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Non-small cell lung cancer (NSCLC) constitutes a significant proportion of lung
cancer cases, and despite advancements in treatment modalities, radiotherapy
resistance remains a substantial hurdle in effective cancer management.
Exosomes, which are small vesicles secreted by cells, have emerged as pivotal
players in intercellular communication and influence various biological
processes, including cancer progression and the response to therapy. This
review discusses the intricate role of exosomes in the modulation of NSCLC
radiosensitivity. The paper focuses on NSCLC and highlights how tumor-derived
exosomes contribute to radioresistance by enhancing DNA repair, modulating
immune responses, and altering the tumor microenvironment. We further
explore the potential of mesenchymal stem cell-derived exosomes to
overcome radiotherapy resistance and their potential as biomarkers for
predicting therapeutic outcomes. Understanding the mechanisms by which
exosomes affect radiotherapy can provide new avenues for enhancing
treatment efficacy and improving the survival rates of patients with NSCLC.
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1 Introduction

Lung cancer remains the leading cause of cancer-related mortality worldwide,
highlighting its critical impact on public health. The burden associated with this disease
is substantial, with non-small cell lung cancer (NSCLC) accounting for approximately 85%
of all lung cancer cases and representing the predominant subtype (Siegel et al., 2023). The
current therapeutic strategies for NSCLC include a multidisciplinary approach that
encompasses surgery, chemotherapy, radiotherapy, immunotherapy, and targeted
therapies (Memon et al., 2024; Vinod and Hau, 2020; Herbst et al., 2018). Radiotherapy
significantly improves local control and overall survival rates in patients and plays a pivotal
role in the management of NSCLC (Aupérin et al., 2010). Especially, in the era of
immunotherapy, combining radiotherapy with immunotherapeutic agents not only
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significantly enhances patient benefits and extends overall survival
(Spigel et al., 2022) in curative radiotherapy but also exerts
synergistic therapeutic effects (Welsh et al., 2020) in patients
with advanced disease.

However, the clinical efficacy of radiotherapy is often impeded by
several challenges, with radioresistance being the primary concern.
Radioresistance is a complicated biological process associated with an
abnormal DNA damage response, apoptosis, autophagy, gene
mutations, cell cycle checkpoints, and deregulated signaling
pathways (Ni et al., 2017). Resistance to radiotherapy can be
attributed to the intrinsic radioresistance of tumor cells within the
hypoxic microenvironment or resistance acquired during fractionated
radiotherapy (Toulany and Rodemann, 2015; Raja et al., 2014). This
can lead to treatment failure and disease recurrence, posing a significant
barrier to effective cancer management, making it a major obstacle for
radiotherapy (Davidoff et al., 2011). Recent advances in research have
provided deeper insights into the mechanisms underlying
radioresistance, emphasizing the critical roles of both tumor cells
and the tumor microenvironment (TME) (Horsman et al., 2012).
Various factors such as DNA repair pathways (Rao et al., 2023a),
replication stress (Zhang et al., 2022a), epigenetic regulation (Jie et al.,
2021), cellular signaling networks, and the immune microenvironment
contribute to the development of radioresistance (Sharma and Johnson,
2020). Consequently, further studies regarding these mechanisms is
imperative to enhance therapeutic outcomes and improve the survival
rates of patients with NSCLC.

Exosomes are small membrane-bound vesicles, approximately
30–150 nm in diameter, which are secreted by cells. These vesicles
play crucial roles in intercellular communication by transferring
various biomolecules, including proteins, lipids, RNA, and DNA
(Kalluri and LeBleu, 2020). Exosomes were initially believed to
function in cellular waste disposal. However, recent studies have
shown that they perform significant regulatory functions in both
physiological and pathological processes (Pegtel and Gould, 2019).

Exosomes exhibit significant heterogeneity, which is evident in
their size, content, effects on recipient cells, and cellular origins. This
diversity is primarily influenced by their biogenesis and the type of
cells they originate from, including whether they are derived from
cancer cells. These factors impart unique characteristics to
exosomes, such as their propensity to target specific organs and
incorporation by specific cell types (Kalluri and LeBleu, 2020;
Vagner et al., 2019). Exosomes have garnered substantial
attention in cancer research, particularly regarding their roles in
tumorigenesis and cancer progression (Zhou et al., 2016). Tumor-
derived exosomes (TDEs) can promote tumor growth, invasion, and
metastasis and play a pivotal role in shaping the TME (Xie et al.,
2019; Chen et al., 2021). Exosomes also modulate gene expression
and behavior in recipient cells by transferring tumor-associated
factors, such as miRNAs and proteins, thereby facilitating tumor
progression (Guo et al., 2021).

