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Background: Prostate cancer (PC) is the most frequently diagnosed cancer in
men and continues to be amajor cause of cancer-related mortality worldwide. In
recent years, non-coding RNAs (ncRNAs) have emerged as a significant focus in
molecular biology research, playing a pivotal role in the development and
progression of PC. This study employed bibliometric analysis to explore the
global outputs, research hotspots, and future trends in ncRNA-related PC
research over the past 20 years.

Methods: Publications on PC-related ncRNAs from 2004 to 2023 were retrieved
from Web of Science Core Collection. The co-operation network of countries,
institutions, and authors on this topic was analyzed using CiteSpace (version 6.2.
R6). In addition, co-occurrence analysis of keywords and co-citation analysis of
references were performed using CiteSpace, and emergent detection was
also performed.

Results: A total of 2,951 articles on PC-related ncRNAs were finally included in
this study for analysis. China contributed the largest number of publications, while
the United States was the most influential country in this field, with collaborative
ties to 26 other countries. Fudan University was identified as the most active
institution in this field. Rajvir Dahiya was the most prolific and influential author.
Within the co-citation network, clusters labeled “EVs,” “circRNA,” and “ceRNA”
represented current research directions. The cluster labeled “gene” dominated
the co-occurrence keywords. “circRNA” showed the highest burst strength
among keywords, with “circRNA,” “EVs” and “exosome” maintaining sustained
burst strength, suggesting these are the emerging research frontiers in this field.

Conclusion: Investigating ncRNAs as pivotal research subjects in PC is essential
for addressing the public health impact of the disease and advancing innovative
diagnostic and targeted therapeutic strategies. This study provides a
comprehensive bibliometric analysis of research related to PC-associated
ncRNAs, delivering a scientific perspective and identifying potential research
directions for scholars in this field.
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1 Introduction

Prostate cancer (PC) is one of the most common malignancies
threatening men’s health (Litwin and Tan, 2017). According to
GLOBOCAN cancer statistics, PC had an estimated 1.5 million new
cases and 397,000 deaths globally in 2022, making it the secondmost
common cancer and the fifth leading cause of cancer-related
mortality among men (Bray et al., 2024). As an age-related
malignancy of the male genitourinary system, PC has a higher
incidence in elderly populations and continues to rise with the
increasing aging of the population (Siegel et al., 2023). Family
history, race, and genetic syndromes are established risk factors
for PC, while smoking and obesity have a suspected role in
modulating PC-specific mortality (Gandaglia et al., 2021). In its
early stages, PC is asymptomatic, with early detection primarily
achieved through blood tests for prostate-specific antigen (PSA) and
confirmed via tissue biopsy (Van Poppel et al., 2022). Although
radiation therapy and radical prostatectomy are effective treatments
for localized PC, they may increase the risk of treatment-related
complications, including incontinence and erectile dysfunction from
surgery, and gastrointestinal and erectile dysfunction from radiation
therapy (Pinsky and Parnes, 2023). Androgen deprivation therapy
(ADT) is the standard treatment for recurrent or metastatic PC
patients, encompassing both surgical and pharmacological
castration, with the latter being more commonly employed
(Feldman and Feldman, 2001). The goal of ADT is to lower
serum testosterone levels in PC patients and maintain this
suppression to induce cancer cell death and achieve transient
clinical remission (Schröder et al., 2012). Nevertheless, the vast
majority of PC patients subjected to ADT will ultimately develop
castration-resistant PC (CRPC), which is a leading cause of
mortality among these patients (Cai et al., 2023).

For decades, the functional focus of PC research has primarily
been on protein-coding genes. However, these genes constitute only
about 2%–3% of the human genome, while the diverse and
ubiquitous non-coding RNAs (ncRNAs) originate from the
remaining nucleotides (Rinn and Guttman, 2014). With the
advent of high-throughput sequencing technologies, most of the
non-coding genome has been characterized as functional
transcripts, playing crucial roles in various biological processes
and pathological states (Slack and Chinnaiyan, 2019). ncRNAs
are localized in both the nucleus and cytoplasm and can also be
found within extracellular vesicles (EVs), such as exosomes, or other
microvesicles in bodily fluids. Based on their length, ncRNAs can be
broadly categorized into two main families: small ncRNAs, which
are shorter than 200 nucleotides and include microRNAs, transfer
RNA-derived small RNAs, and Piwi-interacting RNAs, and long
ncRNAs (lncRNAs), which exceed 200 nucleotides and encompass
pseudogenes, chimeric RNAs, and circular RNAs (circRNAs)
(Brosnan and Voinnet, 2009; Shi et al., 2021). As competing
endogenous RNAs (ceRNAs), ncRNAs interact with protein-
coding messenger RNAs (mRNAs) in complex ways, offering
new insights into the gene regulatory networks of humans.
Notably, recent studies have demonstrated that certain ncRNAs,
initially considered incapable of protein-coding, contribute critically
to disease development and progression through the production of
derived peptides or proteins (Wang et al., 2019; Yi et al., 2024).
ncRNA therapies have progressed relatively slowly on a global scale,

