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Objective: We aimed to evaluate the efficacy of stem cell-derived exosomes for
treating ischemic stroke and to screen for the optimal administration strategy.

Methods:We searched PubMed, Web of Science, Embase, Cochrane Library, and
Scopus databases for relevant studies published from their inception to
31 December 2023. Conventional and network meta-analyses of the routes of
administration, types, and immune compatibility of stem cell-derived exosomes
were performed using the cerebral infarct volume (%) and modified neurological
severity score (mNSS) as outcome indicators.

Results: A total of 38 randomized controlled animal experiments were included.
Conventional meta-analysis showed that compared with the negative control
group: intravenous administration significantly reduced the cerebral infarct
volume (%) and mNSS; intranasal administration significantly reduced the
cerebral infarct volume (%); and intracerebral administration significantly
reduced the mNSS. Adipose-derived mesenchymal stem cell-derived
exosomes (ADSC-Exos), bone marrow mesenchymal stem cell-derived
exosomes (BMSC-Exos), dental pulp stem cell-derived exosomes (DPSC-Exos)
and neural stem cell-derived exosomes (NSC-Exos) significantly reduced the
cerebral infarct volume (%) and mNSS; Endothelial progenitor cell-derived
exosomes (EPC-Exos), embryonic stem cell-derived exosomes (ESC-Exos),
induced pluripotent stem cell-derived exosomes (iPSC-Exos) and neural
progenitor cell-derived exosomes (NPC-Exos) significantly reduced the
cerebral infarct volume (%); Umbilical cord mesenchymal stem cell-derived
exosomes (UCMSC-Exos) significantly reduced the mNSS; and there was no
significant difference between urogenital stem cell-derived exosomes (USC-
Exos) and negative controls. Engineered modified exosomes had better efficacy
than unmodified exosomes. Both allogeneic and xenogeneic stem cell-derived
exosomes significantly reduced the cerebral infarct volume (%) and the mNSS.
The network meta-analysis showed that intravenous administration was the best
route of administration for reducing the cerebral infarct volume (%) and mNSS.
Among the 10 types of stem cell-derived exosomes that were administered
intravenously, BMSC-Exos were the best type for reducing the cerebral infarct
volume (%) and themNSS. Allogeneic exosomes had the best efficacy in reducing
the cerebral infarct volume (%), whereas xenogeneic stem cell-derived exosomes
had the best efficacy in reducing the mNSS.
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Conclusion: Thismeta-analysis, by integrating the available evidence, revealed that
intravenous administration is the best route of administration, that BMSC-Exos are
the best exosome type, that allogeneic exosomes have the best efficacy in reducing
the cerebral infarct volume (%), and that xenogeneic exosomes have the best
efficacy in reducing mNSS, which can provide options for preclinical studies. In the
future, more high-quality randomized controlled animal experiments, especially
direct comparative evidence, are needed to determine the optimal administration
strategy for stem cell-derived exosomes for ischemic stroke.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/
display_record.php?ID=CRD42024497333, PROSPERO, CRD42024497333
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1 Introduction

Ischemic stroke is one of the major causes of death and disability
among older adults worldwide. Research has shown that the number
of ischemic stroke deaths worldwide has increased from 2.04 million
to 3.29 million between 1990 and 2019, and is expected to increase
further to 4.9 million by 2030 (Fan et al., 2023; Krishnamurthi et al.,
2020). Early thrombolysis and thrombectomy are currently effective
treatments for ischemic stroke (Kleindorfer et al., 2021). However,
although thrombolysis and thrombectomy therapies promote
recanalization of occluded cerebral arteries, neurological function
is not fully restored in nearly 50% of stroke patients treated with
revascularization therapy (Fischer et al., 2022). Many patients are
not only subject to a strict time window, but after thrombolysis or
thrombectomy, brain tissue is often not effectively repaired because
of microcirculatory deficits such as ischemia/reperfusion injury,
hemorrhagic transformation, and “no-reflow” (Elfil et al., 2023;
Qiu et al., 2023). Hence, the exploration of new therapeutic
strategies is urgently needed.

Stem cells, with their ability for self-renewal, differentiation, and
tissue repair, are promising for treating ischemic stroke and have
moved from the laboratory stage into early clinical trials (Ya et al.,
2024; Yamaguchi et al., 2022). Studies have shown that transplanted
stem cells release bioactive substances into the brain mainly through
paracrine effects to reverse or repair the pathological damage caused by
ischemia, in which exosomes play a key role (Zhou et al., 2019; Asgari
Taei et al., 2022). Exosomes are capable of delivering substances such as
proteins, lipids, nucleic acids, and cellular metabolites to recipient cells,
thereby mediating cellular communication and regulating cellular
function (Kalluri and LeBleu, 2020). Exosomes, as a type of cell-free
therapy, not only inherit the biological functions of their source cells,
but also avoid the safety concerns associated with cell-based therapies
due to their low tumorigenicity, immunogenicity, and ability to cross
the blood-brain barrier (Abdulmalek et al., 2024). Thus, stem cell-
derived exosomes show great promise for treating stroke and other
central nervous system diseases.

Increasingly, preclinical studies have demonstrated that stem cell-
derived exosomes promote endogenous neural circuit remodeling,
neurovascular neogenesis, and brain tissue repair, with significant
efficacy in animal models of ischemic stroke (Dehghani et al., 2021;
Zhang et al., 2019). Several narrative reviews have summarized the
mechanisms and research progress of various stem cell-derived
exosomes for treating ischemic stroke (Dehghani et al., 2021;

Waseem et al., 2023; Xiong et al., 2022). However, differences in
the stem cell source of exosomes, route of administration, and
immune compatibility cause differences in efficacy. The optimal
strategy for the administration of stem cell-derived exosomes for
the treatment of ischemic stroke remains unclear. To date, few studies
have directly compared the efficacy of different stem cell-derived
exosome treatment strategies. In the absence of evidence for direct
comparisons, network meta-analysis establishes indirect comparisons
of treatment strategies and thus estimates and ranks the relative
effectiveness of all interventions (Van Valkenhoef et al., 2012).
Therefore, we performed conventional and network meta-analyses
of the routes of administration, types, and immune compatibility of
stem cell-derived exosomes, using the cerebral infarct volume (%) and
mNSS as outcome indicators; and qualitative synthesis of factors that
were too heterogeneous to be quantitatively analyzed. These findings
will provide support and reference for improving the efficacy of stem
cell-derived exosomes for the treatment of ischemic stroke and
accelerating their clinical translation.