Moreover, the relationship between exosomes and radiotherapy
has become a focal point of research. Exosome release from tumor cells
increases during radiotherapy, and they are implicated in the
development of radioresistance (Shao et al., 2018). Further,
radiotherapy-induced exosomes can deliver anti-apoptotic signals,
enhance DNA repair, and modulate immune responses, thereby
augmenting tumor cell radioresistance (Mutschelknaus et al., 2016;
Jiang et al., 2020; Thomas et al., 2013; McLaughlin et al., 2020).

Therefore, a thorough understanding of the mechanisms via which
exosomes influence radiotherapy can offer new perspectives for
overcoming radioresistance and enhancing the efficacy of radiotherapy.

Despite progress in research on exosome-mediated functions
based on in vitromodels, research on exosomes and radiotherapy in
oncology still faces many challenges. Notably, there is a significant
gap in literature involving comprehensive reviews that integrate the
latest findings and provide a holistic understanding of exosome-
induced radioresistance, particularly in the context of NSCLC. This
review focuses on studies on NSCLC, reviewing the latest
advancements in research on exosome-induced radioresistance. It
also discusses how exosomes mediate radioresistance via the TME,
advancements in mesenchymal stem cell (MSC)-derived exosome
research, and the potential of exosomes and their transported
miRNAs as biomarkers. This review highlights the importance of
exosomes in cancer radioresistance and progression and provides a
reference for the development of new therapeutic strategies.

2 Exosomes and radioresistance
in NSCLC

Despite continuous advancements in radiotherapy techniques,
many patients with cancer, especially those with locally advanced
cancers, still experience radiotherapy failure (radioresistance),
which leads to local recurrence or distant metastasis. As
discussed previously, radioresistance can emerge due to genetic
or phenotypic alterations within the tumor or shielding against
radiation by the tumor stroma and microenvironment.
Accumulating evidence indicates that exosomes contribute
significantly to the induction of radioresistance. Tang et al.
(2016) observed a significant increase in serum miR-208a levels
following radiotherapy in patients with lung cancer. This was found
to enhance the proliferation and radioresistance of NSCLC cells via
targeting of p21 and activation of the AKT/mTOR pathway, which
promotes lung cancer cell proliferation and decreases cell apoptosis.
Notably, exosomal miR-208a can be absorbed by other NSCLC cells,
further enhancing their radioresistance. These findings underscore
the potential of miR-208a to act as a therapeutic target and improve
the efficacy of radiotherapy in patients with NSCLC. Moreover,
Yuan et al. (2016) showed that the levels of the exosomal miR-1246
increases significantly in NSCLC cells and that it enhances
radioresistance by targeting death receptor 5. These exosomal
miRNAs not only facilitate intercellular communication but also
directly affect tumor cell proliferation and survival by modulating
key genes. Despite evidence from prior studies suggesting that
exosomes play a pivotal role in enhancing cancer radioresistance,
opinions on this matter remain divergent. Wang et al. (2019)
recently reported that autocrine secretions enhance the
radioresistance of the H460 NSCLC cell line in an exosome-
independent manner, primarily by affecting DNA repair processes.
Therefore, the role of exosomes in cancer radioresistance is complex
and may be influenced by various factors, such as the tumor type,
TME, experimental methods, or different treatment combinations.
The presumptive mechanisms underlying the formation of ionizing
radiation-induced exosomes, resulting in radioresistance of NSCLC is
shown in Figure 1 and Table 1. However, this complexity must be
explored in future studies.
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FIGURE 1
Presumptive mechanisms underlying the formation of ionizing radiation-induced exosomes, resulting in the radioresistance of non-small cell lung
cancer. NSCLC, non-small cell lung cancer; miRNA, microRNA; TME, tumor microenvironment. Created using BioRender.

TABLE 1 Roles of exosomal contents in modulating the radioresistance of non-small cell lung cancer (NSCLC).

Exosomal
content

Source Mechanism Function References

miR-208a Cancer
cells

Target p21 and AKT/mTOR pathway Decrease cellular apoptosis and disturb the cell cycle to induce
radioresistance

Tang et al. (2016)

miR-1246 Cancer
cells

Directly target DR5 Promote cell proliferation and radioresistance Yuan et al. (2016)

ANGPTL4 Cancer
cells

Inhibit ferroptosis in exosomal
ANGPTL4–GPX4-dependent manner

Confer radioresistance in hypoxic ells and transmit it to
normoxic cells

Zhang et al. (2022b)

lncRNA AGAP2-AS1 M2-TAMs Reduce miRNA-296 and elevate NOTCH2 Enhance radiotherapy immunity Zhang et al. (2021)

miR-101-3p BMSCs Target EZH2 to activate the PI3K/AKT/
mTOR pathway

Inhibit DNA damage repair and enhance radiosensitivity Sun et al. (2024)

miR-378 Serum Not yet clarified Exhibit higher levels in patients with NSCLC and is associated
with unfavorable prognosis

