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Cardiovascular diseases (CVDs) include atherosclerosis, which is an inflammatory
disease of large and medium vessels that leads to atherosclerotic plaque
formation. The key factors contributing to the onset and progression of
atherosclerosis include the pro-inflammatory cytokines interferon (IFN)α and
IFNγ and the pattern recognition receptor (PRR) Toll-like receptor 4 (TLR4).
Together, they trigger the activation of IFN regulatory factors (IRFs) and signal
transducer and activator of transcription (STAT)s. Based on their promoting role in
atherosclerosis, we hypothesized that the inhibition of pro-inflammatory target
gene expression throughmulti-IRF inhibitors may be a promising strategy to treat
CVDs. Using comparative in silico docking of multiple IRF–DNA-binding domain
(DBD) models on a multi-million natural compound library, we identified the
novel multi-IRF inhibitor, ALEKSIN. This compound targets the DBD of IRF1, IRF2,
and IRF8 with the same affinity and simultaneously inhibits the expression of
multiple IRF target genes in human microvascular endothelial cells (HMECs) in
response to IIFNα and IFNγ. Under the same conditions, ALEKSIN also inhibited
the phosphorylation of STATs, potentially through low-affinity STAT-SH2 binding
but with lower potency than the knownmulti-STAT inhibitor STATTIC. This was in
line with the common inhibition of ALEKSIN and STATTIC observed on the
genome-wide expression of pro-inflammatory IRF/STAT/NF-κB target genes,
as well as on the migration of HMECs. Finally, we identified a novel signature of
46 ALEKSIN and STATTIC commonly inhibited pro-atherogenic target genes,
which was upregulated in atherosclerotic plaques in the aortas of high-fat diet-
fed ApoEKO mice and associated with inflammation, proliferation, adhesion,
chemotaxis, and response to lipids. Interestingly, the majority of these genes
could be linked to macrophage subtypes present in aortic plaques in HFD-fed
LDLR-KO mice. Together, this suggests that ALEKSIN represents a novel class of
multi-IRF inhibitors, which inhibits IRF-, STAT-, and NF-κB-mediated
transcription and could offer great promise for the treatment of CVDs.
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Furthermore, the ALEKSIN and STATTIC commonly inhibited pro-inflammatory
gene signature could help monitor plaque progression during experimental
atherosclerosis.
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Introduction

Cardiovascular diseases (CVDs) include atherosclerosis, which
is an inflammatory disease of large and medium vessels that leads to
atherosclerotic plaque formation. Atherosclerosis is characterized by
early endothelial cell (EC) dysfunction and altered contractility of
vascular smooth muscle cells (VSMCs). Recruitment of blood
leukocytes to the injured vascular endothelium characterizes the
initiation and progression of atherosclerosis and involves many
inflammatory mediators, modulated by the cells of both innate
and adaptive immunity (Libby, 2021; Soehnlein and Libby, 2021).
The key factors contributing to the early stages of atherosclerosis and
plaque development include the pro-inflammatory cytokine
interferon (IFN)α and IFNγ and the pattern recognition receptor
(PRR) Toll-like receptor 4 (TLR4) (Szelag et al., 2016). Together,
they trigger the activation of members of the signal transducer and
activator of transcription (STAT) and interferon regulatory factor
(IRF) family (Michalska et al., 2018; Antonczyk et al., 2019). STAT
activation is mediated by a highly conserved SH2 domain, which
interacts with phosphotyrosine (pTyr) motifs for specific
STAT–receptor contacts and STAT dimerization. The active
dimers induce gene transcription in the nucleus by binding to
target genes through a DNA-binding domain (DBD) interacting
with gamma-activated sequence (GAS) sites. IRFs possess a
conserved DBD and an IRF-association domain (IAD) that
participate in the interactions with other members of the IRF
family, other transcription factors (i.e., STATs), and co-factors.
IRFs bind to the IFN regulatory element (IRE) and IFN-
stimulated response element (ISRE) to activate the transcription
of IFN and IFN-stimulated genes (ISGs) (Szelag et al., 2016;
Antonczyk et al., 2019).

In many immune cells and cells from the vasculature, IFNγ and
TLR4 participate in signaling cross-talk through combinatorial
actions of distinct and overlapping transcription factors on ISRE,
GAS, ISRE/GAS, ISRE/NF-κB, or GAS/NF-κB binding sites
(Platanitis and Decker, 2018; Piaszyk-Borychowska et al., 2019).
As such, inflammation-induced activation of multiple STATs, IRFs,
and NF-κB coordinates robust expression of various chemokines,
adhesion molecules, and antiviral and antimicrobial proteins. Thus,
signal integration between IFNγ and LPS in vascular cells and
atheroma-interacting immune cells modulates important aspects
of inflammation, with STATs and IRFs being important mediators.
In particular, STAT1, STAT2, and STAT3 (Szelag et al., 2016; Plens-
Galaska et al., 2018) and IRF1, IRF4, IRF5, IRF8, and IRF9 (Döring
et al., 2012; Zhang et al., 2014a; Guo et al., 2015; Cheng et al., 2017;
Liu et al., 2017; Seneviratne et al., 2017; Clément et al., 2018;
Antonczyk et al., 2019; Leipner et al., 2021) have recently been
recognized as prominent modulators of inflammation, especially in
immune and vascular cells during atherosclerosis. Based on this,

these proteins represent interesting therapeutic targets, and
combined inhibition could be a novel treatment strategy in
CVDs (Szelag et al., 2016; Antonczyk et al., 2019).

STAT inhibitory strategies are numerous, and by exploring the
pTyr-SH2 interaction area of STAT3, searches for STAT3-targeting
compounds are numerous and yielded many small molecules (Szelag
et al., 2016). Recently, we developed a pipeline approach that
combines comparative in silico docking of multi-million CL and
CDL libraries to multiple STAT-SH2 models with in vitro STAT
inhibition validation as a novel selection strategy for STAT-targeting
inhibitors (Czerwoniec et al., 2015; Szelag et al., 2015). This approach
allowed us to identify a new type of multi-STAT inhibitor, C01L_F03,
targeting the SH2 domains of STAT1, 2, and 3 with equal affinity.
Moreover, we observed a similar STAT cross-binding mechanism for
STATTIC, a previously identified STAT3 inhibitor (Plens-Galaska
et al., 2018). This novel class of multi-STAT inhibitors was shown to
mediate the genome-wide inhibition of pro-atherogenic gene
expression directed by the cooperative involvement of STATs with
IRFs and/or NF-κB (Plens-Galaska et al., 2018).

To date, indirect IRF modulation has been mainly studied in
terms of antiviral response regulation and cancer treatment, using,
i.e., antisense oligonucleotides and siRNA knockdown strategies
(Antonczyk et al., 2019). However, recently, promising small-
molecule-based IRF4 (Agius et al., 2023) and cell-penetrating
peptide (CPP)-based IRF5 direct-inhibition strategies were
developed in connection with multiple myeloma and SLE,
respectively (Banga et al., 2020; Song et al., 2020). Here, we
extended our STAT inhibitor pipeline approach with 3D
structure models for IRF1, 2, and 8 DBDs (Szelag et al., 2015;
2016). Using comparative in silico docking of these IRF-DBD
models on a multi-million natural compound ZINC library
(Irwin and Shoichet, 2005), we identified the novel multi-IRF
inhibitor, ALEKSIN, which exhibited genome-wide inhibition
potential toward IRF-, STAT-, and NF-κB-mediated
transcription, similar to STATTIC. Furthermore, we discovered
an ALEKSIN and STATTIC commonly inhibited pro-atherogenic
gene signature that could help monitor plaque progression during
experimental atherosclerosis. Together, this suggests that the
application of a multi-IRF/STAT inhibitory strategy could offer
great promise for the diagnosis and treatment of CVDs.

Materials and methods

Protein model preparation

Three-dimensional models of DNA-binding domains of IRF1,
IRF2, and IRF8 were prepared based on the existing crystal
structures for IRFs deposited in RCSB Protein Data Bank. A
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detailed description of the utilized homology modeling procedure
and optimization of the models is presented in the study by Szelag
et al. (2016) and Szelag et al. (2016). For a better understanding of
the interaction of IRF DNA-binding domains with their target
sequence, 3D models were designed in complex with the IRE
DNA (consensus sequence: 5′-GAGAAGTGAAAGT-3′). To find
an “ideal” cavity, the molecular probe of the active site to which
ligands are matched, “protomol” was generated (Szelag et al., 2016).

Compound library selection and small
inhibitor preparation

A natural compound library (NCL) containing 131,582 small
molecules that are natural metabolites (Irwin and Shoichet, 2005) was
selected and downloaded from the ZINC database. The compounds
found in theNCL are characterized by lowmolecular weight, chemical
parameters fulfilling the criteria of the Lipinski’s rule of five (Lipinski,
2004), and ready-to-dock parameters of protonation state and partial
atomic charges (Irwin and Shoichet, 2005).

Geometries of potential IRF inhibitors used for docking were
obtained from the ZINC database (code names presented in
Table 2). The structures were also provided in ready-to-dock 3D
formats with molecules represented in biologically relevant forms
(Irwin and Shoichet, 2005).

