).
Nevertheless, other studies have shown other metrics to perform
well for different types of networks and this remains a potential
avenue for future work. Another important line of research for the
future is to differentiate drug-phenotype associations related to
intended from those related to side/adverse effects, side-effects

databases such as SIDER could potentially be exloited for this
purpose. It would also be interesting to look at combining
OMIM and Orphanet data, both at the level of network creation
and in terms of overlapping results.

To conclude, we have developed two workflows to associate
drugs with phenotypes based on combining drug-target and
target-phenotype pairs, taken from disease and drug databases.
We have shown that these phenotype-drug pairs show high
overlap with drug-effects pairs taken from a database of
known side effects and are frequently found together in the
scientific literature. This adds weight to previous findings
(Alqasim et al., 2018) involving the use of target data to
understand drug effects. The results derived from this study
could have a significant impact on drug development and
repositioning. The tripartite network-based approach that
links drugs, targets, and phenotypes, provides insights into the
mechanisms that connect drugs to their potential effects, both
intended and adverse side effects, as well as potential off-targets.
The approach could help to identify potential outcomes at early
stages of the development process, which can reduce failure rates,
saving time and money. Moreover, the methodology may

TABLE 8 Top drug-phenotype pairs according to the hypergeometric index, based on the OMIM dataset using the domain-target based methodology, only
including ChEMBL drugs with drug names that can be found within SIDER.

HPO Term ID Term Name Drug Drug name HyI Evidence

HP:0005506 Chronic myelogenous leukemia CHEMBL 255863 NILOTINIB 26.30 PMID: 30547682, PMID: 33414482

HP:0000622 Blurred vision CHEMBL 698 TETRACAINE 26.22 PMID: 28521706, PMID: 33121832

HP:0005506 Chronic myelogenous leukemia CHEMBL 941 IMATINIB 24.97 PMID: 33414482, PMID: 24455116

HP:0006721 Acute lymphoblastic leukemia CHEMBL 941 IMATINIB 18.93 PMID: 38581291, PMID: 31944221, PMID: 21575924

HP:0006721 Acute lymphoblastic leukemia CHEMBL 1171837 PONATINIB 17.54 PMID: 38828928, PMID: 39328803, PMID: 38972767

HP:0001269 Hemiparesis CHEMBL 1908360 EVEROLIMUS 17.10 PMID: 28888335 (used in cancer treatment;
immunosuppressive therapy, but also for seizures and
epilepsy. mTOR inhibitor side effects can lead to
hemiparesis in rare cases)

HP:0004936 Venous thrombosis CHEMBL 1171837 PONATINIB 16.41 PMID: 32911643

HP:0100723 Gastrointestinal stroma tumor CHEMBL 941 IMATINIB 15.24 PMID: 38886160, PMID: 37254018

HP:0100723 Gastrointestinal stroma tumor CHEMBL 477772 PAZOPANIB 13.40 PMID: 34271307

HP:0002170 Intracranial hemorrhage CHEMBL 231779 APIXABAN 12.71 PMID: 23220847, PMID: 27823792

HP:0000225 Gingival bleeding CHEMBL 231779 APIXABAN 12.27 PMID: 26535102

HP:0000421 Epistaxis CHEMBL 231779 APIXABAN 11.55 PMID: 23220847, PMID: 26535102

HP:0000132 Menorrhagia CHEMBL 231779 APIXABAN 11.55 PMID: 23220847

HP:0005506 Chronic myelogenous leukemia CHEMBL 288441 BOSUTINIB 11.27 PMID: 38278737

HP:0002019 Constipation CHEMBL 669 CYCLOBENZ-APRINE 11.17 PMID: 20675978

HP:0001664 Torsade de pointes CHEMBL 473 DOFETILIDE 10.80 PMID: 25634399, PMID: 39221117

HP:0001664 Torsade de pointes CHEMBL 1108 DROPERIDOL 10.80 PMID: 19291568

HP:0001664 Torsade de pointes CHEMBL 1008 BEPRIDIL 10.80 PMID: 33026317

HP:0002204 Pulmonary embolism CHEMBL 48361 DABIGATRAN 10.68 PMID: 27411591

HP:0012531 Pain CHEMBL 698 TETRACAINE 10.61 PMID: 31739347 (analgesic)

Drug, ChEMBL database ID; HyI, hypergeometric index.
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facilitate drug repurposing by identifying new therapeutic uses
for existing drugs through shared targets and phenotypes.
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