with most ncRNA-related drugs still in the early phases of human
clinical trials. For example, a 13-mer locked nucleic acid (LNA)
inhibitor of miR-221, known as LNA-i-miR-221, demonstrated
promising anti-tumor activity and safety in a Phase I clinical
study (Tassone et al., 2023). The miR-122 inhibitor miravirsen
resulted in a dose-dependent reduction of hepatitis C virus RNA
levels in a Phase II clinical trial (Janssen et al., 2013). Similarly,
CDR132L, a miR-132 inhibitor, has demonstrated effectiveness in
improving cardiac function in patients with heart failure (Täubel
et al., 2021). Additionally, remlarsen (miR-29b mimic) was found to
inhibit collagen expression and the development of
fibroproliferation in incisional skin wounds among healthy
volunteers (Gallant-Behm et al., 2019). Recent studies have
extensively reported abnormal expression of ncRNAs as a
significant feature of PC, identifying them as key players in the
onset and progression of the disease (Ramalho-Carvalho et al., 2016;
Mugoni et al., 2022). Research into the biology of ncRNAs not only
reveals their potential roles in PC pathology but also provides a
theoretical foundation for specific diagnostic, therapeutic, and
preventive strategies targeting ncRNAs in the human genome.

Bibliometrics offers an objective approach for objectively
reflecting the knowledge structure and emerging trends in a
particular field through quantitative analysis of published
scientific literature (Nicolaisen, 2010). CiteSpace, as a tool for
visualizing scientific knowledge, aids researchers in examining
contributions from authors, countries, and institutions,
identifying rapidly evolving topics, and forecasting future
research directions (Chen, 2004; Synnestvedt et al., 2005). For
instance, Zhong et al. (2022) utilized bibliometric analysis to
evaluate global scientific output on immunotherapy for PC from
1999 to 2021, summarizing future research trends. Similarly, Chen
et al. (2022) investigated the research status, hotspots, and trends in
bone metastases of PC through bibliometric analysis. Despite the
rapid advancement of research on ncRNAs in recent years, the
impact of these studies on the PC field has not yet been fully
assessed. Therefore, this study aimed to employ bibliometric
analysis and knowledge domain mapping to evaluate the
publications on ncRNAs in PC published over the past 20 years
in the Web of Science Core Collection (WoSCC), with the goal of
identifying the knowledge domain and emerging trends in this field.

2 Methods

2.1 Data collection

The Science Citation Index-Expanded (SCI-Expanded) of
WoSCC was searched for publications related to ncRNAs in PC.
The retrieval strategy used in this study was “TS = [(“miRNA*” OR
“microRNA*” OR “miR-*” OR “lncRNA*” OR “long noncoding
RNA*” OR “long non-coding RNA*” OR “circRNA*” OR “circular
RNA*” OR “circ_*” OR “non-coding RNA*” OR “noncoding
RNA*”) AND (“prostate cancer” OR “prostate neoplasm”)].” The
search time span was set to between 1 January 2004 and
31 December 2023. In the first stage of screening, the type of
publication was restricted to Article and the language was limited
to English. In the second stage, irrelevant publications were excluded
based on the title, keyword, abstract, and full text. The full records
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and cited references of eligible articles were exported from SCI-
Expanded in plain text format. The flow chart of research steps of
this study is shown in Figure 1.

2.2 Bibliometric analysis

All valid data were imported into Origin (version 2021) or
CiteSpace (version 6.2. R6) for analysis and visualization. Origin was
used to conduct statistical analysis on the annual number of
publications and their citations, and to visualize the collaborations
between different countries. CiteSpace was performed for co-operation
analysis of countries, institutions, and authors. In addition, we used
CiteSpace to draw a dual-map overlay of journals to investigate the
evolutionary relationship between knowledge topics in directly citing
journals and cited journals. In keyword analysis, we merged keywords
with the same meaning to get a better perspective. The co-occurrence
analysis of keywords and the co-citation analysis of references were
performed by CiteSpace. Moreover, burst detection in CiteSpace was

used to detect sudden surges in references and keywords at a
certain time.