Virtual screening of small-
compound libraries

A five-step comparative approach, CAVS, developed by our team
in order to select STAT-specific compounds (Czerwoniec et al., 2015;
Szelag et al., 2016; Plens-Galaska et al., 2018) was utilized to identify
potential IRF inhibitors. This novel tool combines comparative in
silico docking to the IRF-DBD with the in vitro validation of potential
inhibitors. Structural models of IRF-binding domains and a collection
of compounds from the NCL were utilized in the virtual screening
procedure. As a result, we identified a number of potential IRF
inhibitors for further validation and characterization. Compounds
were selected using the pscreen algorithm throughout the in silico
ligand–protein docking procedure (Szelag et al., 2016; Antonczyk
et al., 2019). In other words, a library of small molecules was docked to
the binding pockets of IRF1-, IRF2-, and IRF8-DBD of their 3D
structural models. The binding affinity of the individual compounds
was compared by using the binding score (BS) and comparative
binding affinity value (CBAV), which also allowed us to distinguish
the inhibitory potential for each of the IRF-DBDs. Based on the BS
and CBAV, a list of the most promising potential IRF inhibitors was
generated. After confirming the purchasability and availability of these
compounds in numerous vendors, we ordered 20 of them for further
in vitro testing.

Comparative docking of STATTIC
and ALEKSIN

In order to compare ALEKSIN and STATTIC with compounds
obtained from the NCL virtual screening, docking simulations of

ALEKSIN and STATTIC to IRF1, IRF2, and IRF8 DBDs were
performed using the pgeom algorithm implemented in Surflex-
Dock 2.6 (Jain, 2003; 2007). For each structure in the predefined
area of IRF1, 2, and 8 DNA-binding domain, we obtained 20 binding
poses. Then, for each compound, the best of 20 binding poses was
filtered out for further analysis. Finally, IRF1 CBAV was determined
to compare the binding between IRF1, IRF2, and IRF8 for
both compounds.

Cell culture and treatment

Human microvascular endothelial cells (HMECs) (Ades et al.,
1992) were provided by the Center for Disease Control
and Prevention (Atlanta, GA) and cultured in MCDB-131
medium (IITD PAN, Wroclaw, Poland) containing 10% of
fetal bovine serum (FBS) (Gibco, Thermo Fisher Scientific),
100 U/mL penicillin, 100 μg/mL streptomycin, 0.01 μg/mL
EGF, 0.05 μM hydrocortisone, and 2 mM L-glutamine.
STATTIC was purchased from Sigma and ALEKSIN
(ZINC9547778, MolPort-004-931-223) from IBS, STOCK6S-
36352. Recombinant IFNα and IFNγ were purchased from
Merck, while LPS was provided by Sigma-Aldrich. Rabbit
polyclonal antibodies against STAT1-pTyr701, tSTAT1,
tSTAT2, IRF1, and IRF9 were obtained from Santa Cruz, and
STAT2-pTyr689, from Merck. The Tubulin antibody was
purchased from Merck, and the anti-rabbit HRP-conjugated
antibody, from Sigma-Aldrich.

Depending on the experiment design, the medium was changed
from complete to starving medium containing 1% FBS 8–12 h before
treatment. Then, the cells were pre-treated with various
combinations of inhibitory compounds and IFNα, IFNγ, and
LPS. HMECs were treated with either a single stimulus, 200 U/
mL (4 h for RNA isolation and 2 h for protein isolation) of IFNα,
10 ng/mL of IFNγ (8 h for RNA isolation and 4 h for protein
isolation), or a combination of IFNγ for 8 h of LPS (1 μg/mL) for 4 h.
Depending on the experiment, different concentrations of ALEKSIN
were administered 24 h before trypsinization, while in the case of
STATTIC, 8 h before. The effect of ALEKSIN on cell viability was
quantified by comparing cell counts and morphology [using the
ZOE Cell Imager (brightfield channel, ×20 objective)] of HMECs
before and after treatment with different concentrations of
the compound.

RNA isolation and qPCR

Total RNA was extracted using the GeneMATRIX Universal
RNA Purification Kit (EurX, Gdansk, Poland, E3598-02) according
to the manufacturer’s instructions. A measure of 500 ng of purified
total RNA was then reverse-transcribed using Thermo Fisher
Scientific reagents (K1622). The transcripts were quantified via
qPCR with Maxima SYBR Green/ROX qPCR Master Mix
(K0223, TFS) using the CFX Connect Thermal Cycler System
(Bio-Rad Laboratories, Hercules, CA, United States). The target
gene levels were normalized to glyceraldehyde-3-phosphate
dehydrogenase (GAPDH). The PCR primers used are listed
in Table 1.
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Western blot analysis

Western blot analysis was essentially performed according to
Plens-Galaska et al. (2018). HMECs were washed with phosphate
buffered saline (PBS) and lysed using radio-immune precipitation
assay (RIPA) lysis buffer (50 mM Tris-HCl, pH = 8.0, 150 mM
NaCl, 1% Nonidet-40, 0.5% sodium deoxycholate, 0.1% SDS, 1%
protein inhibitor cocktail, 1% EDTA, and 0.1% PMSF) and stored
at −80°C. Lysates were quantified using a bicinchoninic acid (BCA)
kit (Pierce). A measure of 30 µg of protein was loaded on Blot 4%–
12% Bis-Tris Plus Gels, electrophoresed, and transferred to PVDF
membranes (Santa Cruz). All Western blot analyses were
performed using the SNAP i.d. system (Merck). Membranes
were blocked in 0.125% non-fat dry milk or 1% BSA in TBS-
Tween (TBS-T) and incubated with primary antibodies (1:
500 IRF1, 1:500 IRF9, 1:1,000 pSTAT1, 1:500 tSTAT1, 1:
500 pSTAT2, 1:500 tSTAT2, and 1:2,000 tubulin) and then with
the secondary anti-rabbit HRP-conjugated antibody (1:20,000).
Immunoreactive bands were visualized by enhanced
chemiluminescence (ECL) using the Luminata Forte HRP
Substrate (Merck) and detected using the G:Box System
(Syngene). After detection, the membranes were stripped with a
buffer containing 25 mM glycine and 1% SDS, pH = 2.0, and re-
probed. ImageJ software (https://imagej.net/ij/) was used for
Western blot quantification, with α-tubulin as the
reference protein.

In vitro wound healing assay

The scratch assay was performed according to Plens-Galaska
et al. (2018), withminor changes. HMECs were seeded at a density of
400.000/mL on 6-well plates and cultured until they reached around
85%–90% confluency. The cells were pre-treated with ALEKSIN for
24 h and STATTIC for 8 h. After 12 h of treatment with compounds,
scratches with a diameter of approximately 9.6 mm were introduced
and subsequently treated with or without 10 ng/mL of IFNγ and
1 μg/mL of LPS. At the same time, reference points were generated,
and the first image was taken. The second image was taken after 12 h
using the AxioObserver Z1Microscope (Zeiss). The images acquired
for each sample from two independent repeats were further analyzed
quantitatively using ImageJ to determine the % wound coverage and
the rate of cell migration (Rm) in μm/h (Liang et al., 2007; Schneider
et al., 2012).

ApoEKO mouse high-fat diet model of
atherosclerosis

In order to better understand the molecular basis of
atherosclerotic plaque formation and the genes involved in the
process, a mouse model of atherosclerosis was used. The
experiment was conducted on 24 house mice (Mus musculus)
B6.129P2-ApoEtm1Unc/J (purchased from Jacksons Laboratory).
Breeding and animal experiments were performed in the animal
facility of the Wielkopolskie Centrum Zaawansowanych
Technologii (WCZT) in Poznań. All animal experiments were
performed in accordance with the agreement of the Poznan Local
Ethical Committee under approval numbers 16/2019 and 42/2021.
The animals were divided into two groups (×2 n = 12) of mixed
sexes. The first group was fed a standard low-fat chow diet (LFD),
and the second group of mice was fed a high-fat diet (HFD; high fat,
+7.5 g/kg cholesterol, experimental diet, 10.7% fat, Ssniff S GmbH).
After a week of acclimatization and handling, 8-week old ApoE-
deficient house mice were subjected to experiments and placed on an
HFD for 12 weeks. Over the course of 12 weeks, the mice developed
atherosclerotic deposits. After 14 days from the start of the high-fat
diet, blood was collected from the jugular vein and subjected to
biochemical analysis of cholesterol levels. Another assessment of
cholesterol levels was performed after another 5 and 12 weeks. At the
end, 20-week-old mice were euthanized by an overdose of isoflurane,
after which the organs were isolated—weighed, frozen in liquid
nitrogen, and subjected to further histological and RNA analyses.
The isolation of organs allowed for the assessment of atherosclerotic
plaque formation and the expression of pro-inflammatory genes.

RNA isolation
The animals were divided into two groups (×2 n = 8) of mixed

sexes. Frozen aortic arch tissues were transferred to TRIzol (A&A
Biotechnology) and homogenized using a manual Omni tissue
homogenizer and dedicated hard tips. All the following steps of
RNA isolation were carried out according to the Total RNA Zol-Out
(A&A Biotechnology) protocol for the rapid purification of ultra-
pure total RNA from samples prepared in TRIzol (A&A
Biotechnology).

Histology
1. The animals were divided into two groups (×2 n = 2). Cross

sections of the mouse aorta (left part of the aortic arch) were
formalin-fixed, dehydrated with ethanol and xylene, and paraffin-

TABLE 1 List of PCR primers.