2 Materials and methods

This meta-analysis protocol followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA)
2020 Statement (Page et al., 2021). The protocol has been
registered in PROSPERO (registration ID: CRD42024497333).

2.1 Search strategy

We comprehensively searched the PubMed, Web of Science,
Embase, Cochrane Library, and Scopus databases for English-
language studies from their inception until 31 December 2023.
We searched for “ischemic stroke,” “stem cell,” and “exosome” as
MeSH and free terms. The detailed search strategies for each
database are documented in Supplementary Material S1.

2.2 Study inclusion and exclusion criteria

The inclusion and exclusion criteria were developed following the
PICOS principles (Participants, Intervention, Comparison, Outcome,
and Study). 1) Animals and diseases (P): Rat/mouse ischemic stroke
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models were included; concomitant comorbidities, other animal
models, in vitro studies, and clinical studies were excluded. 2)
Intervention (I): Studies in which stem cell-derived exosomes were
used to treat ischemic stroke in rats/mice were included; non-stem
cell-derived exosomal studies were excluded. 3) Comparison(C):
Positive controls for comparison of different stem cell-derived
exosomes and negative controls such as vector, PBS, and saline
were included; studies without negative controls were excluded. 4)
Outcome (O): Studies reporting at least one of the outcomes in terms
of cerebral infarct volume (%), the mNSS; studies with statistically
unclear descriptions of outcomemetrics and those for which complete
data were not available were excluded. 5) Study (S): Randomized
controlled studies were included; case reports, and controlled studies
before and after the same group of treatments were excluded. Other:
Only English-language studies published before 31 December 2023,
were included; publications such as reviews, pathology reports,
conference abstracts, and letters were excluded.

2.3 Literature screening and data extraction

Two independent reviewers performed screening on the basis of
pre-established inclusion and exclusion criteria. After duplicate
publications were eliminated, titles and abstracts were assessed to
exclude ineligible studies. The reviewers subsequently obtained full
texts to screen the literature critically and identify studies for final
inclusion. The extracted data included the following: 1) first author,
year of publication, country; 2) animal characteristics (species, sex,
age, weight); 3) grouping method, sample size (experimental/control
group); 4) methods of modeling ischemic stroke; 5) exosome
characterization (stem cell source, isolation and purification
methods, particle size, and immune compatibility); 6) drug delivery
strategy (route of administration, timing, dose, frequency, duration of
treatment); and 7) outcome (mean, standard deviation or standard
error). Disagreements were resolved by discussion with the
corresponding author.

2.4 Outcome indicators

This meta-analysis used the cerebral infarct volume (%) and the
mNSS as outcome indicators, both of which are continuous data. If
assessments were performed at different times, only the results of the
longest follow-up time were extracted. In addition, if one study
performed a comparison of exosomes of different stem cell origins,
they would need to be extracted as a separate dataset. If numerical
data were not reported in the publication, Web Plot Digitizer
4.6 software was used to extract the mean, average, standard
deviation, or standard error from the graphical data (Drevon
et al., 2017). The formula for converting standard error to
standard deviation is as follows: SD = SME×√n.

2.5 Quality assessment

Two independent reviewers used the Systematic Review Centre for
Laboratory Animal Experimentation (SYRCLE)’s Risk of Bias Tool to
assess potential bias in each of the included studies (Hooijmans et al.,

2014). The tool contains 6 assessment domains, namely, selection bias,
performance bias, detection bias, attrition bias, reporting bias, and
other bias, with a total of 10 entries. Each entry was judged to be “low
risk,” “high risk,” or “unclear,” and inconsistencies were discussed and
resolved with the corresponding author.

2.6 Statistical analysis

Conventional meta-analysis: A conventional meta-analysis of
the routes of administration, types, and immune compatibility of
stem cell-derived exosomes was performed via Review Manager
5.3 software. The cerebral infarct volume (%) and the mNSS are
continuous data, so they are presented as the means and standard
deviations. The effect size of each outcome indicator was combined
via the standardized mean difference (SMD) and its 95% confidence
interval (CI), with p < 0.05 being significant. The animal
experimental studies used a random effects model to combine
effect sizes (Liu et al., 2024). Cochran’s Q test and I2 were used
to assess the heterogeneity of the included studies with p < 0.1 and
I2 > 50% suggesting significant heterogeneity.

Network meta-analysis: Bayesian random-effects network meta-
analysis of the routes of administration, types, and immune
compatibility of stem cell-derived exosomes was performed via
ADDIS 1.16.8 software (Shi et al., 2022). First, a network evidence
map was constructed for each outcome indicator, with each node in
the map representing an intervention, the lines connecting the nodes
representing direct comparisons between the two interventions, and
the width of the lines representing the number of studies comparing
the two interventions. Second, if there was a closed loop in the
network evidence map, inconsistency between direct and indirect
evidence was detected via node splitting, with p > 0.05 indicating that
the results of direct and indirect comparisons between interventions
were consistent, the consistency model was used; conversely, the
inconsistency model was used. Third, effect sizes for each outcome
indicator were combined via SMD, and the 95% CI and ranked
probability rankings were plotted. Fourth, subgroup analyses of
species were performed. Fifth, potential publication bias was
assessed via funnel plots, Begg’s test, and Egger’s test, with p <
0.05 suggesting significant publication bias.

3 Results

3.1 Results of the search

We searched a total of 1395 publications in the PubMed, Web of
Science, Embase, Cochrane Library, and Scopus databases. After
screening in strict accordance with the inclusion and exclusion
criteria, 38 randomized controlled animal experiments were
ultimately included, and the detailed screening process is shown
in Figure 1.