3 Results

3.1 Publication outputs and trends

A total of 2,951 articles on ncRNAs in PC were screened from
7,630 records retrieved from WoSCC. According to the number of
citations, the total citations of the top 10 most cited papers accounted
for 43.87% of all papers (Supplementary Table S1). The most cited
article was titled “c-Myc suppression of miR-23a/b enhances
mitochondrial glutaminase expression and glutamine metabolism,”
which had 1,641 citations in Nature. The article published in Cell
titled “The Landscape of Circular RNA in Cancer” had the highest
annual citation frequency. The distribution of publications and their
citations is presented in Figure 2. From 2004 to 2023, the cumulative
number of global publications showed a consistent upward trend.
Specifically, the evolution of PC-related ncRNA research consisted of
threee stages. The field was in its early stages from 2004 to 2008, when
fewer than 20 papers were published each year. The second stage was
from 2009 to 2021, with a rapid increase in the number of annual
publications. As the third stage from 2022 to 2023, the number of
annual publications was in a steady growth, and the cumulative number
of publications in 2023 was 113.5 times that of 2008. The cumulative
number of citations for all articles in 2023was 21,846, with an average of
7 citations per article. These results indicate that ncRNA research is an
active field in PC and has received extensive attention from scholars.

3.2 Analysis of countries/regions and
institutions

Analyzing the research output of countries/regions and
institutions provides insights into the global distribution and
trends within a specific field, enabling the identification of

FIGURE 1
Flowchart of the selection process.

FIGURE 2
The distribution of publications (A) and their citations (B) from 2004 to 2023. The data were extracted using CiteSpace, and the figure was created
with Origin.
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influential countries/regions and institutions. A total of
78 countries/regions were involved in the publications of
ncRNAs in PC. Among them, China (1,665), the United States
(699), Germany (131), Canada (120), and Italy (112) were the top
five productive countries/regions in terms of the number of
publications (Table 1). The H-index is a hybrid quantitative
metric used to measure academic impact. The United States
(119) has the highest H-index, indicating its leading academic
influence in PC-related ncRNA research, followed by China (88),
Canada (47), Japan (46), and Italy (43). Centrality helps identify key
roles in information flow and knowledge dissemination within a
network. The United (0.56) States exhibited the highest centrality,
followed by China (0.27), the United Kingdom (0.2), Canada (0.11),
and Germany (0.1). As depicted in Figure 3A, the United States

collaborated with 26 other countries, notably including China,
Canada, and the United Kingdom, which underscores its
significant role as a central hub in international collaborations.

Based on the number of publications, Table 2 presents the top
10 institutions of ncRNA research in PC, with 9 of them located in
China. Fudan University (98) had the highest number of
publications, followed by Shanghai Jiao Tong University (96),
Nanjing Medical University (91), and Sun Yat-sen University
(91). Furthermore, the H-index of Sun Yat-sen University (36)
and Harvard University (36) was the highest, followed by Fudan
University (34) and Shanghai Jiao Tong University (33). Visualized
with CiteSpace, we mapped an institutional collaboration network
consisting of 102 nodes and 112 linkages (Figure 3B). Southern
Medical University (0.41) had the highest centrality, followed by

TABLE 1 Top 10 productive countries/regions of ncRNA research in PC from 2004 to 2023.

Rank Country Counts Percentage H-index Centrality Total citations

1 China 1,665 56.42 88 0.27 47,992

2 United States 699 23.69 119 0.56 53,405

3 Germany 131 4.44 42 0.1 6,767

4 Canada 120 4.07 47 0.11 7,106

5 Italy 112 3.80 43 0.07 6,487

6 Japan 100 3.39 46 0.02 8,339

7 United Kingdom 93 3.15 34 0.2 5,276

8 Australia 56 1.90 31 0.03 2,981

9 Brazil 52 1.76 25 0.05 1,920

10 Iran 52 1.76 16 0.09 882

The data were extracted using CiteSpace.

FIGURE 3
Collaboration network of countries/regions and institutions of ncRNA research in PC from 2004 to 2023. (A) The cooperation string diagram
between top 30 countries/regions. (B) The network visualization map of different institutions. Each node represents an institution, and the size of the
node corresponds to the frequency of publications produced by that institution. Each link between two nodes indicates a collaborative relationship
between the respective institutions. Nodes with purple rings denote higher centrality, signifying their prominent role in the collaboration network.
The data were extracted using CiteSpace. Panel (A) was created using Origin, while Panel (B) was generated with CiteSpace.
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Guangzhou Medical University (0.36) and Nanjing Medical
University (0.29). As the institution with the most publications,
Fudan University primarily had close collaborations with Naval
Medical University, Tongji University, and Chinese Academy
of Sciences.