Gene name Forward primer sequence Reverse primer sequence

GAPDH GATGACAAGCTTCCCGTTCTC TGAAGGTCGGAGTCAACGGA

IRF1 GTCCAGCCGAGATGCTAAGAGC GGCTGCCACTCCGACTGCTCC

IFIT1 CTTGCAGGAAACACCCACTT CCTCTAGGCTGCCCTTTTGT

IFIT3 GGGCAGACTCTCAGATGCTC ACCTTCGCCCTTTCATTTCT

ISG15 GGTGGACAACTGCGACGAAC TCGAAGGTCAGCCAGAACAG

STAT1 AGTGAACTGGACCCCTGT CT TGTTATGGGACCGCACCTTC

MX1 CCACAGAGGCTCTCAGCAT CTCAGCTGGTCCYGGAYCTC
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embedded. The paraffin sections were stained with hematoxylin and
eosin (H&E) using the Leica Autostainer XL H&E Slide Stainer. The
sections were deparaffinized in xylene and rehydrated with distilled
water. H&E staining was performed by 3 min of submersion in
hematoxylin, followed by a washing step in tap water and 30-s
submersion in eosin, after which the slides were dehydrated and
covered with a cover slip. Histological staining and
immunohistochemistry were assessed under a Nikon Eclipse Ti
microscope. Images were taken and processed using NIS-
Elements software (Nikon). The slides were observed under a
microscope and scored for the presence of early or progressive
lesions, as described by Shibata et al. (2017).

2. The animals were divided into two groups (×2 n = 2). Oil Red
O staining of the whole aorta was performed as described earlier
(Centa et al., 2019), with minor changes. In brief, aortas were
dissected, pinned on a hard surface, stained with 2 mg/mL Oil
Red O dilution for 20 min, and rinsed twice in isopropanol. Images
were taken using an Olympus ×10 microscope, and the lesion area
was assessed as the percentage of total area of the aorta using
ImageJ software.

Lipid assessment
The blood cholesterol levels (HDL and LDL/VLDL) of mice

were analyzed using a commercially available kit (e.g., Cholesterol
Assay Kit, Abcam, United Kingdom).

RNA-seq library preparation

The RNA-seq library was essentially prepared according to
Sekrecka et al. (2023) and Sekrecka et al. (2023). RNA from
HMECs and mouse aortas was quantified using a Qubit RNA BR
assay kit (Q10210; Thermo Fisher Scientific), and the quality was
assessed via the Agilent 2100 Bioanalyzer using the RNA 6000 Nano
kit (5067–1511, Agilent Technologies, Santa Clara, CA,
United States), according to the protocols provided by
manufacturers. RNA degradation was assessed using the RNA
integrity number (RIN), and samples with a RIN higher than
9 were then used for further analysis. RNA libraries were
prepared in three biological repeats from 1 μg of total RNA
using the NEBNext® Ultra™ or Ultra™ II RNA Library Prep Kit
for Illumina® (New England Biolabs [NEB], Ipswich, CA,
United States) together with the NEBNext Poly(A) mRNA
Magnetic Isolation Module (NEB) and NEBNext® Multiplex
Oligos for Illumina® (NEB), according to the manufacturer’s
protocol. The quality and fragment distribution of the prepared
libraries were estimated using the Agilent High-Sensitivity DNA kit
(5067–4626, Agilent Technologies), and the quantity was assessed
using the Qubit dsDNA HS assay kit (Q32851, Thermo
Fisher Scientific).

RNA sequencing

HMEC
Sequencing was performed on the Illumina

NextSeq500 platform (75 bp, single-end). After quality control,
adapter trimming, and quality filtering using fastp (v.0.22.0)

(Chen S. et al., 2018), the reads were aligned to the human
GRCh38/hg38 genome using STAR 2.6.1d (Dobin et al., 2013).
Raw per-gene counts were calculated using featureCounts (v.1.6.2)
(Liao et al., 2014). Before differential expression testing, the genes
were prefiltered to include only genes that had a minimum of 10 raw
reads in at least one sample. Count normalization and differential
gene expression (DEG) analysis were performed using the edgeR
package (v.3.30.3) (Robinson et al., 2009) in R version 3.6.3 (R Core
Team (2021) R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna;
https://www.R-project.org). Tests were corrected for multiple
comparisons using the method of Benjamini and Hochberg (BH).
Genes with a log2 fold-change ≥1 and adjusted p-value ≤0.05 were
considered differentially expressed between conditions.

ApoEKO
Libraries were sequenced on the Illumina HiSeq X Ten platform

(150 bp, paired-end). Sequence reads were trimmed to remove
possible adapter sequences and nucleotides with poor quality
using fastp (v.0.22.0) with the default parameters and mapped to
the M. musculus reference genome (GRCm38/mm10) using STAR
aligner (2.6.1d). Unique per-gene counts were calculated using
STAR. Before differential expression testing, genes were
prefiltered to include only genes that had a minimum of 10 raw
reads in at least one sample. Counts were normalized as logarithmic
counts per million. Data analyses were carried out using R (v.4.2.2)
packages. The linear regression model package limma (v.3.52.4)
(Ritchie et al., 2015) was used to identify DEGs between the normal-
diet group and the high-fat diet group. Tests were corrected for
multiple comparisons using the BH method. Genes with a log2 fold-
change >0.5 and adjusted p-value <0.05 were considered
differentially expressed between conditions. All raw and
processed sequencing data are accessible via the NCBI Gene
Expression Omnibus (GEO) under the accession numbers
GSE270277 (human HMEC RNA-seq data) and GSE270260
(mouse ApoEKO RNA-seq data).

Gene Ontology Enrichment Analysis

GO Enrichment Analysis was performed with the “enrichGO”
function of the clusterProfiler package (v.4.6.0) (Wu et al., 2021),
using the biological process ontology. Enrichment p-values were
corrected for multiple comparisons using the BH method (cutoff for
p-value = 0.01 and for qvalue = 0.05). All DEGs were used as
background. The “simplify” function was applied to reduce the
redundancy of the enriched GO terms, with default parameters and
cutoff 0.6. A total of 15 terms with the highest statistical significance
were used for visualization as bar plots (ggplot2 3.5.0) (Wickham,
2011). Enrichment was defined as −log10 (adjusted p-value).

Promoter analysis

For promoter analysis, active promoters for genes differentially
expressed between conditions were selected using the proActiv R
package (v.1.8.0) (Demircioğlu et al., 2019) with default parameters.
In brief, counts and normalized promoter activity estimates for each
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annotated promoter were generated based on junction files obtained
from STAR during alignment. Only promoters with high and
medium average activities for each gene (categorized as major
and minor, respectively) across the samples were used in further
analysis. Promoters with average activities less than 0.25 were
considered inactive. proActiv does not provide activity estimates
for promoters that are not uniquely identifiable from splice
junctions (single-exon transcripts and promoters that overlap
with internal exons). In order to obtain these promoters, we used
cap analysis of gene expression (CAGE) data tag sequencing of the 5′
end of transcripts from the FANTOM5 project (hg38_fair + new_
CAGE_peaks_phase1and2. bed.gz, mm10_fair+new_CAGE_
peaks_phase1and2.bed.gz). Only promoters with the highest
activity (maximum peak score value per gene) were used.

Subsequently, combined lists of promoters for all DEGs for
HMECs and ApoEKO data were prepared using the custom R script
and used for the identification of enriched transcription factor-
binding sites in HOMER v.4.11 (annotatePeaks.pl) (Heinz et al.,
2010). For the identification of GAS and ISRE-binding sites, the set
of selected matrices (four for GAS and three for ISRE) from the
study by Sekrecka et al. (2023) was used. A similar strategy was
applied for NFkB matrix selection and optimization, using two
matrices from the HOMER database [Homer Motif 235
(GSE23622) and Homer Motif 268 (GSE19485)] and one motif
from the de novo analysis. Known motif search was performed on
sequences −850/+150 around the transcription start site (TSS) with
gene annotation files from GENCODE (v.43 and v.M25 for human
and mouse data, respectively).

Venn diagrams, cluster analysis,
and heatmaps

Graphical representations of the results were generated using
VennDiagram v.1.7.3 (Chen and Boutros, 2011), pheatmap v1.0.12
(Kolde, 2019), and ComplexHeatmap v.2.6.2 (Gu et al.,
2016) packages.

Heatmaps for selected genes were created using normalized
counts. Hierarchical clustering (by row, with default method:
complete, Euclidean distance) was used to select groups of
IFNγ+LPS target genes inhibited by ALEKSIN, STATTIC, or both
in HMECs. For plotting, row scaling with Z-scores was performed.
The color scale indicates the expression change over time for each
sample compared to the expression of the control. Colors represent
high (red) and low (blue) normalized intensity, respectively.

Single-cell RNA-seq analysis and heatmap
generation

Single-cell RNA-seq data from mice with deficient low-density
lipoprotein receptor and expressing only apolipoprotein B100
(Ldlr−/−/Apob100/100) under a 3-month high-fat diet were obtained
from the study by Örd et al. (2023). The data were then processed
and analyzed, as previously described (Boroujeni et al., 2024). The
processed data were used to generate heatmaps using
ComplexHeatmap package version 2.20.0 (Gu et al., 2016). For
clustering the rows, the Euclidean method was implemented.