3.2 Characteristics of the included studies

Among the 38 studies, 16 (Wang et al., 2023a; Long et al., 2023;
Li Y. et al., 2023; Jiang et al., 2023; Ye et al., 2022; Dong et al., 2022;
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Wang et al., 2021; Rohden et al., 2021; Zhao et al., 2020; Zhang et al.,
2020; Xia et al., 2020; Mahdavipour et al., 2020; Ling et al., 2020; Li
et al., 2020; Han et al., 2020; Moon et al., 2019) were in rats, and 22
(Liang et al., 2024; Zhou et al., 2023; Zhang et al., 2023; Xu et al.,
2023; Xie et al., 2023; Wang et al., 2023b; Wang J. et al., 2023; Niu
et al., 2023; Liu et al., 2023; Li R. et al., 2023; Li Q. et al., 2023; Han
et al., 2023; Gu et al., 2023; Campero-Romero et al., 2023; Hu X.
et al., 2022; Hu H. et al., 2022; Zhang et al., 2021; Xia et al., 2021; Li
et al., 2021; Pan et al., 2020; Kuang et al., 2020; Sun et al., 2019) were
in mice. A total of 10 stem cell-derived exosomes were involved.
Thirteen studies used bone marrow mesenchymal stem cell-derived
exosomes (BMSC-Exos); seven studies used neural stem cell-derived
exosomes (NSC-Exos); five studies used adipose-derived
mesenchymal stem cell-derived exosomes (ADSC-Exos); four
studies used induced pluripotent stem cell-derived exosomes
(iPSC-Exos); three studies used umbilical cord mesenchymal
stem cell-derived exosomes (UCMSC-Exos); two studies used
neural progenitor cell-derived exosomes (NPC-Exos); two studies
used endothelial progenitor cell-derived exosomes (EPC-Exos); one
study used embryonic stem cell-derived exosomes (ESC-Exos); one
study used urogenital stem cell-derived exosomes (USC-Exos); and

one study used dental pulp stem cell-derived exosomes (DPSC-
Exos). Most studies used differential ultracentrifugation to extract
exosomes, five studies used exosome isolation and purification kits,
two studies used polyethylene glycol precipitation combined with
ultrafiltration, and one study used anion exchange. The particle size
of the exosomes ranged from 30–200 nm, and 2 publications did not
report the particle size of the exosomes. The majority of the studies
used intravenous administration, six studies used intracerebral
administration, and three studies used intranasal administration.
A total of 17 studies used engineered modified exosomes, of which
10 studies endogenously loaded stem cell-derived exosomes with
RNAs and non-coding RNAs, 5 studies extracted exosomes after
pretreatment of stem cells in culture (including drug-containing
serum, small-molecule actives, brain tissue extracts, and hydrogel
3D culture), and 2 studies surface-modified exosomes (RGD/
Angiopep-2 peptide, hyaluronic acid hydrogel). The particle size
of these engineered modified exosomes ranged from 30–200 nm.
The characteristics of the included publications are shown in
Supplementary Table S1 and Figures 2A,B, and detailed
administration strategies for stem cell-derived exosomes are
provided in Supplementary Table S2.

FIGURE 1
Flow chart of the literature selection process.
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3.3 Quality assessment of the
included studies

Of the 38 randomized controlled studies, 6 (15.79%) described
the method of random sequence generation and were rated as “low
risk”; the remaining studies mentioned only “randomized grouping”
and did not describe the detailed method of random sequence
generation and were rated as “unclear.” All the animal
experiments ensured that there were no differences in baseline
characteristics. Three (7.89%) studies had different routes of
administration for each group and did not describe whether the
investigators were blinded, therefore, these studies were rated as
“high risk” for allocation concealment and performance bias. Nine
(23.68%) studies were blinded to researchers and breeders and were
rated as “low risk.” Fifteen studies were blinded to the outcome
assessors and were rated as “low risk.” Fourteen (36.84%) of the
studies provided details of lost visits and were rated as “low risk.”
The results of the detailed risk of bias assessment are shown in
Figures 2C,D.

3.4 Effect of stem cell-derived exosomes on
the cerebral infarction volume (%)

A total of 29 studies (Wang et al., 2023a; Long et al., 2023; Li Y.
et al., 2023; Jiang et al., 2023; Ye et al., 2022; Dong et al., 2022; Wang
et al., 2021; Rohden et al., 2021; Xia et al., 2020; Ling et al., 2020; Han
et al., 2020; Zhou et al., 2023; Zhang et al., 2023; Xu et al., 2023; Xie

et al., 2023; Wang J. et al., 2023; Niu et al., 2023; Liu et al., 2023; Li R.
et al., 2023; Li Q. et al., 2023; Han et al., 2023; Gu et al., 2023; Hu H.
et al., 2022; Zhang et al., 2021; Xia et al., 2021; Li et al., 2021; Pan
et al., 2020; Kuang et al., 2020; Sun et al., 2019) reported the cerebral
infarct volume (%), which included 149 rats and 321 mice and
included 10 types of exosomes (ADSC-Exos, BMSC-Exos, DPSC-
Exos, EPC-Exos, ESC-Exos, iPSC-Exos, NPC-Exos, NSC-Exos,
UCMSC-Exos, and USC-Exos), with 1 study (Xu et al., 2023)
performing a direct comparison between NPC-Exos and EPC-
Exos. Twenty-five studies used intravenous administration (23 via
the tail vein, 1 via the femoral vein, and 1 via the jugular vein),
2 studies used intranasal administration, and 2 studies used
intracerebral administration (lateral ventricular injection).
Thirteen studies involved allogeneic exosomes, and 16 studies
involved xenogeneic exosomes. A total of 11 studies used
modified exosomes, with 5 studies endogenously loading non-
coding RNAs, 1 study endogenously loading RNAs, 4 studies
pretreating stem cells (including drug-containing serum, brain
tissue extracts, and hydrogel three-dimensional cultures), and
1 study surface-modifying the exosomes using adherent
hyaluronic acid hydrogels.