Zhang and Xu
(2020)

miR-96 Plasma Not yet clarified Overexpressed in patients with NSCLC and correlated with
vascular invasion and poor overall survival

Zheng et al. (2021)

miR-26b-5p Cancer
cells

Inhibit ATF2 expression Promote DNA damage, apoptosis, and radiosensitivity Han et al. (2020)

HSP70 Cancer
cells

Not yet clarified Prognostic and predictive relevance of pre- and post-treatment
Hsp70 levels after RT

Ostheimer et al.
(2017)

HSP70, heat shock protein 70; M2-TAMs, M2 tumor-associated macrophage; BMSCs, bone mesenchymal stem cells; DR5, death receptor 5; RT, radiotherapy.
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3 Exosomes and the DNA
damage response

Ionizing radiation is utilized in radiation therapy to damage
cancer cells, generating intermediate ions and free radicals,
particularly by targeting DNA, leading to single- or double-
strand breaks. These breaks activate various signaling pathways
that mediate the DNA damage response (DDR), a crucial
determinant of the effectiveness of radiotherapy (Zhang et al.,
2022a). The most relevant DDR processes involve double-strand
break repair pathways, including homologous recombination
and non-homologous end-joining (Li et al., 2001; Swift et al.,
2023). Some studies have indicated an association between
exosomes and the DDR. Jiang et al. (2020) reported that
exosomal miR-194-5p from radiation-damaged pancreatic
cancer cells enhances tumor cell regeneration. They also
found that dying tumor cells release many exosomes early
after radiotherapy, which further enhances the DDR and
promotes the survival of tumor-regenerating cells. Mo et al.
(2018) confirmed that exosomes from normal human
bronchial epithelial BEP2D cells display increased expression
of miRNA-1246 when induced by radiation. The authors also
observed that the increase in miRNA-1246 expression enhanced
both cell proliferation and colony formation. In contrast,
Takahashi et al. (2017) observed that diminishing exosome
secretion induces reactive oxygen species-dependent DDR in
both senescent and non-senescent cells. This study revealed that
exosome secretion inhibits anomalous activation of the DDR in
pre-senescent cells, indicating that exosome secretion maintains
cellular homeostasis by preventing erroneous activation of the
DDR in certain types of normal human cells.

The relationship between exosomes and the DDR remains
inconclusive, with current research indicating that the functions
and contents of exosomes are complex and variable. Therefore,
caution should be exercised when interpreting these findings.
Further studies are required to elucidate these molecular
mechanisms using a broader range of cell lines and animal
models, along with standardized measurement techniques, which
will clarify the specific effect of exosomes and their contents
on the DDR.

4 Role of exosomes in the TME

The TME consists of immune cells, blood vessels,
extracellular matrix, fibroblasts, lymphocytes, bone marrow-
derived inflammatory cells, and signaling molecules
surrounding the tumor cells. Moreover, continuous, dynamic,
and reciprocal interactions between tumor cells and their
microenvironment provide essential support for tumor cell
survival. Tumor cell activities, such as proliferation, resistance
to cell death, invasion, metastasis, angiogenesis, and immune
evasion rely heavily on the TME (Arneth, 2019; Xiao and Yu,
2021). The key cell types in the TME include fibroblasts,
endothelial cells, and infiltrating immune cells, which
primarily communicate with tumor cells via exosome
signaling. The nature of these interactions depends on the
source and content of the exosome (Kohlhapp et al., 2015;

Record et al., 2011). Hypoxia, high lactate levels, extracellular
acidosis, and low nutrient availability are important TME
markers. These conditions also stimulate tumor cells to release
more exosomes than normal cells, inducing changes and
amplification within the TME, which promotes tumor
progression (Zhang and Grizzle, 2011; Thai et al., 2021).
Hypoxia is a key factor involved in radiation resistance, as
oxygen is required for generating the free radicals that are
essential for ionizing radiation-mediated killing of tumor cells.
Hypoxia also induces cellular transformations that prevent the
harmful effects of radiotherapy (Horsman et al., 2012). Radio-
biological hypoxia occurs when oxygen tension in the TME
reduces below 0.13 kPa, interfering with radiation-induced cell
death (Salem et al., 2018). Zhang et al. (2022b) showed that
ANGPTL4, carried by exosomes derived from lung cancer cells
under hypoxic conditions, mediates radioresistance in NSCLC by
inhibiting ferroptosis and reducing lipid peroxidation. More
importantly, they found that exosomes derived from hypoxic
NSCLC cells could transmit radioresistance signals to the
surrounding normoxic NSCLC cells in an exosomal
ANGPTL4–GPX4-dependent manner. Thus, hypoxia-induced
exosomal signaling plays a crucial role in regulating
intercellular communication within the TME.