Results

Identification of pI05, pI011, and pI013 as
novel multi IRF-DBD inhibitory compounds

To identify novel multi IRF-DBD inhibitory compounds, an
NCL from the ZINC database was screened using the pre-screen
algorithm (seeMaterials and Methods). Compounds were docked
to IRF1-, IRF2-, and IRF8-DBD. The compounds were first
selected according to their IRF1-, IRF2-, and IRF8-BS and
subsequently filtered by IRF1-CBAV(IRF2)~0 and IRF1-
CBAV(IRF8)~0 for comparable binding affinities. Accordingly,
20 compounds with the highest BS (named pI01–pI20) were
purchased (Table 2). To test the inhibitory capacity of these
compounds toward IRF target gene expression in vitro, HMECs
were treated with 50 μM of each compound for 24 h and 10 ng/
mL of IFNɣ for 8 h. Except for pI05, pI11, and pI13 (Figure 1A),
none of these compounds inhibited IRF target gene expression
(not shown). Interestingly, pI05, pI11, and pI13 exhibited
different inhibition patterns, from full (pI13) or partial
(pI05 and pI11) inhibition of Irf1 to full (pI11 and pI13) or
partial (pI05) IRF1 target gene expression (Ifit3 and Isg15)
(Figure 1A). Next, we examined the in silico binding of pI05,
pI11, and pI13 to the DBD of IRF1, IRF2, and IRF8. The top-
scored binding conformations were visualized using PyMOL (see
Materials and Methods), showing similar IRF1-, IRF2-, and IRF8-
BS (Figure 1B). Together, this suggested that pI05, pI11, and
pI13 inhibit IFNγ-induced IRF target gene expression by
targeting the DBD of multiple IRFs. Because of problems with
the stability of pI05 and purchasability of pI13, we only
continued with the further characterization of pI11 and
named it ALEKSIN.

ALEKSIN inhibits IFNα and IFNγ-induced IRF
target gene expression and STAT
phosphorylation

To study the IRF inhibitory characteristics of ALEKSIN in
more detail, we tested it first on IFNγ-treated HMECs at different
concentrations and time points. Apparently, treatment for 12 h
with ALEKSIN at concentrations varying from 5 to 20 μM did not
result in the inhibition of IFNγ-induced IRF target gene
expression (not shown). On the other hand, exposure of cells
to ALEKSIN for 24 h at 10 or 20 μM completely inhibited IIFNα
and IFNγ-induced expression of STAT1, IFIT3, and ISG15,
whereas the effect on IRF1 expression was only partial
(Figures 2A, B).

We also tested the effect of ALEKSIN on STAT phosphorylation
and STAT and IRF protein expression. Interestingly, pre-treatment
of HMECs with ALEKSIN, followed by IIFNα exposure, resulted in
the partial inhibition of STAT1 and STAT2 phosphorylation and
expression of IRF1 at early time points (2 and 4 h). IRF9, STAT1,
and STAT2 expression was also inhibited but with a more delayed
pattern (between 4 and 24 h of IIFNα treatment) (Figures 2C;
Supplementary Figures S1A, S3). The same was true for IFNγ-
treated cells, with comparable effects of ALEKSIN on expression of
IRF1, IRF9, STAT1, and STAT2 in a time-dependent manner. The
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inhibition of STAT1 phosphorylation, on the other hand, was not so
pronounced (Figures 2D; Supplementary Figures S1B, S3). However,
using ALEKSIN at a higher concentration (25 μM) also resulted in
the partial inhibition of IFNγ-induced STAT1 phosphorylation
(Figure 3A; Supplementary Figures S2A, S3). Compared with
ALEKSIN (10 μM), under these conditions, STATTIC (10 μM)
completely inhibited STAT1 phosphorylation (Figure 3B;
Supplementary Figures S2B, S3), which is in agreement with its
recent identification as a potent multi-STAT inhibitor (Plens-
Galaska et al., 2018). Moreover, ALEKSIN showed no toxicity
under these conditions based on RNA (Supplementary Figure
S4A) and protein (Supplementary Figure S4B) concentration
stability, and cell viability (Supplementary Figure S4C) and
morphology (Supplementary Figure S4D).

At the same time, we docked ALEKSIN to the SH2 domain of
STAT1, STAT2, and STAT3 and observed that it interacted with
the selected binding cavity but with a much lower binding affinity
than STATTIC (Figure 3C). This low-affinity binding of
ALEKSIN to STAT-SH2, in addition to high-affinity IRF-DBD
binding (Figure 1B), could reflect the presence of IRF-
independent effects and aligns with the observed partial
inhibition mediated by ALEKSIN toward IFN-induced STAT
phosphorylation.

ALEKSIN and STATTIC commonly inhibit the
cross-talk between IFNγ and LPS in an IRF/
STAT-dependent manner

Subsequently, we further investigated the ability of ALEKSIN
and STATTIC to inhibit pro-inflammatory and pro-atherogenic
signaling communicated by IFNγ and LPS cross-talk. As shown in
Figure 4, pre-treatment of HMECs with ALEKSIN or STATTIC
resulted in the inhibition of IFNγ+LPS-induced gene expression of
IRF1, STAT1, IFIT3, ISG15, and MX1. In general, STATTIC was
slightly more potent than ALEKSIN. These data suggested that
ALEKSIN and STATTIC may commonly block STAT, IRF, and
NF-κB cooperative promotor activation mediated by IFNγ and LPS
in human microvascular endothelial cells. To provide further
evidence for this, we studied the genome-wide effects of
ALEKSIN and STATTIC on IFNγ+LPS-mediated vascular
inflammation. For this, we performed RNA-seq on RNA isolated
from HMECs treated with IFNγ+LPS in the presence or absence of
10 µM of ALEKSIN or 10 µM of STATTIC (GEO accession:
GSE270277). IFNγ+LPS increased the expression of 537 genes by
at least two-fold or higher than untreated cells, of which the top
25 are shown in Table 3. These included many recognized IFNγ and
LPS target genes associated with chemotaxis/migration (CXCL9,

TABLE 2 List of 20 compounds from the screening of the Natural Compound Library chosen for in vitro testing.

IRF
pocket

ZINC ID Molecular
weight

IRF1 binding
score

IRF2 binding
score

IRF8 binding
score

IRF1-IRF2
CBAV

IRF1-IRF8
CBAV

pI01 ZINC31156634 428.43 8.51 7.71 8.47 0.81 0.05

pI02 ZINC04258943 369.40 8.51 7.71 8.47 0.81 0.05

pI03 ZINC12529631 372.43 6.03 7.36 6.08 −1.33 −0.05

pI04 ZINC12530243 405.45 6.15 5.94 6.23 0.22 −0.08

pI05 ZINC35424547 397.45 7.29 7.30 7.21 −0.01 0.08

pI06 ZINC19368515 369.40 7.22 5.96 7.09 1.26 0.14

pI07 ZINC19701866 200.25 4.71 4.36 4.74 0.35 −0.03

pI08 ZINC09659866 389.84 7.65 5.51 7.47 2.14 0.19

pI09 ZINC04023230 301.35 6.44 6.68 6.49 −0.25 −0.05

pI10 ZINC12895621 413.47 7.73 7.52 7.80 0.21 −0.07

pI11 ZINC09547778 442.87 6.22 8.76 6.14 −2.54 0.08

pI12 ZINC13684573 399.45 6.93 5.39 6.85 1.54 0.08

pI13 ZINC20721,096 379.46 7.21 7.85 7.12 −0.64 0.09

pI14 ZINC05789340 370.37 7.11 6.09 7.48 1.02 −0.37

pI15 ZINC15708473 429.54 9.24 7.73 5.72 1.51 3.53

pI16 ZINC12494893 354.49 11.24 9.32 7.48 1.92 3.76

pI17 ZINC19851,354 203.06 7.91 4.86 4.61 3.05 3.30

pI18 ZINC19701874 259.31 7.97 5.91 4.42 2.07 3.55

pI19 ZINC02140610 442.51 10.24 6.31 6.75 3.93 3.49

pI20 ZINC20112987 315.31 12.67 7.33 7.85 5.34 4.82

Compounds are listed by ZINC numbers and their correspondingmolecular weights. The following columns show their docking characteristics: pgeom algorithm, IRF1, 2, and 8 binding scores,

IRF1-IRF2-CBAV, and IRF1-IRF8-CBAV.
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CXCL10, CXCL11, CX3CL1, CCL8, and CCL20) and immune
response (GBP4, GBP5, GBP7, and IDO1).

Next, we identified 405 IFNγ+LPS target genes that were
commonly inhibited by ALEKSIN and STATTIC (Figure 5A),
with the inhibition pattern of the top 25 genes shown in Table 3.
Among them, we could recognize a variety of STAT and IRF target
genes. The inhibition ratio for ALEKSIN was determined by
dividing [FC IFNγ/LPS vs. UN] over [FC IFNγ/LPS + ALEKSIN
vs. UN], and for STATTIC, it is [FC IFNγ/LPS vs. UN] over [FC
IFNγ/LPS + ALEKSIN vs. UN] (Table 3). From this inhibition ratio,

it can be concluded that STATTIC is more potent than ALEKSIN
(Table 3). In addition, we also recognized 54 genes that were
predominantly inhibited by ALEKSIN, whereas for another
58 genes, STATTIC was the more dominant inhibitor
(Figure 5A). The complete list of upregulated genes in response
to IFNγ+LPS in the presence or absence of ALEKSIN or STATTIC is
shown in Supplementary Table S1.