3.4.1 Conventional meta-analysis
Conventional meta-analysis of the routes of administration

showed (Figure 3) that intranasal (SMD = −1.87, 95% CI
[−3.01, −0.72], p = 0.001, I2 = 0%) and intravenous
administration (SMD = −2.26, 95% CI [−2.77, −1.75], p < 0.001,
I2 = 65%) significantly reduced the cerebral infarct volume (%)

FIGURE 2
Exosome characterization and risk of bias for publications. (A) Types of stem cell-derived exosomes; (B) routes of administration of stem cell-
derived exosomes; (C) risk of bias of the included studies; (D) summarized risk of bias of the included studies.
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compared with that in the negative control group. Intracerebral
administration (SMD = −2.61, 95% CI [−8.18, 2.96], p = 0.36, I2 =
91%) did not statistically differ from the negative control group.

Conventional meta-analysis of stem cell-derived exosomes
showed (Figure 4) that ADSC-Exos (SMD = −1.47, 95% CI
[−2.33, −0.62], p < 0.001, I2 = 0%), BMSC-Exos (SMD = −2.85,
95% CI [−3.95, −1.75], p < 0.001, I2 = 62%), DPSC-Exos
(SMD = −3.62, 95% CI [−5.71, −1.52], p < 0.001, I2 = N/A),
EPC-Exos (SMD = −1.96, 95% CI [−2.94, −0.97], p < 0.001, I2 =
31%), ESC-Exos (SMD = −1.10, 95% CI [−2.13, −0.07], p < 0.05, I2 =
N/A), iPSC-Exos (SMD = −3.54, 95% CI [−4.55, −2.52], p < 0.001,
I2 = 0%), NPC-Exos (SMD = −1.61, 95% CI [-2.55, −0.67], p < 0.001,
I2 = N/A), and NSC-Exos (SMD = −2.04, 95% CI [−3.51, −0.56], p <
0.01, I2 = 79%) significantly reduced the cerebral infarct volume (%)
compared to the negative control group. UCMSC-Exos
(SMD = −3.16, 95% CI [-6.36, 0.03], p = 0.05, I2 = 79%) and
USC-Exos (SMD = −0.57, 95% CI [−1.47, 0.33], p = 0.21, I2 = N/A)
were not significantly different from those in the negative control
group. There was no significant difference between EPC-Exos and
NPC-Exos (p = 0.75). Compared with unmodified exosomes,
modified exosomes (SMD = −2.80, 95% CI [−3.83, −1.76], p <
0.001, I2 = 63%) showed better efficacy.

Conventional meta-analysis of immune compatibility showed
(Figure 5) that both allogeneic (SMD = −2.08, 95% CI [−2.75, −1.41],
p < 0.001, I2 = 61%) and xenogeneic (SMD = −2.38, 95% CI
[−3.11, −1.65], p < 0.001, I2 = 65%) stem cell-derived exosomes
significantly reduced the cerebral infarct volume (%) compared with
that in the negative control group.

3.4.2 Network meta-analysis
No closed loops appeared in the network evidence plot for the

route of administration (Figure 6A), and network meta-analysis was
performed via the consistency model. The results showed (Table 1)
that there were no significant differences between the various routes
of administration. Subgroup analysis of the species showed
(Supplementary Table S3) that there were also no significant
differences between the various routes of administration in the
mouse and rat subgroups. Rank probability ranking showed
(Figure 7A; Table 2) that intravenous administration was the best
route of administration for reducing the cerebral infarct volume (%),
both overall and in the mouse and rat subgroups. Therefore, we next
performed a network meta-analysis of the types and immune
compatibility of stem cell-derived exosomes after intravenous
administration.

FIGURE 3
Forest plot for conventional meta-analysis of the effects of routes of administration on the cerebral infarct volume (%).
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Among the 25 studies involving intravenous administration,
10 types of stem cell-derived exosomes were included (ADSC-Exos,
BMSC-Exos, DPSC-Exos, EPC-Exos, ESC-Exos, iPSC-Exos, NPC-
Exos, NSC-Exos, UCMSC-Exos, and USC-Exos). There was a closed
loop in the network evidence map of stem cell-derived exosomes
(Figure 6B), and the node splitting method test (Supplementary
Table S4) revesled no inconsistency between direct and indirect
comparisons (p > 0.05); therefore, network meta-analysis was
performed via the consistency model. The results (Supplementary
Table S5) showed that the efficacy of the BMSC-Exos
(SMD = −13.96, 95% CI [−26.10, −1.65]) was superior to that of
the UCMSC-Exos, and there was no significant difference between
the other types of exosomes. In the mouse and rat subgroups
(Supplementary Table S3), there were no significant differences

between the various types of stem cell-derived exosomes. Rank
probability ranking showed (Figure 7B; Table 3) that BMSC-Exos
were the best stem cell-derived exosome for reducing the cerebral
infarct volume (%), both overall and in themouse and rat subgroups.

No closed loops appeared in the network evidence plot for the
immune compatibility of stem cell-derived exosomes (Figure 6C),
and network meta-analysis was performed via the consistency
model. The results showed (Table 4) that there were no
significant differences between allogeneic exosomes and
xenogeneic exosomes. In the mouse and rat subgroups
(Supplementary Table S3), there was also no significant
difference between the two groups. Rank probability ranking
showed (Figure 7C; Table 5) that overall, allogeneic exosome
efficacy was best; in the mouse subgroup, xenogeneic exosome
efficacy was best; and in the rat subgroup, allogeneic exosome
efficacy was best.