Cancer-associated fibroblasts (CAFs) are key components of
the TME (Kim and Bae, 2016). Several theories regarding the
origin of CAFs exist, including the differentiation of
myofibroblasts into fibroblasts, transdifferentiation of
epithelial and endothelial cells into fibroblasts via epithelial-
mesenchymal transition, or the conversion of mesenchymal
stem cells into fibroblasts (Xouri and Christian, 2010).
Exosomes can transfer miR-9 to human mammary fibroblasts,
transforming them into CAFs (Baroni et al., 2016). Tumor-
derived exosomes have been shown to enhance the expression
and signaling of transforming growth factor-beta (TGF-β) in
mesenchymal cells (Baroni et al., 2016). For instance, exosomes
from gastric, ovarian, and breast cancer can induce the
conversion of mesenchymal stem cells into fibroblast-like cells,
marked by increased levels of α-smooth muscle actin and
phosphorylated Smad2 (Cho et al., 2012; Cho et al., 2011; Gu
et al., 2012). Additionally, exosomes from gastric cancer cells can
convert mesenchymal stem cells from umbilical cord blood into
CAFs (Gu et al., 2012). These findings indicate that exosomes
promote the acquisition of pro-tumorigenic characteristics by
stromal cells within the TME.

TDEs play a crucial role in regulating the TME by mediating
angiogenesis, immune evasion, and tumor-associated
macrophage (TAM) polarization (Park et al., 2019; Tang et al.,
2022). Understanding the mechanisms via which exosomes and
their contents regulate the TME may help elucidate radiation
resistance-associated pathways and guide the development of
more effective exosome-based tumor radiotherapy strategies.
Generally, rapid tumor growth induces hypoxia, which
stimulates tumor cells to secrete more TDEs, further
promoting angiogenesis and radiation resistance. Chen et al.
(2022) demonstrated that exosomal miR-30b-5p from hypoxic
pancreatic cancer cells promotes tumor angiogenesis by
inhibiting the expression of gap junction alpha-1.
Additionally, Chen et al. (2021) found that exosomes from
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esophageal squamous cell carcinoma under hypoxic conditions
promote radiation resistance via miR-340-5p transfer.

TAMs are derived from monocytes in the bone marrow,
which are a subset of TME cells that infiltrate most human
tumors and differ from those in adjacent or normal tissues
(Huang et al., 2019). Exosomes can stimulate macrophage
polarization into M1 or M2 phenotypes, with the latter
promoting angiogenesis, matrix remodeling, distant
metastasis, and immunosuppression (Tian et al., 2019a; Baig
et al., 2020). Exosomes transport functional miRNAs that
regulate TAM infiltration and polarization. In addition, TDEs
can directly or indirectly influence signaling pathways or gene
expression to induce macrophage polarization. For example,
exosomes from small cell lung cancer induce M2 polarization
via the NLRP6/NF-κB pathway (Rao et al., 2022). Moreover,
exosomes from gallbladder cancer cells containing high leptin
levels promote M2 macrophage polarization via STAT3 signaling
and enhance gallbladder cancer cell invasion and migration
(Zhao et al., 2022). Wan et al. demonstrated that
microparticles released from irradiated tumor cells elicit
broad anti-tumor effects, primarily via ferroptosis, leading to
immunogenic cell death. These molecules also facilitate
M2 tumor-associated macrophage (M2-TAM) repolarization
to M1-TAMs, thereby modulating the anti-tumor interactions
between TAMs and tumor cells (Wan et al., 2020a).
Subsequently, the same research group engineered irradiated
tumor cell-released microparticles harboring the SARS-CoV-
2 spike protein and TGFBR2 as vaccines. The aim of this
approach was to stimulate the innate immune response and
suppress the immunosuppressive TME, ultimately enhancing
T cell activation and infiltration (Sun et al., 2023). Zhang
et al. (2021) reported that the exosomal long non-coding
RNA, AGAP2-AS1, derived from M2 macrophages, enhances
the immunoeffectiveness of radiotherapy by downregulating
miR-296 expression and upregulating NOTCH2 levels. In
particular, AGAP2-AS1 expression was found to be
significantly upregulated in radioresistant NSCLC cells,
whereas miR-296 expression was significantly downregulated
and NOTCH2 expression was significantly increased.
Moreover, inhibition of AGAP2-AS1 expression significantly
reduced the survival and proliferation of radioresistant
NSCLC cells.