GO analysis of the 405 commonly inhibited genes further
revealed the enrichment of general biological terms connected to
inflammation and atherogenesis, including cytokine-mediated

FIGURE 1
(A) pI05, pI11, and pI13 inhibit IFNɣ-induced expression of IRF1, IFIT1, and ISG15. HMECs were treated with 50 μM of each compound for 24 h and
10 ng/mL of IFNɣ for 8 h. RNA was isolated and analyzed by qPCR. Experiments were performed in two individual repeats, which were compared by a
t-test. *p < 0.05, **p < 0.01, and ***p < 0.001. (B) Top scored binding conformations of pI05, pI11, and pI13 in the DBD of IRF1, IRF2, and IRF8. Graphical
representation describes in detail the binding mode of the top scored conformation of the inhibitor in the active pocket of the IRF-DBD. Models
presented as human IRF-DBD/IRE complexes are shown in cartoon representation. Proteins are presented with a visible secondary structure, alpha
helices, and beta sheets, with hot pink denoting IRF1-DBD, tv-blue denoting IRF2, and aquamarine cyan denoting IRF8. The dsDNA fragment of the
respective IRF-DBD/IRE complexes implicates the position of the selected target cavity for the inhibitory compound. The target pocket for virtual
screening with an idealized active-site ligand (protomol) in the DBD of hIRF1, hIRF2, and hIRF8 is shown in a transparent surface representation in cyan
blue. Protomol is based on the interaction plane betweenDNA and amino acid residues of the respective hIRF-DBD/IRE complexes. Docking of pI05, pI11,
and pI13 to the DBD of IRF1, IRF2, and IRF8. Top-scored binding conformations (with the highest BS) of pI05, pI11, and pI13 in the IRF1, 2, and 8 DBD
shown in stick representation and colored according to the atomic structure. Docking simulations were performed using Surflex-Dock 2.6 and were
visualized in PyMOL.
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signaling pathway, defense response and immune system process,
regulation of cytokine production, inflammatory response, innate
immune response, adaptive immune response, T-cell activation,
regulation of leukocyte proliferation, leukocyte cell–cell adhesion,
neutrophil chemotaxis, cellular response to lipids, and response to
the tumor necrosis factor (Figure 5B). GO analysis of the ALEKSIN-
or STATTIC-specific gene clusters, on the other hand, recognized
similar but more restricted biological terms. For example,
ALEKSIN-specific genes were associated with inflammatory
response, regulation of cytokine production, fat-cell
differentiation, lymphocyte and leukocyte differentiation,
response to lipids, regulation of cell–cell adhesion, and response
to lipopolysaccharide (Figure 5B). In contrast, STATTIC-specific
genes were connected to the cytokine-mediated signaling pathway,
defense response and immune system process, regulation of
cytokine production, inflammatory response, innate immune
response, adaptive immune response, leukocyte proliferation,
leukocyte cell–cell adhesion, and myeloid cell differentiation

(Figure 5B). This suggests that, in general, functional overlap
exists between ALEKSIN and STATTIC common and specific genes.

We subsequently performed promoter analysis on the ALEKSIN
and STATTIC common and specific gene clusters. In the
region −850 to +150 bp around active promoter sites detected
using the proActiv R package (v.1.8.0), we identified transcription
factor-binding sites using the HOMER v.4.11 tool and a set of
selected and optimized matrices for GAS, ISRE, and NF-kB-binding
site motifs (for details see Material and Methods).Figure 6A shows
the predicted representation of individual or combined ISRE, GAS,
or NF-κB-binding sites in the proximal promoters of ALEKSIN and
STATTIC commonly inhibited genes. Accordingly, the majority of
these genes contained single ISRE (16.5%) or GAS (19.4%) sites or
combinations of ISRE + GAS (24.4%), ISRE + NF-κB (5.29%), GAS
+ NF-κB (13.5%), or ISRE + GAS + NF-κB (15.3%). In general,
under these conditions, ISRE motifs correspond to the potential
binding of multiple STATs (STAT1 and STAT2), IRFs (IRF1, IRF7,
IRF8, and IRF9), and GAS motifs to that of multiple STATs

FIGURE 2
(A, B) ALEKSIN inhibits IFNα and IFNy-induced gene expression of IRF1 and IRF1 target genes Stat1, Ifit3, and Isg15 in a concentration-dependent
manner. HMECs were pre-treated with 10 μM or 20 μM of ALEKSIN for 24 h and (A) 200 U/mL of IFNα for 4 h or (B) 10 ng/mL of IFNy for 8 h. RNA was
isolated and subjected to qPCR analysis. Experiments were performed in two individual repeats and compared by a t-test. *p < 0.05, **p < 0.01, and ***p <
0.001. (C, D) ALEKSIN inhibits IFNα and IFNy-induced protein expression of STAT1, STAT2, IRF1, and IRF9 and partial phosphorylation of STAT1 and
STAT2. HMECswere treatedwith 10 μMof ALEKSIN for 24 h and (C) 200U/mL of IFNα or (D) 10 ng/mL of IFNy for 0, 2, 4, 8, and 24 h. Protein extracts were
collected, and levels of IRF1, IRF9, pSTAT1, pSTAT2, tSTAT1, tSTAT2, and α-tubulin were assessed by Western blotting.
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FIGURE 3
(A, B) ALEKSIN and STATTIC inhibit IFNy-induced expression of IRF1 and IRF9 and phosphorylation of STAT1. HMECs were pre-treated with 20 μM
(A) or 10 μM (B) of ALEKSIN for 24 h and 10 μM (B) of STATTIC for 8 h and 10 ng/mL of IFNγ for 2 h. Protein extracts were collected, and levels of IRF1, IRF9,
pSTAT1, and α-tubulin were assessed by Western blotting. (C) Docking of ALEKSIN to the SH2 domain of STAT1, STAT2, and STAT3. Graphical
representation describes in detail the binding mode of top scored conformation of the inhibitor in the active pocket of the STATs-SH2 domain.
Models are presented in cartoon representation with a visible secondary structure, alpha helices, and beta sheets, in yellow for STAT1, tv-orange for
STAT2, and deep purple for STAT3. The target pocket for virtual screening with an idealized active-site ligand (protomol) in the SH2 domain of STAT1,
STAT2, and STAT3 is shown in transparent surface representation in cyan blue. Top-scored binding conformations of ALEKSIN in the STAT1, 2, and 3-SH2
domains are shown in stick representation (with the highest BS) and colored according to the atomic structure. Docking simulations were performed
using Surflex-Dock 2.6 program and were visualized in PyMOL.

FIGURE 4
ALEKSIN and STATTIC inhibit IFNγ+LPS-induced gene expression of IRF1, STAT1, IFIT3, ISG15, and MX1. HMECs were treated with (A) 10 μM of
ALEKSIN for 24 h or (B) 10 μMof STATTIC for 8 h and for 8 h with IFNγ +4 hwith LPS. RNA was isolated and subjected to qPCR analysis. Experiments were
performed in two individual repeats, which were compared by the t-test. *p < 0.05, **p < 0.01, and ***p < 0.001.
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(STAT1 and STAT3). Surprisingly, 19 genes (5.59%) were assigned
to the group with only an NF-κB-binding site in their proximal
promoter. However, these included genes like BCL3, CACNA1A,
CX3CL1, CXCL1, CXCL2, CXCL3, CXCL6, GBP2, GBP7, IL7R,
KRT17, NOD2, NUB1, and OPTN, which contained putative GAS
and/or ISRE sequences outside the 850-bp selected promoter area
(not shown).

Analyzing the promoters of the 58 STATTIC-specific
(Figure 6B) and 54 ALEKSIN-specific (Figure 6C) genes
displayed a similar distribution for single ISRE (12.5% vs. 13.5%),
GAS (29.2% vs. 29,7%), or NF-κB (8.33% vs. 10.8) sites, or
combinations of ISRE + GAS (10.4% vs. 21.6%), GAS + NF-κB
(18.8% vs. 10.8%), or ISRE + GAS + NF-κB (12.5% vs. 13.5%). On
the other hand, ISRE + NF-κB sites could only be recognized among
STATTIC-specific genes (8.33%).

Nevertheless, in general, these results strongly suggest that
ALEKSIN and STATTIC common and specific genes share the
presence of IRF, STAT, and/or NF-κB-binding sites and predict that
ALEKSIN and STATTIC commonly inhibit pro-inflammatory and
pro-atherogenic gene expression directed by the cooperative
involvement of STATs, IRFs, and/or NF-κB.

ALEKSIN inhibits IFNγ+LPS-induced EC
migration similar to STATTIC

In addition, we aimed at providing evidence that an IRF/STAT-
dependent inhibitory strategy could be used to block IFNγ+LPS-
induced vascular inflammation. Thus, we performed a wound
healing assay to examine the effect of ALEKSIN on IFNγ+LPS-

TABLE 3 Top 25 upregulated genes in HMECs in response to IFNγ and LPS treatment.