3.5 Effect of stem cell-derived exosomes on
the mNSS

A total of 21 studies (Li Y. et al., 2023; Jiang et al., 2023; Ye et al.,
2022; Dong et al., 2022; Zhao et al., 2020; Zhang et al., 2020; Xia et al.,
2020; Mahdavipour et al., 2020; Ling et al., 2020; Li et al., 2020;
Moon et al., 2019; Liang et al., 2024; Zhou et al., 2023; Zhang et al.,
2023; Xie et al., 2023; Wang et al., 2023b; Li R. et al., 2023; Gu et al.,
2023; Campero-Romero et al., 2023; Hu X. et al., 2022; Li et al., 2021)
reported the mNSS, which included 214 rats and 173 mice, and
included 8 types of exosomes (ADSC-Exos, BMSC-Exos, DPSC-
Exos, iPSC-Exos, NPC-Exos, NSC-Exos, UCMSC-Exos, and USC-
Exos). Thirteen studies used intravenous administration (tail vein
injection), 2 studies used intranasal administration, and 6 studies
used intracerebral administration (5 lateral ventricular injections
and 1 localized striatal graft). Thirteen studies used allogeneic
exosomes and 8 studies used xenogeneic exosomes. A total of
9 studies used engineered modified exosomes, with 2 studies
endogenously loading non-coding RNAs, 2 studies endogenously
loading RNAs, 3 studies pretreating stem cells (including brain
tissue extracts, interferon-gamma, LBP), and 2 studies surface-
modifying exosomes (RGD/Angiopep-2 peptide, hyaluronic
acid hydrogel).

3.5.1 Conventional meta-analysis
Conventional meta-analysis of routes of administration showed

(Figure 8) that intravenous (SMD = −1.56, 95% CI [−1.96, −1.15],
p < 0.001, I2 = 29%) and intracerebral administration (SMD = −0.60,
95% CI [−1.06, −0.13], p < 0.05, I2 = 0%) significantly reduced the
mNSS compared with that of negative controls. The effects of
intranasal administration (SMD = −1.56, 95% CI [−3.49, 0.37],
p = 0.11, I2 = 81%) were not significantly different from those of
the negative controls.

Conventional meta-analysis of stem cell-derived exosomes
showed (Figure 9) that ADSC-Exos (SMD = −1.71, 95% CI
[−2.46, −0.97], p < 0.001, I2 = 29%), BMSC-Exos (SMD = −1.76,
95% CI [-2.49, −1.04], p < 0.001, I2 = 31%), DPSC-Exos
(SMD = −1.04, 95% CI [−1.74, −0.34], p < 0.05, I2 = N/A), NSC-
Exos (SMD = −0.95, 95% CI [−1.85, −0.05], p < 0.05, I2 = 64%), and
UCMSC-Exos (SMD = −1.11, 95% CI [−2.12, −0.10], p < 0.05, I2 =

FIGURE 4
Forest plot for conventional meta-analysis of the effect of stem
cell-derived exosomes on cerebral infarct volume (%).
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N/A) significantly reduced the mNSS compared with that of the
negative controls. iPSC-Exos (SMD = −1.40, 95% CI [−2.99, 0.19],
p = 0.09, I2 = 73%), NPC-Exos (SMD = −1.00, 95% CI [−2.55, 0.55],
p = 0.21, I2 = N/A), and USC-Exos (SMD = −0.88, 95% CI [−1.81,
0.05], p = 0.06, I2 = N/A) were not significantly different from the
negative controls. Compared with unmodified exosomes, modified
exosomes (SMD = −2.26, 95% CI [−3.14, −1.39], p < 0.001, I2 = 63%)
had better efficacy.

Conventional meta-analysis of the immune compatibility of
stem cell-derived exosomes showed (Figure 10) that both
allogeneic exosomes (SMD = −1.45, 95% CI [−1.90, −1.00], p <
0.001, I2 = 35%) and xenogeneic exosomes (SMD = −1.13, 95% CI
[−1.72, −0.53], p < 0.001, I2 = 56%) significantly reduced the mNSS
compared with that of negative controls.

3.5.2 Network meta-analysis
No closed loops appeared in the network evidence plot for routes

of administration (Figure 11A), and network meta-analysis was
performed via the consistency model. The results showed (Table 6)

that there were no significant differences between the various
routes of administration. In the mouse and rat subgroups
(Supplementary Table S6), there were also no significant
differences between the various routes of administration. Rank
probability ranking showed (Figure 12A; Table 7) that intravenous
administration was the best route of administration for reducing
the mNSS, both overall and in the mouse and rat subgroups.
Therefore, we next performed a network meta-analysis of the types
and immune compatibility of stem cell-derived exosomes after
intravenous administration.

Seven types of stem cell-derived exosomes (ADSC-Exos, BMSC-
Exos, DPSC-Exos, iPSC-Exos, NSC-Exos, UCMSC-Exos, and USC-
Exos) were included in the 13 studies involving intravenous
administration. There were no closed loops in the network
evidence map (Figure 11B), and network meta-analysis was
performed via the consistency model. The results (Supplementary
Table S7) showed that there were no significant differences between
the various types of stem cell-derived exosomes. There were also no
significant differences between the various types of stem cell-derived

FIGURE 5
Forest plot for conventional meta-analysis of the effect of immune compatibility on the cerebral infarct volume (%).
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exosomes in the mouse and rat subgroups (Supplementary Table
S6). Rank probability ranking showed (Figure 12B; Table 8) that
BMSC-Exos were the best stem cell-derived exosomes for reducing
the mNSS, both overall and in the mouse and rat subgroups.

No closed loops were present in the network evidence plot for
immune compatibility (Figure 11C), and network meta-analysis was
performed via the consistency model. The results showed (Table 9)
that there were no significant differences between allogeneic
exosomes and xenogeneic exosomes. In the mouse and rat
subgroups (Supplementary Table S6), there was also no
significant difference between the two groups. Rank probability
ranking showed (Figure 12C; Table 10) that xenogeneic stem
cell-derived exosomes had the best efficacy in reducing the
mNSS, both overall and in the mouse and rat subgroups.

3.6 Publication bias

Funnel plots, Begg’s test (p < 0.05), and Egger’s test (p < 0.05)
results showed (Figure 13; Table 11) that publication bias and small-

sample effects may be present in studies reporting the cerebral
infarction volume (%) and the mNSS.