The TME comprises functional immunomodulators and
immune cells, mainly controlled by peripheral blood and
lymphatic vessels, which facilitate information exchange
between primary or metastatic tumor sites and host immune
organs (Hiam-Galvez et al., 2021). TDEs can induce
immunosuppressive phenotypes in immune cells, promoting
their infiltration into tumor tissues and leading to
immunosuppression. This interference affects antigen
presentation by dendritic cells, activation and proliferation of
T and B cells, and cytotoxicity of natural killer cells (Tian et al.,
2019b; Tesi, 2019). For example, exosomes from EGFR-19del
Lewis lung cancer cells transfer active EGFR-19del to dendritic
cells, inducing an unresponsive state that inhibits anti-tumor
immunity (Yu et al., 2020). Furthermore, exosomes containing
interleukin-32γ from multiple myeloma enhance macrophage
PD-L1 expression via protease 3, promoting glycolysis-

dependent immune evasion (Liu et al., 2022). In summary,
TDEs play a significant role in TME formation and
development, mediating the behavior and progression of
tumor cells. Ultimately, further elucidation of the specific
mechanisms via which exosomes and their contents influence
various types of tumors will provide new directions for cancer
diagnosis and treatment.

5 MSC-derived exosomes and
radioresistance

MSCs comprise a group of cells with self-renewal and
multipotent differentiation capabilities (Pittenger et al., 1999).
These cells can be derived from various human tissues and
components, including the bone marrow, adipose tissue, dental
pulp, umbilical cord, menstrual blood, and amniotic fluid. Owing
to their multipotency, MSCs can differentiate into multiple cell
types, including osteocytes, chondrocytes, adipocytes, and myocytes,
making them valuable tools for regenerative medicine (Lootens
et al., 2024).

Extensive research has confirmed that MSCs are essential
components of the TME and are associated with cancer
progression (Whiteside, 2018). As key players in TME
reprogramming, MSCs play a crucial role in cell-to-cell
communication by transmitting important cellular
information that influences the growth, differentiation, and
functions of neighboring cells (Wang et al., 2022). These
cells can also modulate immune cell activities, assist in the
transition of macrophages to the M2 type, inhibit neutrophil
functions, and direct the differentiation and proliferation of B
and T lymphocytes (Shan et al., 2024). Furthermore, MSCs
control tumor cell growth by secreting various substances, such
as cytokines, chemokines, and growth factors (Wang et al., 2022;
Vizoso et al., 2017). Notably, several studies have indicated that
MSC-derived exosomes play a crucial role in regulating
resistance to cancer therapy by mediating the exchange of
substances and signals between cancer cells and other
stromal cells (Weng et al., 2021). Wan et al. (2020b)
discovered that miR-34c, delivered by MSC-derived
exosomes, significantly inhibits the proliferation, migration,
and radiotherapy resistance of nasopharyngeal carcinoma
cells. Furthermore, Li et al. (2020) found that the expression
of miR-101-3p is reduced in irradiated NSCLC tissues and cells,
confirming that miR-101-3p enhances NSCLC radiosensitivity
in animal experiments. Sun et al. (2024) further demonstrated
that exosomal miR-101-3p from bone marrow MSCs enhances
NSCLC radiosensitivity by regulating EZH2 and promoting
DDR and tumor cell autophagy. We believe that detailed
investigation regarding MSC-derived exosomes holds great
promise. These tiny vesicles released by MSCs have
intriguing properties that could be pivotal for enhancing the
effectiveness of cancer radiotherapy. By broadening our
understanding regarding their mechanisms and functions, we
can design novel approaches for improving therapeutic
outcomes. Therefore, research in this field should be boosted
to utilize the full spectrum of benefits that MSC-derived
exosomes offer in the fight against cancer.
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6 Role of exosomes as biomarkers after
tumor radiotherapy