Gene name FC
IFNɣ/LPS vs. UN

FC
ALEKSIN

+ IFNɣ/LPS vs. UN

RATIO
ALEKSIN

FC
STATTIC

+ IFNɣ/LPS vs. UN

RATIO
STATTIC

CXCL10 1,0276.30 20.50 501.30 2.47 4,160.25

OR2I1P 7,990.40 31.72 251.90 3.33 2,397.05

GBP5 3,643.70 161.96 22.50 6.19 588.85

CCL8 3,294.90 13.40 245.90 1.00 3,294.86

GBP4 2,254.50 40.92 55.10 0.98 2,307.80

CXCL9 2,187.60 3.63 602.10 1.00 2,187.62

LGALS17A 1,710.50 13.95 122.60 1.00 1,710.51

APOL4 1,582.10 70.86 22.30 5.32 297.27

CXCL11 1,426.60 8.35 170.90 3.16 451.32

GBP1P1 798.60 82.82 9.60 1.00 798.62

IDO1 502.70 1.00 502.70 1.00 502.75

XAF1 428.90 1.00 428.90 1.00 428.88

GBP7 299.60 8.94 33.50 1.00 299.58

TBX21 287.40 24.56 11.70 6.21 46.25

CIITA 279.20 17.82 15.70 0.93 298.81

CX3CL1 237.30 1.00 237.30 1.00 237.31

CLIC2 209.10 26.70 7.80 6.23 33.56

SLAMF8 170.90 18.43 9.30 1.00 170.89

CSF3 164.50 1.00 164.50 1.00 164.50

XIRP1 143.50 6.45 22.20 2.46 58.29

NEURL3 139.80 9.78 14.30 0.14 997.50

PLA1A 128.40 3.63 35.30 1.00 128.36

ITK 124.00 3.63 34.10 1.00 123.95

CCL20 113.10 0.10 1,124.50 1.02 110.74

BANCR 96.40 6.29 15.30 3.33 28.91

Representative top 25 genes induced by IFNγ+LPS, displaying significant inhibition by both ALEKSIN and STATTIC compounds. FC, fold change; inhibition RATIO ALEKSIN = [FC INFy/

LPS vs. UN]/[FC INFy/LPS + ALEKSIN vs. UN]; inhibition RATIO STATTIC = [FC INFy/LPS vs. UN]]/[FC INFy/LPS + STATTIC vs. UN].
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induced EC migration compared to STATTIC (Figure 7). Cells
stimulated with IFNγ+LPS displayed increased capacity of
migration, resulting in >80% of wound coverage after 12 h of
treatment (Figure 7). In contrast, HMECs treated additionally
with ALEKSIN or STATTIC demonstrated a drastic reduction
in migratory activity. Both inhibitors caused a decrease in
the IFNγ+LPS-induced wound healing capacity to less than
10% (Figure 7) compared to 25% in the absence of
IFNγ+LPS (Figure 7).

A subset of ALEKSIN and STATTIC commonly
inhibited genes is upregulated during HFD-
induced atherosclerotic plaque formation

To characterize the expression of ALEKSIN and STATTIC
commonly inhibited genes during atherosclerotic plaque
formation, we used the ApoEKO HFD mouse model (Sanz-
Garcia et al., 2017). As shown in Figure 8, a HFD for 12 weeks
resulted in the development of aortic atherosclerotic plaques (aortic
arch: Figure 8B; whole aorta: Supplementary Figure S5) compared to
LFD (aortic arch: Figure 8A; whole aorta: Supplementary Figure S5),
which correlated with increased levels of total and LDL cholesterol

(Figures 8C, D). RNA-seq on aortic arch RNA isolated from
ApoEKO mice on HFD (n = 8) vs. LFD (n = 8) (GEO accession:
GSE270260) identified 763 HFD-upregulated genes (log2FC > 0.5;
Supplementary Table S2). GO analysis of these genes revealed the
enrichment of biological functions mainly involved in cytokine
production, the cytokine-mediated signaling pathway, immune
response-regulated signaling pathway, leukocyte-mediated
immunity, leukocyte proliferation, leukocyte activation, leukocyte
migration, leukocyte cell–cell adhesion, T-cell activation, and cell
killing (Figure 8E). Interestingly, a comparison with the enriched
biological terms from IFNγ+LPS-treated HMEC revealed a strong
overlap (Figure 5B). We also performed promoter analysis, with
Figure 8F showing the predicted representation of individual or
combined ISRE, STAT, or NF-κB binding sites in their proximal
promoters (−850 to +150). The majority of these genes contained
single ISRE (15.6%), GAS (36.7%), or NF-κB (7.72%) sites, or
combinations of ISRE + GAS (20.3%), ISRE + NF-κB (3.01%),
GAS + NF-κB (9.6%), or ISRE + GAS + NF-κB (6.97%). This is
similar to the binding site distribution seen for IFNγ+LPS-induced
genes in HMECs (Figure 5B) and predicts a combined role of IRFs
with STATs and/or NF-κB in experimental atherosclerosis as well.
The complete list of HFD-upregulated genes is shown in
Supplementary Table S2.

FIGURE 5
ALEKSIN and STATTIC commonly inhibit the cross-talk between IFNγ and LPS-induced genes. Genome-wide analysis of ALEKSIN and STATTIC
commonly and specifically inhibited IFNγ+LPS target genes. (A) ALEKSIN and STATTIC commonly (dark green) and specifically (light green: ALEKSIN; blue:
STATTIC) inhibited IFNγ+LPS target genes were identified using hierarchical clustering. (B) Gene clusters identified under (A) were subjected to GO
analysis using clusterProfiler. A total of 15 terms with the highest statistical significance were used for visualization as bar plots. Enrichment was
defined as −log10 (adjusted p-value).

Frontiers in Pharmacology frontiersin.org12

Antonczyk et al. 10.3389/fphar.2024.1471182

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1471182


By subsequently comparing the 763 HFD-responsive mouse
genes with the 405 ALEKSIN and STATTIC commonly inhibited
human genes, we identified 46 overlapping genes containing
individual or combined ISRE, STAT, or NF-κB-binding sites
(Figure 9A; Supplementary Table S3). GO analysis of this 46-
gene subset revealed enrichment in pro-inflammatory and pro-
atherogenic processes including the cytokine-mediated signaling
pathway, defense response and immune system process,
regulation of cytokine production, inflammatory response, innate
immune response, adaptive immune response, T-cell activation,
regulation of leukocyte proliferation, leukocyte cell–cell adhesion,
neutrophil chemotaxis, cellular response to lipid, response to tumor
necrosis factor, and response to IFNγ (Figure 9B). The increased
expression of this subset of 46 mouse genes in HFD (n = 8) vs. LFD
(n = 8)-fed ApoEKO mice is shown in a heatmap in Figure 9C.
Among them, we could recognize a number of known STAT and
IRF target genes, including C1ra, C1s1, C3, C4b, Casp4, Ccl2, Ccl8,
Cd83, Cfb, Cndp2, Ctss, Cx3cl1, Cxcl5, Fcgr3, H2-T23, Icam1,
Ifi207, Ifitm1, Il1a, Il3ra, Il6, Il7r, Irf8, Oas1a, Oas1g, Oas3,
Socs3, Tnfaip2, Tnfaip3, Tnfaip6, Tnfrsf1b, Tnfsf13b, and Vcam1
(Supplementary Table S3). This is in agreement with the
ALEKSIN and STATTIC-mediated inhibition pattern of the
human homologs in IFNγ/LPS-treated HMECs, as shown in
Figure 9D; Supplementary Table S3.

Finally, using an atherosclerotic plaque-derived single-cell
RNA-seq dataset from a low-density lipoprotein receptor (LDLR)
KO HFD mouse model (Boroujeni et al., 2024) could link the
expression of the majority of this 46-gene subset to macrophage

subtypes, i.e., 34 in non-classical monocytes (Figure 10A) and 28 in
ISG-expressing immune cells (Figure 10B).

Together, this confirms the important role of STATs and IRFs in
atherosclerotic plaque formation and specifically identifies an
ALEKSIN and STATTIC commonly inhibited pro-atherogenic
gene signature that could help monitor plaque progression in
atherosclerosis.

Discussion

Based on their important role in many aspects of vascular
inflammation, IRFs, together with STATs, represent interesting
therapeutic targets, and their combined inhibition could be a
novel treatment strategy for CVDs (Szelag et al., 2016;
Antonczyk et al., 2019). Using comparative in silico docking of
multiple IRF-DBD models on a multi-million natural compound
library from the ZINC database, we identified the novel multi-IRF
inhibitor, ALEKSIN. This compound targeted IRF1-, IRF2-, and
IRF8-DBD with similar affinity and simultaneously inhibited the
expression of multiple IRF target genes in HMECs in response to
IFNα and IFNγ. Under the same conditions, ALEKSIN also
inhibited the phosphorylation of STATs through low-affinity
STAT-SH2 binding and with lower potency than STATTIC.
More importantly, ALEKSIN did not show any cytotoxicity. Our
data provide a molecular basis for IRF cross-binding specificity of
ALEKSIN and its potential to inhibit multi-IRF activity and target
gene expression. This allowed us to classify ALEKSIN as a novel type

FIGURE 6
ALEKSIN and STATTIC common and specific genes share the presence of IRF, STAT, and/or NF-κB-binding sites. Gene clusters of ALEKSIN and
STATTIC commonly and specifically inhibited IFNγ+LPS target genes were subjected to promoter analysis using HOMER, and the distribution of GAS,
ISRE, and NF-kB sites for ALEKSIN and STATTIC common (A), ALEKSIN-specific (B), and STATTIC-specific (C) is shown in individual Venn diagrams.
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FIGURE 7
ALEKSIN inhibits IFNγ+LPS-induced ECmigration similar to STATTIC. Wound healing assay performed on HMECs treated with ALEKSIN or STATTIC
with or without IFNɣ+LPS (A). Border lines (blue) determine scratch borders at the beginning (left) and end (right) of the experiment. Statistical evaluation
of wound healing assay (B). Graph shows the percentage of healed wound compared to 0-h control (left) and the rate of cell migration (Rm) in μm/h
(right). The experiment was performed in two individual repeats, which were compared by the two-way ANOVA test and Bonferroni correction. *p <
0.05, **p < 0.01, and ***p < 0.001.
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of multi-IRF inhibitor. The low-affinity binding of ALEKSIN for
STAT-SH2, in addition to the high-affinity IRF-DBD binding, could
reflect the presence of IRF-dependent and IRF-independent effects
and predicts inhibitory potential toward IRF- and STAT-dependent
gene expression.