4 Discussion

A total of 38 randomized controlled animal experiments were
included in this study, in which the cerebral infarct volume (%) and
the mNSS were used as outcome indicators. First, we clarified the
efficacy of various stem cell-derived exosomes for various routes of
administration, types, and immune compatibility in a rat/mouse
ischemic stroke model via conventional meta-analysis. Compared
with the negative control group, 1) intravenous administration
significantly reduced the cerebral infarct volume (%) and mNSS;
intranasal administration significantly reduced the cerebral infarct
volume (%); and intracerebral administration significantly reduced
the mNSS. 2) ADSC-Exos, BMSC-Exos, DPSC-Exos, and NSC-Exos
significantly reduced the cerebral infarct volume (%) and mNSS;
EPC-Exos, ESC-Exos, iPSC-Exos and NPC-Exos significantly
reduced the cerebral infarct volume (%); UCMSC-Exos

FIGURE 6
Network evidence maps of the cerebral infarct volume (%). (A) Routes of administration; (B) Stem cell-derived exosome types; (C) Immune
compatibility.

TABLE 1 Network meta-analysis of routes of administration for reducing the cerebral infarct volume (%).

Intracerebral administration −3.74 [−23.33, 15.57] −10.55 [−25.13, 4.21] 6.53 [−7.63, 20.88]

3.74 [−15.57, 23.33] Intranasal administration −6.75 [-20.41, 6.58] 10.42 [−3.01, 23.15]

10.55 [−4.21, 25.13] 6.75 [−6.58, 20.41] Intravenous administration 17.07 [13.29, 20.80]

−6.53 [−20.88, 7.63] −10.42 [−23.15, 3.01] −17.07 [−20.80, −13.29] Negative control
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significantly reduced the mNSS; there was no significant difference
between USC-Exos and negative controls; and modified exosomes
had better efficacy than unmodified exosomes. 3) Both allogeneic
and xenogeneic stem cell-derived exosomes significantly reduced the
cerebral infarct volume (%) and the mNSS.

We subsequently compared the efficacy of various routes of
administration, types, and immune compatibility of stem cell-
derived exosomes via network meta-analysis and screened the
optimal delivery strategies by rank probability ranking. 1)
Compared with the various routes of administration, intravenous

FIGURE 7
Rank probability ranking plots for the cerebral infarct volume (%). (A) Routes of administration; (B) Stem cell-derived exosome types; (C) Immune
compatibility; Rank 1 is the worst, and rank N is the best.

TABLE 2 The probability of the best administration route for reducing the
cerebral infarct volume (%).

Routes of administration Total Mice Rat

Intracerebral administration 0.07 0.05 -

Intranasal administration 0.15 0.39 0.18

Intravenous administration 0.78 0.56 0.82

TABLE 3 Probability of the best stem cell-derived exosomes for reducing
the cerebral infarct volume (%).

Stem cell-derived exosomes Total Mice Rat

ADSC-Exos 0.06 0.03 —

BMSC-Exos 0.36 0.42 0.36

DPSC-Exos 0.24 0.18 —

EPC-Exos 0.01 0.01 —

ESC-Exos 0.05 0.04 —

NPC-Exos 0.07 0.05 —

NSC-Exos 0.01 0.01 0.28

UCMSC-Exos 0 0.03 0.05

USC-Exos 0.06 — 0.13

iPSC-Exos 0.13 0.24 0.19

TABLE 4 Network meta-analysis of immune compatibility of stem cell-
derived exosomes under tail vein injection for the cerebral infarct
volume (%).

Allogeneic 0.60 [-7.19, 8.39] 17.38 [11.79, 22.89]

−0.60 [−8.39, 7.19] Xenogeneic 16.76 [11.38, 22.22]

−17.38 [−22.89, −11.79] −16.76 [−22.22, −11.38] Negative control

TABLE 5 Probability of the best immune compatibility for the cerebral
infarct volume (%).

Immune compatibility Total Mice Rat

Allogeneic 0.57 0.28 0.76

Xenogeneic 0.43 0.72 0.24
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administration was the best route of administration for reducing the
cerebral infarct volume (%) and the mNSS, both overall and in the
mouse and rat subgroups. 2) Among the 10 types of stem cell-
derived exosomes that were intravenously administered, BMSC-
Exos were the best stem cell-derived exosomes for reducing the
cerebral infarct volume (%) and mNSS, both overall and in the rat
and mouse subgroups. 3) Overall and in rat subgroups, allogeneic
exosomes had the best efficacy in reducing the cerebral infarct
volume (%), whereas in the mouse subgroup, xenogeneic
exosomes had the best efficacy. Both overall and in the mouse
and rat subgroups, xenogeneic stem cell-derived exosomes had the
best efficacy in reducing the mNSS.

The route of administration is closely related to the stage of
ischemic stroke, drug biodistribution, efficacy, and safety, and is one
of the most controversial issues in preclinical and clinical studies.
Our study clarified the efficacy of stem cell-derived exosomes
administered intravenously, intranasally, and intracerebrally, and
revealed that intravenous administration was the optimal route of
administration. Compared with intracerebral administration,
intravenous administration is considered to be the most direct
and least invasive technique; it is more suitable for the early
treatment of ischemic stroke and is the most frequently used
route of administration in the clinic (Taussky et al., 2011;

Rascón-Ramírez et al., 2021). Two recent meta-analyses
confirmed that intravenous administration is the safest route of
administration for patients with ischemic stroke and that
intracerebral administration increases the incidence of adverse
events (Fauzi et al., 2023; Wang et al., 2020). Studies have shown
that stem cell-derived exosomes accumulate in large quantities in
organs such as the spleen, lungs, liver, and kidneys after intravenous
administration, with less distribution in the brain (Li Y. et al., 2021;
Song et al., 2023). Toxicological studies have shown that the
accumulation of stem cell-derived exosomes does not cause toxic
damage to these organs or significant changes in biochemical blood
parameters (Rodrigues et al., 2021). Intranasal administration allows
for the direct delivery of drugs to the brain via the olfactory region,
thus increasing the bioavailability and transport efficiency of the
drug (Gotoh et al., 2024). Betzer et al. (Betzer et al., 2017) found that
1 h after administration in cerebral ischemic mice, exosomes
administered intranasally were more than twice as abundant in
the brain as those administered intravenously. Our results showed
that intranasal administration of stem cell-derived exosomes
significantly reduced the cerebral infarct volume (%), but the
effect of reducing the mNSS was not significantly different from
that of the negative control group. This evidence suggests that
intranasal administration is a promising noninvasive route for

FIGURE 8
Forest plot for conventional meta-analysis of the effects of routes of administration on the mNSS.
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treating ischemic stroke, but more experimental data are still needed
to confirm the efficacy and safety of intranasal administration.