Exosomes, known for their unique properties, can act as
biomarkers for tumor diagnosis and prognosis when present after
tumor radiotherapy (Gao et al., 2021). They can also be used in
liquid biopsies to predict the efficacy of radiotherapy and optimize
treatment plans. Moreover, changes in miRNA levels within the
serum/plasma exosomes of patients with tumors after radiotherapy
can indicate the effectiveness of the treatment (Fan et al., 2022).
Alterations in specific miRNA levels can further be used as
indicators to predict the therapeutic outcomes of tumor
radiotherapy (Pu et al., 2020). Dinh et al. (2016) demonstrated
that among the 752 exosomal miRNAs identified in patients with
locally advanced NSCLC, the expression of miR29a-3p and miR150-
5p decreased with increasing radiation doses, indicating their
potential to act as early biomarkers that correlated with the
delivered radiotherapy dose. Additional studies (Zhang and Xu,
2020) have shown that exosomal miR-378 is significantly
upregulated in patients with NSCLC and is associated with
lymph node metastasis and an advanced TNM stage. Post-
radiotherapy, serum exosomal miR-378 levels reduce
significantly, indicating its potential as a marker of radiotherapy
response. Survival analyses further revealed that patients with high
serum exosomal miR-378 levels have poor overall survival. These
findings further support the crucial role of exosomal miRNAs in
modulating the response to radiotherapy. Zheng et al. (2021)
identified circulating exosomal miR-96 as a novel biomarker for
radioresistant NSCLC. Their study showed that exosomal miR-96
levels are significantly higher in patients with NSCLC than in
controls and are even higher in patients with radioresistant
NSCLC. Han et al. (2020) found that exosomal miR-26b-5p,
enhances the radiosensitivity of lung adenocarcinoma cells after
downregulating ATF2. They also found that compared to those in
patients with high miR-26b-5p expression, patients with lung
adenocarcinoma and low serum levels of miR-26b-5p have
significantly shorter survival periods. This suggests that miR-26b-
5p may act as a potential non-invasive biomarker for predicting
response to radiotherapy and prognosis of lung adenocarcinoma. In
addition, Ostheimer et al. (2017) demonstrated that dynamic
changes in serum heat shock protein 70 (HSP70) levels could be
used to predict the clinical response of patients with NSCLC to
radiotherapy. In particular, serum HSP70 levels before treatment
correlated significantly with the expression of hypoxia-related
marker, osteopontin (OPN), and high OPN levels indicated poor
overall survival. HSP70 levels decreased significantly after
radiotherapy; however, patients with higher post-treatment
HSP70 levels exhibit better radiotherapy responses and longer
survival. These findings suggest that monitoring the dynamic
changes in HSP70 levels before and after radiotherapy can
provide additional prognostic information, aiding in the rapid
adjustment of treatment plans.

The possibility of using exosomes in liquid biopsies following
tumor radiotherapy is being actively investigated. Several studies
have focused on the cargo carried by exosomes and their effect on
tumor invasiveness after radiotherapy, as well as their use in
evaluating radiotherapy efficacy and prognosis and optimizing
treatment plans. Considering that many potential biomarkers

have not yet been identified and validated, further research on
exosome-based biomarkers is urgently required. These future
studies should consider their clinical utility and potential value in
clinical practice.

7 Perspectives and conclusion

Radiation therapy is an indispensable component of the
comprehensive treatment regimen of lung cancer and plays a
significant role in both early-stage unresectable and advanced-
stage lung cancer treatment. In particular, in the era of
immunotherapy, the role of radiation therapy has become more
important than before. The results of the I-SABR study showed that
for early-stage NSCLC without lymph node and distant metastases,
the 4-year event-free survival rate can reach 77% in patients treated
with a combination of a PD-1 inhibitor and SABR, considerably
improving the survival of patients with early-stage lung cancer who
are unable to undergo surgical treatment (Chang et al., 2023). The
standard treatment model for stage III lung cancer was revised based
on the observations of the PACIFIC study, with maintenance
immunotherapy after concurrent chemoradiotherapy or
sequential radiotherapy increasing the 3-year survival rate to
approximately 60% (Antonia et al., 2017; Girard et al., 2023).
However, the failure of the PACIFIC-2 study also discouraged
the use of immunotherapy combined with radiotherapy,
suggesting that further categorization of patients with lung cancer
benefiting from radiation therapy is still required.

Basic research has indicated that radiation damage has an
immune-activating effect; however, immune cells are more
sensitive to radiation damage than cancer cells. Numerous studies
have focused on optimization of radiation therapy targets,
innovating radiotherapy techniques, and reducing the irradiation
range and dose to protect anti-tumor immune cells (Khandekar and
Keane, 2021). However, radiation resistance remains an issue. First,
accurately identifying patients with lung cancer who are resistant to
radiation is crucial as it determines whether a higher localized
dosage or individualized radiosensitizers should be administered
to enhance treatment efficacy. Second, predicting radiosensitive
patients to minimize their dosage helps protect immune cell
functions, strengthen immune responses, and simultaneously
reduce the side effects of radiation (Rao et al., 2023b). Therefore,
assessing radiosensitivity in patients with lung cancer,
understanding the mechanisms of radiation resistance, and
developing effective sensitization strategies remain challenges in
the field of radiation oncology. Although most current research is at
the preliminary stage of elucidating these mechanisms, we believe
that exosomes will be highly valuable targets for overcoming
radioresistance in cancer therapy.