This was in line with the common inhibition of ALEKSIN and
STATTIC observed on genome-wide target gene expression
initiated by IFNγ and TLR4. As such, the expression of
405 pro-inflammatory and pro-atherogenic genes was
commonly inhibited by ALEKSIN and STATTIC, with
STATTIC being more potent. From the inhibition ratio, it
could be concluded that STATTIC was more potent than
ALEKSIN. The difference in the inhibition mechanism, with
ALEKSIN primarily being a multi-IRF inhibitor and STATTIC
a multi-STAT inhibitor, provides a possible explanation for this
difference in potency. However, since many STAT inhibitors,
including STATTIC, display anti-proliferative and apoptotic
effects in vitro and in vivo, the absence of cytotoxicity of
ALEKSIN could offer a therapeutic advantage.

Likewise, 54 ALEKSIN- and 58 STATTIC-specific genes could
be identified, which apparently displayed a functional overlap with
ALEKSIN and STATTIC common genes. Moreover, ALEKSIN and
STATTIC common and specific genes shared the presence of IRF,
STAT, and/or NF-κB- binding sites and predicted that ALEKSIN
and STATTIC commonly inhibit pro-inflammatory and pro-
atherogenic gene expression directed by the cooperative
involvement of STATs, IRFs, and/or NF-κB. A detailed analysis
of the conditions under which ALEKSIN exhibits full or partial
effectiveness, compared to STATTIC, would clarify its therapeutic
potential. Additionally, determining a dose–response relationship
and potential variability in inhibition levels would increase our
understanding.

STAT-independent characteristics toward other TF-mediated
transcriptional programs were shown for a number of known
STAT3 inhibitory compounds. For example, auranofin, BP-1-102,
CYT387, CDDO-Me, and indirubin additionally inhibited the
activity of members of the JAK and/or NF-kB family (Kim et al.,
2007; De Simone et al., 2015; Chen L. et al., 2018; Laplantine et al.,

FIGURE 8
Genome-wide analysis of HFD-induced genes in ApoEKO mouse aortic plaques reveals overlap with IFNγ+LPS-induced genes and predicts a
combined role of IRFs with STATs and/or NF-κB. Identification of aortic arch plaques in LFD (A) and 12 weeks of HFD (B)-fed mice using hematoxylin/
eosin staining on FFPE sections, showing a representative example. Quantification of whole aorta lesions is shown in Supplementary Figure S5. Total (C)
and LDL (D) cholesterol in blood from LFD- and HFD-fed ApoEKO mice were quantified and plotted as mg/dL. (E) HFD-induced genes were
subjected to GO analysis using clusterProfiler. A total of 15 terms with the highest statistical significance were used for visualization as bar plots.
Enrichment was defined as −log10 (adjusted p-value). (F)HFD-induced genes were subjected to promoter analysis using HOMER, and the distribution of
GAS, ISRE, and NF-kB sites is shown in a Venn diagram.
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2022). Our unpublished data suggest that pan-STAT inhibitors,
including STATTIC, may also influence other pro-inflammatory
transcriptional regulators such as IRFs and NF-κB (not shown).
Among the ALEKSIN and STATTIC common genes, a subset of
19 genes were assigned to the group with only an NF-κB site in their
proximal promoter. This could reflect IRF/STAT-independent
effects of ALEKSIN and STATTIC toward NF-κB-dependent
gene expression. However, the presence of putative GAS and/or
ISRE sequences outside the 850-bp selected promoter area of the
majority of these genes (not shown) could point to IRF/STAT-
dependent characteristics as well.

Based on earlier studies in immune cells and also in vascular
cells, the transcription of genes containing STAT-, ISRE-, and NF-
kB-binding sites in their promoter regions is under the cooperative
regulation by inflammatory stimuli activating STATs, IRFs, and NF-
kB, such as IFNγ, IFNα, and TNFα, IL-1β, or LPS (Sikorski et al.,
2012; Wienerroither et al., 2015; Platanitis and Decker, 2018; Plens-
Galaska et al., 2018). Therefore, the presence of IRF, STAT, and/or
NF-κB- binding sites in ALEKSIN and STATTIC common genes
predicts that ALEKSIN and STATTIC commonly inhibit pro-
inflammatory and pro-atherogenic gene expression directed by
the cooperative involvement of STATs, IRFs, and/or NF-κB. This
is in agreement with our recent identification of a new type of multi-
STAT inhibitors (Plens-Galaska et al., 2018). In addition, it also
correlates with our previous data mining study of atherosclerotic
plaque transcriptomes, in which we performed a detailed promoter

analysis of differentially expressed inflammatory genes in coronary
and carotid plaques and predicted the cooperative involvement of
NF-kB, STATs, and IRFs (on ISRE, GAS, ISRE/GAS, ISRE/NF-kB,
or GAS/NF-kBbinding sites) (Sikorski et al., 2014). Combined with
our current findings, this suggests the inhibitory potential of
ALEKSIN, similar to STATTIC, toward vascular inflammation
and vascular dysfunction.

Vascular and immune cell migration, combined with
pathological angiogenesis of the vessel wall, is a consistent feature
of atherosclerotic plaque development and progression of the
disease (Libby, 2021; Soehnlein and Libby, 2021). Moreover, it
has been proven that chemokines cooperate in leukocyte
recruitment to the injured artery during vascular remodeling
(Chmielewski et al., 2014; Sikorski et al., 2014) and, as such, are
involved in the pathogenesis of atherosclerosis. Together with the
presence of multiple chemokines among the ALEKSIN and
STATTIC commonly inhibited genes, this prompted us to
investigate the effect of a multi-IRF/STAT inhibitory strategy on
IFNγ+LPS-dependent EC migration. Using the endothelial scratch
wound (migration) assay (Liang et al., 2007; Plens-Galaska et al.,
2018), we observed a significant decrease in IFNγ+LPS-induced
“wound healing” of scratched ECs in the presence of ALEKSIN and
STATTIC. Interestingly, ALEKSIN and STATTIC inhibited a
variety of chemokines, like CXCL9, CXCL10, CXCL11, CCL7,
CCL8, CCL20, CX3CL1, CXCL1, CXCL2, CXCL8, and CCL3L3,
connected to atherosclerosis (Chmielewski et al., 2014; Sikorski

FIGURE 9
A subset of ALEKSIN and STATTIC commonly inhibited genes is upregulated during HFD-induced atherosclerotic plaque formation.
Characterization of the expression of ALEKSIN and STATTIC commonly inhibited genes during atherosclerotic plaque formation. (A) Venn diagram of a
46-gene signature derived from the overlap between HFD-responsive mouse genes and IFNg/LPS-induced genes in HMECs. (B) The 46-gene signature
was subjected to GO analysis using clusterProfiler. A total of 15 terms with the highest statistical significance were used for visualization as bar plots.
Enrichment was defined as −log10 (adjusted p-value). (C) Heatmap of the 46-gene signature in HFD (n = 8) vs. LFD (n = 8)-fed ApoEKO mice using the
pheatmap package. (D) Heatmap of the ALEKSIN and STATTIC-mediated inhibition of the 46-gene signature human homologs in IFNγ/LPS-
treated HMECs.
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et al., 2014). Furthermore, transcriptional regulation of these genes
in response to IFNγ and LPS in various cell types predicts the
cooperative involvement of multiple STATs, IRFs, and or NF-kB.
This coincides with the increased expression of a subset of
chemokine genes in mouse aortic lesions and our previously
published data, in which elevated expression of the chemokines
CXCL9 and CXCL10 mirrored pSTAT1 levels in VSMCs and ECs of
human atherosclerotic plaques (Chmielewski et al., 2014).