This study showed that among the 10 types of exosomes, the
BMSC-Exos had the best efficacy after intravenous administration.

BMSC-Exos are currently the most widely used exosomes for
treating central nervous system (CNS) diseases. The advantages
of BMSCs over other stem cells and the progress of the use of BMSC-
Exos in CNS diseases such as ischemic stroke have been well

FIGURE 9
Forest plot for conventional meta-analysis of the effects of stem cell-derived exosomes on the mNSS.
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FIGURE 10
Forest plot for conventional meta-analysis of immune compatibility on the mNSS.

FIGURE 11
Network evidence maps for the mNSS. (A) Routes of administration; (B) Stem cell-derived exosome types; (C) Immune compatibility.
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described in several recently published systematic reviews (Chai
et al., 2024; Cai et al., 2020; Chu et al., 2020; Pratiwi et al., 2024). In
addition, we found that engineered modified exosomes were more
efficacious than unmodified exosomes. Exosomes mainly play a key
role in regulating biological functions by delivering proteins, non-
coding RNAs, and other contents (Pan et al., 2023). Nine of the
included studies transfected stem cell-derived exosomes with non-
coding RNAs with cerebral protective effects, which enhanced the
effects of stem cell-derived exosomes on the inhibition of
neuroinflammation, anti-apoptosis, anti-oxidative stress, and
neovascularization. Moreover, the efficacy of exosomes can be
enhanced by modulating the microenvironment of their source

cell culture (Haupt et al., 2023). In this meta-analysis, five studies
pretreated stem cells with cerebral infarction tissue extracts,
proinflammatory factors, drug-containing serum, and small-
molecule drugs, and the resulting exosomes had a greater
cerebral protective effect. However, the exact molecular
mechanism by which preconditioned exosomes ameliorate

TABLE 6 Network meta-analysis of routes of administration for reducing the mNSS.

Intracerebral administration −0.28 [−2.68, 2.03] −1.43 [−2.92, 0.02] 0.80 [−0.48, 2.03]

0.28 [−2.03, 2.68] Intranasal administration −1.12 [-3.27, 0.99] 1.08 [−0.87, 3.05]

1.43 [−0.02, 2.92] 1.12 [−0.99, 3.27] Intravenous administration 2.21 [1.43, 3.01]

−0.80 [−2.03, 0.48] −1.08 [−3.05, 0.87] −2.21 [−3.01, −1.43] Negative control

FIGURE 12
Rank probability ranking plots for the mNSS. (A) Routes of administration; (B) Stem cell-derived exosome types; (C) Immune compatibility; Rank 1 is
the worst, and rank N is the best.

TABLE 7 The probability of the best administration route for mNSS.

Routes of administration Total Mice Rat

Intracerebral administration 0.02 0.07 0.12

Intranasal administration 0.13 0.20 -

Intravenous administration 0.85 0.73 0.88

TABLE 8 Probability of the best stem cell-derived exosomes for mNSS.

Stem cell-derived exosomes Total Mice Rat

ADSC-Exos 0.07 0.07 -

BMSC-Exos 0.21 0.72 0.31

DPSC-Exos 0.16 0.14 -

NSC-Exos 0.09 0.06 -

UCMSC-Exos 0.09 - 0.15

USC-Exos 0.20 - 0.28

iPSC-Exos 0.17 - 0.25
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cerebral infarction remains unclear. Although stem cell-derived
exosomes are promising for the treatment of ischemic stroke, the
lack of brain-targeting ability after systemic administration has been
one of the bottlenecks limiting their efficacy. The study notes that
exosomes can be engineered with modifications that alter their in
vivo biodistribution, including enhanced brain targeting (Choi et al.,
2021). Studies continue to confirm that surface-engineered
modification of exosomes can significantly increase brain content
and improve bioavailability (Tian et al., 2018; Tian et al., 2021). In
this meta-analysis, 2 studies used surface-engineered modifications
of exosomes. Liang et al. (Liang et al., 2024) utilized the brain-
targeting ability of the RGD peptide and the cell-penetrating ability

of the Angiopep-2 peptide for dual surface modification of MSC-
derived exosomes. After intravenous administration, the modified
exosomes rapidly accumulated in the ischemic region of the brain
and targeted ischemic vessels. Gu et al. (2023) used adhesive
hyaluronic acid hydrogels loaded with exosomes to achieve
continuous delivery and slow release of exosomes in the ischemic
region of the brain, increasing the duration of action of exosomes in
the brain, which in turn enhanced their efficacy in ameliorating
cerebral infarction.

The low immunogenicity of exosomes opens up the possibility
of heterologous applications, but it is not clear whether there are
differences in therapeutic efficacy across species. An experimental
study by Dong et al. (2020) showed that both allogeneic exosomes
and xenogeneic exosomes promoted soft tissue repair, but there
was no significant difference between the two methods. Our study
also demonstrated no significant difference between allogeneic
stem cell-derived exosomes and xenogeneic exosomes in
reducing the cerebral infarct volume (%) and the mNSS.
However, the rank probability showed that allogeneic stem cell-
derived exosomes had the best efficacy in reducing the cerebral
infarct volume (%), whereas xenogeneic stem cell-derived
exosomes had the best efficacy in reducing the mNSS. Many
factors contribute to this controversy. Different species and
different cellular sources lead to differences in exosome
contents that can perform immunostimulatory or
immunosuppressive functions (Fujii et al., 2018). In addition,
even exosomes of the same cellular origin can elicit different
immunomodulatory effects depending on their culture

TABLE 9 Network meta-analysis of immune compatibility of stem cell-
derived exosomes under tail vein injection for the mNSS.