In oncology, exosomes are considered potential biopredictors
because they can be released into the extracellular space and detected
in various types of body fluids. The levels of exosomes can be
compared between different groups in a simple, feasible, and cost-
effective manner (Shin et al., 2023). Additionally, exosomes are
considered personalized therapeutic carriers because they can
transport bioactive molecules, such as proteins, RNA, and DNA,
delivering these molecules to other cells, thereby influencing tumor
behavior and the microenvironment. Researchers are investigating
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whether exosomes can be used to deliver therapeutic molecules, such
as anticancer drugs, gene-editing tools, or immune-modulating
molecules, to enhance the immune response of tumors or
directly inhibit tumor growth (Liang et al., 2021; Tian et al.,
2023). Moreover, targeted delivery to particular cell types can be
achieved by engineering exosomes with specific surface markers,
thereby improving the precision and efficacy of treatment (Sun et al.,
2023; Xu et al., 2020a). Research regarding the role of and differences
in exosomes between various subtypes of NSCLC is underway. In
patients harboring EGFR mutations, the same mutations have been
identified in plasma exosomes, supporting their potential as a
diagnostic tool (Rao et al., 2023c; Liu et al., 2024). Additionally,
exosomal PD-L1 has been associated with the effectiveness of
immunotherapy in patients with lung cancer (Shimada et al.,
2021; Kim et al., 2019). These findings suggest that exosomes can
partially reflect the genetic background of the tumor, along with
associated malignant behavior, treatment sensitivity, and tumor
burden. However, despite the immense potential of exosomes in
cancer therapy, challenges remain, including the large-scale
production of homogeneous exosomes, ensuring their safety, and
optimizing their therapeutic payload. Consequently, scientists are
actively conducting experiments and clinical studies to overcome
these obstacles and spearhead exosome-based therapeutic strategies
for clinical applications.

Information regarding the changes in exosomal content during
radiation response may be used for diagnosis and development of
therapy. With progress in our understanding of exosomal miRNAs,
the combination of miRNA-based therapies and radiotherapy might
offer a promising personalized treatment strategy. However, several
challenges must be overcome before the current exosome–miRNA
research can be translated into clinical practice. First, elucidation of
the radiobiological molecular mechanisms and targets of miRNAs is
fundamental for designing miRNA-based therapies in the future.
Tumor progression during radiotherapy is dynamic and associated
with varying levels of miRNA expression. Thus, rigorous clinical
studies should carefully consider the differences in the TME and
continuously monitor miRNA levels throughout the course of
radiotherapy. Furthermore, utilization of noninvasive liquid
biopsies to harness the potential of exosomes is currently
challenging. Despite significant efforts to standardize these
techniques, consensus regarding the optimal method for isolating
and quantifying exosomes is lacking. To date, the clinical
applicability of exosomal miRNAs in radiotherapy has been
limited because their potential functions have not been
adequately studied in patient samples. Further prospective
investigations involving patients undergoing radiotherapy are
crucial to validate this clinical utility. Finally, a single miRNA
cannot be used to consistently predict clinical outcomes. A
comprehensive analysis of miRNAs may help improve their
performance, and the prediction accuracy of a combination of
different biomarkers may be better than that of individual
markers. Moreover, real-time monitoring of these markers can
increase their predictive value. Therefore, further research is
required to develop new circulating markers and investigate the
predictive capabilities of previously identified peripheral blood
markers based on the tumor tissue.

In addition to acting as biomarkers, exosomes constitute a
research hotspot in the fields of cancer development, progression,

migration, invasion, metastasis, and therapy. An increasing number
of studies has confirmed that exosomes promote tumor
development, suggesting that inhibition of their biogenesis,
secretion, and uptake elicits anti-tumor behavior (Chai et al.,
2024; Dai et al., 2020). Moreover, owing to their structural
characteristics, exosomes can protect the transported molecules
from degradation during delivery, enabling them to cross various
barriers, including the blood–brain barrier, and can spread
throughout the body to reach distant tissues. Recently, their
potential for drug delivery has been recognized (Kosaka et al.,
2010; Andaloussi et al., 2013; Ha et al., 2016). Kim et al. (2018)
reported macrophage-derived exosomes loaded with paclitaxel
combined with an aminoethyl carbamate-polyethylene glycol
carrier fragment. These exosomes targeted the sigma receptors
that are overexpressed in lung cancer cells and their systemic
administration led to drug accumulation in cancer cells, thereby
improving therapeutic efficacy. Moreover, Bai et al. (2020)
constructed a novel targeted tLyp-1 exosome via genetic
engineering, which showed high efficiency in transfecting lung
cancer and cancer stem cells. Compared to traditional gene- or
cell-based therapies, drug delivery mediated by exosomes offers a
compelling alternative because of their reduced immunogenicity,
smaller size, and ability to traverse biological barriers (Lu et al.,
2023a; Lu et al., 2023b).