With the proven role of IRFs and STATs in inflammation-
activated transcriptional control mechanisms, especially in vascular
and immune cells that are instrumental in atherosclerosis, their
target genes represent promising diagnostic markers of
atherosclerosis development. Accordingly, we identified a novel

signature of 46 ALEKSIN and STATTIC commonly inhibited
pro-atherogenic target genes, which was upregulated in
atherosclerotic plaques in the aortas of HFD-fed ApoEKO mice.
These genes included C1ra, C1s1, C3, C4b, Casp4, Ccl2, Ccl8, Cd83,
Cfb, Cndp2, Ctss, Cx3cl1, Cxcl5, Fcgr3, H2-T23, Icam1, Ifi207, Ifitm1,
Il1a, Il3ra, Il6, Il7r, Irf8, Oas1a, Oas1g, Oas3, Socs3, Tnfaip2, Tnfaip3,
Tnfaip6, Tnfrsf1b, Tnfsf13b, and Vcam1. Many contained STAT and
IRF-binding sites in their promoters and were associated with
inflammation, proliferation, adhesion, chemotaxis, and response
to lipids. Interestingly, the majority of these genes could be
linked to macrophage subtypes present in aortic plaques in HFD-
fed LDLR-KO mice, i.e., 34 to anti-inflammatory non-classical
monocytes and 28 to pro-inflammatory ISG-expressing immune

FIGURE 10
Single-cell sequencing identifiesmacrophage subtype-linked expression of the 46-gene signature inmouse LDLR-KOHFD atherosclerotic plaques.
Heatmap of significantly expressed genes, with differentially regulated genesmarked by an arrow (control vs. late disease: FDR <0.05 and log2FC ≥0.25 or
log2FC ≤ 0.25) (Boroujeni et al., 2024) in (A). Non-classical monocytes and (B) ISG expressing immune cells using the pheatmap package.
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cells. This implies that subsets of these 46 ALEKSIN and STATTIC
commonly inhibited pro-atherogenic target genes behave as general
macrophage markers or are expressed in a more macrophage
subtype-dependent manner during atherosclerotic plaque
formation. Using a data mining approach of online available
atherosclerotic plaque transcriptome datasets, we previously
predicted the increased expression of IRF and STAT-dependent
pro-atherogenic genes in atherosclerosis patients. As such, by
comparing carotid (n = 124) and coronary (n = 40) artery
transcriptomes, we identified a 72-gene “plaque signature” that
predominantly consisted of STAT1 and IRF target genes
(Sikorski et al., 2014). Herder et al. found that in addition to
traditional risk factors, 13 inflammatory markers significantly
improved the prediction of coronary events and type 2 diabetes
(Herder et al., 2011). Moreover, Kharti et al. analyzed microarray
studies from 236 graft biopsy samples from 4 different organs and
identified 11 genes (e.g., Cxcl10 and Cxcl9) overexpressed in acute
rejection (Khatri et al., 2013). Additionally, they observed that
STAT1 and NFκB are central regulators of 10 identified genes
and that their expression correlates with the degree of organ
damage. Subsequently, they confirmed that STAT1- and
NFκB-dependent genes were expressed in an animal heart
transplant model and showed that treatment with atorvastatin
reduced the expression of these genes and improved
allograft survival.

Therefore, studies incorporating the multi-marker approach
using the above identified signature of 46 ALEKSIN and
STATTIC commonly inhibited pro-atherogenic target genes may
help in the development of novel diagnostic tests to monitor plaque
progression and reveal a substantial clinical benefit. The
incorporation of macrophage subtype-common or specific
marker genes in this gene signature would be highly valuable as
it allows monitoring “plaque-specific” inflammatory responses in a
cell-type dependent manner. Although further research is needed to
confirm this hypothesis, diagnostic/prognostic assays connected to
cancer and transplant rejection support this concept (Chmielewski
et al., 2016).

Multiple IRFs play an important role during the onset and
progression of atherosclerosis through various mechanisms in
different cell types. For example, silencing IRF1 alleviated
atherosclerosis in ApoEKO mice by regulating lipid metabolism
and foam cell formation (Du et al., 2019) and highly suggests that
IRF1 activation is a risk factor for the occurrence and development
of atherosclerosis. Likewise, IRF5 expression was linked to
symptomatic and vulnerable carotid plaques in humans and
inducible plaque rupture in hyperlipidemic ApoEKO mice
(Leipner et al., 2021; Edsfeldt et al., 2022). This demonstrates
IRF5 as a candidate therapeutic target in human atherosclerosis.
IRF4 protects arteries against neointima formation by promoting
the expression of KLF4 by directly binding to its promoter. This
previously undiscovered IRF4-KLF4 axis plays a key role in vasculo
proliferative pathology and may be a promising therapeutic target
for the treatment of arterial restenosis (Cheng et al., 2017). In recent
years, the role of IRF8 in cardiovascular disease has also been
revealed (Clément et al., 2018). By comparing allele frequencies
between systemic lupus erythematosus patients with and without
coronary heart disease, single-nucleotide polymorphisms located in
the IRF8 gene were identified to be associated with the presence of

carotid plaques and increased intima-media thickness (Leonard
et al., 2013). Additionally, Zhang et al. (2014b) found that in
VSMCs, IRF8 modulated the cell physiology and phenotype to
promote neointima formation. Thus, these findings suggest a
potential involvement of IRF8 in neointima formation and the
development of vascular occlusive disease. Hence, targeting
IRF8 in VSMCs holds promise as a therapeutic strategy to treat
vasculo–proliferative diseases. Finally, IRF9 was recognized as a
vascular injury-response protein that promotes VSMC proliferation
during neointima formation, following vascular injury. As such, in
mice, IRF9 ablation inhibited the proliferation and migration of
VSMCs and attenuated intimal thickening in response to injury,
whereas IRF9 gain-of-function promoted VSMC proliferation and
migration, which aggravated arterial narrowing (Chen et al., 2014).

Together, this identified multiple IRFs as novel therapeutic
targets and predicted that the treatment of atherosclerosis and
vascular inflammation could benefit from a multi-IRF inhibition
strategy. Recently, novel peptide inhibitors were developed that
utilize specific sequences within the IRF5 gene to directly bind to
the IRF5 protein and inhibit TLR-induced IRF5 homodimerization,
nuclear translocation, and downstream cytokine production (Banga
et al., 2020; Song et al., 2020). These studies support the specific
targeting of IRF5 with direct inhibitors and the utility of IRF5-CPPs
as novel tools to specifically probe IRF5 activation and function in
diseases, including atherosclerosis. However, our results identify
ALEKSIN as a novel type of multi-IRF inhibitor, which exhibits IRF-
dependent and IRF-independent effects and predicts inhibitory
potential toward IRF-, STAT-, and NF-kB-dependent gene
expression, like STATTIC. The data on ALEKSIN’s inhibition of
STAT phosphorylation were weaker than those on STATTIC,
relying heavily on comparative in silico docking results. More
detailed in vitro or in vivo data on STAT inhibition would
solidify the claim that ALEKSIN effectively targets both STAT
and IRF-mediated pathways. Alternatively, we cannot rule out
the probability of ALEKSIN as primarily an IRF-targeting
inhibitor. Nevertheless, the absence of cytotoxicity in ALEKSIN
could be therapeutically advantageous, thereby strengthening its
clinical potential over STATTIC and other STAT inhibitors.

A further understanding of the ALEKSIN pan-IRF inhibition
mode and its IRF-independent potential toward STATs (and
possibly NF-kB) could provide great potential for its
development as a potent multi-IRF inhibitory strategy in the
treatment of vascular inflammation and atherosclerosis.
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SUPPLEMENTARY FIGURE S1
Western quantification of Figures 2C, D. HMECs were treated with 10 μM of
ALEKSIN for 24 h and (A) 200 U/ml of IFNα or (B) 10 ng/mL of IFNy for 0, 2,
4, 8, and 24 h. Protein extracts were collected, and the levels of IRF1, IRF9,
pSTAT1, pSTAT2, tSTAT1, tSTAT2, and α-tubulin were assessed by Western
blotting. Bars represent mean quantification from three individual repeats,
which were compared by two-way ANOVA and Tukey’s post hoc test;
*p < 0.05, **p < 0.01, and ***p < 0.001.

SUPPLEMENTARY FIGURE S2
Western quantification of Figures 3A, B. HMECs were pre-treated with 20 μM
(A) or 10 μM (B) of ALEKSIN for 24 h and 10 μM (B) of STATTIC for 8 h. Protein
extracts were collected, and the levels of IRF1, IRF9, pSTAT1, and α-tubulin
were assessed by Western blotting. Bars represent mean quantification from
three individual repeats, which were compared by two-way ANOVA and
Tukey’s post hoc test; *p < 0.05, **p < 0.01, and ***p < 0.001.

SUPPLEMENTARY FIGURE S3
Uncut membrane images of Westerns shown in Figures 2C, D 3A, B.

SUPPLEMENTARY FIGURE S4
ALEKSIN does not affect RNA and protein concentration and cell viability. (A)
HMECswere treatedwith 10 μMor 20 μMof ALEKSIN and 200U/ml of IFNα for
4 h or 10 ng/ml of IFNγ for 8 h (see also Figures 2A, B). RNA was isolated and
concentrations plotted for each condition. (B)HMECswere treatedwith 10μMof
ALEKSIN and 200 U/ml of IFNα or 10 ng/ml of IFNγ for 0, 2, 4, 8, and 24 h (see
also Figures 2C, D). Protein extracts were collected and concentrations plotted
for each condition. (C) HMECs were treated with or without 10 μM or 20 μM of
ALEKSIN for 24 h or 20 uM STATTIC after which cell viability was measured.
Experiments were performed in three individual repeats, which were
compared by a two-way ANOVA test; *p < 0.05, **p < 0.01, and ***p < 0.001. (D)
Cell morphology was determined under the same conditions as (C) using the
ZOE Cell Imager (brightfield channel, ×20 objective).

SUPPLEMENTARY FIGURE S5
Visualization of atherosclerotic plaques in LFD- and HFD-fed mouse aortas
with Oil Red O staining. (A)Quantification of lesion size as the percentage of
the total aorta area. (B) Aortas taken from both diet groups and stained with
Oil Red O. Experiments were performed in two individual repeats, which
were compared by the t-test; *p < 0.05.
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