Allogeneic −0.76 [−2.76, 1.33] 1.93 [0.69, 3.28]

0.76 [−1.33, 2.76] Xenogeneic 2.70 [1.05, 4.30]

−1.93 [−3.28, −0.69] −2.70 [−4.30, −1.05] Negative control

TABLE 10 Probability of the best immune compatibility for the mNSS.

Immune compatibility Total Mice Rat

Allogeneic 0.22 0.47 0.28

Xenogeneic 0.78 0.52 0.72

FIGURE 13
Funnel plots of the included studies. (A) Studies reporting the cerebral infarct volume (%); (B) Studies reporting the mNSS.

TABLE 11 Tests for publication bias.

Outcomes Number of studies Begg’s test Egger’s test

Z P T P

Infarct volume% 29 4.37 0.000 −8.33 0.000

mNSS 21 3.23 0.001 −4.09 0.001
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environment and formulation (Kordelas et al., 2019; Lia et al.,
2020). In addition to efficacy, safety considerations that may arise
from the intra- and inter-species application of exosomes must be
taken into account, as this is critical for the clinical translation of
exosomes. Unfortunately, none of the 38 included experimental
animal studies reported the occurrence of adverse events.
Dehghani et al. (2022) conducted a randomized controlled
clinical trial showing that patients with malignant middle
cerebral artery occlusion did not develop local hematomas or
adverse effects after injection of allogeneic stem cell-derived
exosomes, suggesting that allogeneic exosome therapy is safe. A
recent meta-analysis of clinical trials on exosomes showed no
significant difference in the incidence of adverse events between
allogeneic versus autologous administration, nor between engineered
modified versus unmodified exosomes, and that, in general, exosome-
based therapy is safe and feasible for patients (Van Delen et al., 2024).
Our meta-analysis indirectly compares the efficacy of allogeneic stem
cell-derived exosomes with xenogeneic exosomes by integrating
existing evidence, which could provide options for preclinical
studies, but more direct comparative evidence is still needed to
validate the results. Future studies should also emphasize the safety
of the exosome administration.

Notably, the dose and duration of exosome administration
(Supplementary Table S2) were also important factors
influencing the cerebral infarct volume (%) and mNSS.
However, these factors were too heterogeneous across studies
for quantitative meta-analysis, and we performed a qualitative
review of them. 1) In terms of dose administered, among the
included studies, some used weight units (μg), and some used
particle counts (particles); there is no consensus on the dose to be
administered for exosomes, and comparing doses from different
studies is challenging. Our study found a range of 10–300 μg (or
2 × 106–3 × 1011 particles) for intravenous administration, 800 ng
- 100 μg (or 4 × 109–1 × 1010 particles) for intracerebral
administration, and 10 μg–200 μg/kg for intranasal
administration. These suggest that the effective dose of stem
cell-derived exosomes range is wide. Both Moon et al. (2019) and
Hu et al. (Hu H. et al., 2022) showed that intravenous injection of
BMSC-Exos promoted neurovascular neovascularization and
neurological function recovery in cerebral ischemic rats
exhibited dose-dependent effects (10, 25, 30, 50, 100, and
300 μg/rat), with an optimal dose of 100 μg/rat for promotion
of neovascularization. Rohden et al. (2021) showed that the
transnasal administration of ADSC-Exos to promote
neurological recovery also showed a dose-dependent effect
(100, 200, and 300 μg/kg), and an administration dose of
200 μg/kg resulted in complete neurological recovery in
MCAO/R rats. However, the doses in these studies are within
the range of safe doses, and toxicological studies are lacking, so
more preclinical studies are needed to optimize the dose of
exosomes administered. 2) In terms of courses of treatment, of
the included studies, 24 were single-dose administrations with a
maximum observation period of up to 2 months; 9 were once-
daily administrations with a range of 2–28 days; 2 were 2-weekly
administrations with a course of 28 days; and 1 was twice-daily
administrations for 3 consecutive days, but with an observation
period of up to 28 days 1 was 3 times-daily administrations for
7 consecutive days. As can be seen, the current preclinical studies

on the frequency and courses of administration of stem cell-
derived exosomes are very variable, with observation times
covering the acute, subacute, and recovery phases of ischemic
stroke. Among them, BMSC-Exos significantly reduced the
cerebral infarct volume (%) and mNSS on days 1, 14, and
28 after a single administration via intravenous injection. We
believe that in the future studies should focus on the short-term
efficacy and long-term prognosis of exosomes in the treatment of
ischemic stroke and enhance the standardization and
normalization of this therapy.

This meta-analysis has several limitations: 1) Due to the
different units (particles, μg, μl) of exosomes administered in the
included studies, we did not further screen for the optimal dose to be
administered. 2) We did not compare proteins, genes, and cytokines
at the molecular level because different studies differ in their
methods of detection or in the tissues from which they were
taken. (3) Because of species differences and differences in
follow-up time between studies, as well as funnel plots, Begg’s
test, and Egger’s test indicating possible publication bias and
small-sample effects, these factors call for caution in interpreting
the results of meta-analyses.

5 Conclusion

We found that various routes of administration, types, and
immune compatibility of stem cell-derived exosomes were
efficacious in ischemic stroke animal models via conventional
and network meta-analyses of 38 randomized controlled animal
experiments. Among them, intravenous administration is the
best route of administration, BMSC-Exos are the best stem
cell-derived exosome type, allogeneic exosomes have the best
efficacy in reducing the cerebral infarct volume (%), and
xenogeneic exosomes have the best efficacy in reducing the
mNSS, which can provide options for preclinical studies.
Considering the limitations of this meta-analysis and the risk
of uncertainty in the experimental design, outcome
measurement, and reporting of the current studies, more high-
quality randomized controlled animal experiments, especially
direct comparative evidence, are needed in the future to
determine the optimal administration strategy of stem cell-
derived exosomes for treating ischemic stroke.
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