In 2013, the Nobel Prize in Physiology or Medicine was awarded
to James E. Rothman, Randy W. Schekman, and Thomas C. Südhof
for their groundbreaking discoveries of the machinery regulating
vesicle traffic. Since then, the therapeutic potential of these
phospholipid bilayer-enclosed extracellular vesicles in various
diseases have been investigated. For instance, drug-loaded vesicles
have shown promising results in treating malignant pleural effusion
by offering targeted, low-toxicity, and highly effective anti-tumor
immune activation (Xu et al., 2020b; Guo et al., 2019). Lin and
colleagues have demonstrated that extracellular vesicles produced by
radiation therapy can deliver immune activation signals to T cells.
Using vesicle proteomics, they identified a new tumor-associated
antigen, CDCP1, specific peptide fragments of which can elicit an
immune response that effectively inhibits tumor growth (Lin et al.,
2020). However, the use of exosomes as therapeutic carriers is
associated with challenges. One major issue is the difficulty in
scaling up exosome isolation and purification while retaining
only the tumor-treating components and removing those that
promote tumor growth. Additionally, as exosomes possess
biological immunogenicity, preventing them from triggering an
immune response in the host remains a significant hurdle.
Furthermore, exosomes are prone to degradation during storage
and transport, which may impact their therapeutic efficacy.
Improving the biological stability of exosomes is one of the focus
areas of current research. In the future, synthetic vesicles with
enhanced stability and safety, engineered alongside tumor-
targeting drugs, proteins, peptides, or even miRNAs, may be
created to achieve more precise therapeutic delivery.

At present, one of the main obstacles preventing exosome
therapy from entering clinical practice is the low yield and
efficiency of exosome production. For example, less than 1 μg of
exosomal protein can be obtained from 1mL of culture medium in a
laboratory setting (Gurunathan et al., 2019). Additionally, exosomes
exhibit heterogeneity in size, content, surface markers, and origin,
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which complicates their isolation. The currently available exosome
isolation and purification techniques are based on size, surface
charge, and immunoaffinity (Kimiz-Gebologlu and Oncel, 2022).
However, no method is perfect, and each has its advantages and
disadvantages. For example, ultracentrifugation is considered the
gold standard for exosome extraction. While it requires minimal
reagents and expertise, its time-consuming nature, high cost, low
efficiency, and the co-isolation of lipoproteins limit its use for large-
scale applications (Yang et al., 2019). Immunoaffinity
chromatography is a separation technique based on the specific
binding of antibodies to ligands. This method is fast and highly pure
exosomes can be obtained with high specificity and yield. However,
the antigens or proteins used for conjugation should be expressed on
the exosome surface (Doyle and Wang, 2019). Particle size-based
separation techniques, such as ultrafiltration and size-exclusion
chromatography, are rapid and suitable for large-scale
applications. However, challenges such as pore clogging, exosome
loss, and low purity make these methods less ideal for widespread
use (Kalluri and LeBleu, 2020). Although no single technique is
perfect, combining the aforementioned methods with other
methods, such as precipitation-based and microfluidic-based
techniques, may ensure that the various requirements of exosome
isolation and purification are met.

Currently, the clinical trials database (https://www.clinicaltrials.
gov) lists over 30 entries focused primarily on the applications of
exosomes in lung cancer, including diagnosis, treatment, and
efficacy analysis. In particular, exosome-related clinical research
has been extended to various types of cancer, covering areas such
as the identification of biomarkers for diagnosis and prognosis,
therapeutic interventions, drug delivery mechanisms, and the
development of cancer vaccines. However, the clinical application
of exosomes in NSCLC radiotherapy is still in its early stages and is
mostly limited to in vitro studies. Researchers face many challenges
that must be addressed in the future, including gaining a deeper
understanding of the biological characteristics of exosomes and their
contents, standardizing exosome isolation and identification
methods, and exploring how exosomes affect the
microenvironment and cellular signaling pathways during
radiotherapy. With continuous technological advancements, we
believe that once the limitations related to scaling-up of
production, adherence to good manufacturing practices, and
compliance with regulatory frameworks are overcome, exosome-

related therapies will soon be incorporated into clinical practice.
This will bring innovative treatments to the bedside and benefit
more patients with cancer (Wang et al., 2020).
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