3.3 Analysis of authors

Author analysis facilitates the identification of pivotal
contributors within a field and offers insights to guide
academic exchanges and project collaborations. The top
10 active authors are listed in Table 3. Rajvir Dahiya
contributed the most research with 34 publications, followed
by Sharanjot Saini (29) and Yuichiro Tanaka (29). According to
authors’ H-index, Rajvir Dahiya (23) ranked first, followed by
Naohiko Seki (22), Sharanjot Saini (20), Yuichiro Tanaka (20),
Shahana Majid (20), and Arul M Chinnaiyan (20). Rajvir Dahiya
made significant contributions, with his research emphasizing

the regulatory roles of miRNAs in the proliferation and
metastasis of PC (Noonan et al., 2009; Saini et al., 2011). Co-
cited authors are those cited together in one or more publications,
used to identify key researchers in a particular academic field.
Supplementary Table S2 shows that Rebecca L Siegel (978) had
the most co-citations, followed by David P Bartel (451) and
Ahmedin Jemal (394). These scholars have established the
groundwork for research on ncRNAs in PC.

3.4 Analysis of journals

Journal analysis provides researchers with prioritized options for
submitting their work and accessing articles within a specific field. A
total of 556 academic journals included articles on PC-related ncRNAs.
The top 10 journals included 658 papers in the field, accounting for
22.30% of all publications (Table 4). PLoS One (102) was the most
published journal, followed by Prostate (97), Oncotarget (95),Oncogene
(61), and Scientific Reports (60). Cancer Research (6,656), PLoS One

TABLE 2 Top 10 productive institutions of ncRNA research in PC from 2004 to 2023.

Rank Institution Country Counts H-index Centrality Total citations

1 Fudan University China 98 34 0.24 3,472

2 Shanghai Jiao Tong University China 96 33 0.14 3,297

3 Nanjing Medical University China 91 30 0.29 3,096

4 Sun Yat-sen University China 91 36 0.01 3,700

5 Southern Medical University China 69 27 0.41 1,971

6 Harvard University United States 63 36 0.15 4,674

7 Guangzhou Medical University China 62 31 0.36 2,379

8 Tongji University China 57 26 0.15 2,303

9 University of Toronto Canada 55 30 0.09 2,834

10 Shandong University China 55 24 0.03 1,640

The data were extracted using CiteSpace.

TABLE 3 Top 10 active authors of ncRNA research in PC from 2004 to 2023.

Rank Author Counts H-index Total citations

1 Rajvir Dahiya 34 23 2,982

2 Sharanjot Saini 29 20 2,267

3 Yuichiro Tanaka 29 20 2,559

4 Shahana Majid 28 20 2,355

5 Varahram Shahryari 24 18 1,931

6 Soichiro Yamamura 24 18 1,976

7 Tapio Visakorpi 24 19 2,898

8 Naohiko Seki 24 22 1,782

9 Arul M Chinnaiyan 22 20 5,096

10 Ming Chen 22 19 929

The data were extracted using CiteSpace.
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(6,567), and Oncogene (5,663) were the top three most frequently
cited journals.

The top 20 active co-cited journals are presented in
Supplementary Table S3. Among them, Cancer Research (5,615)
had the most co-citations, followed by Oncogene (3,325), PLoS One
(3,190), Cell (3,034), and Proceedings of the National Academy of
Sciences (2,720). In addition, to investigate the evolutionary
relationship between knowledge topics in directly citing journals
and cited journals, we used CiteSpace to draw a dual-map overlay of
journals, in which the topics of directly citing journals are
distributed on the left and the topics of cited journals are
represented on the right. The analysis presented in
Supplementary Figure S1 revealed a prominent citation pathway,
indicating that research published in Molecular/Biology/Genetics
journals was predominantly referenced by studies from Molecular/
Biology/Immunology journals.

3.5 Co-citation analysis of references

To track the knowledge structure and research trends in the field of
PC-related ncRNAs, we conducted a co-citation analysis of the
references from 2,951 articles with CiteSpace. Supplementary Table
S4 shows the top 10 frequently co-cited references. Among them,
“(Siegel et al., 2017)” was the most co-cited reference, with
406 citations. Subsequently, the clustering analysis of CiteSpace was
performed to construct a map of co-cited references, which consisted of
842 filtered nodes, 1917 connections, and 10 clusters (Figure 4). The
modularity Q score was 0.7094 (>0.3), and the mean silhouette S was
0.867 (>0.7), demonstrating both a significant clustering structure and a
highly homogeneous clustering network. Supplementary Figure S2
displays the timeline view of co-cited references, highlighting the
evolution of each cluster over time. The largest cluster was “EVs”
(cluster #0), followed by “PC” (cluster #1) and “circRNA” (cluster #2).
According to the results of cluster analysis, “microarray” (cluster #7),
“PC” (cluster #1), and “HRPC” (cluster #8) represented the early
knowledge base in the field of PC-related ncRNAs in the past
20 years, while “EVs” (cluster #0), “circRNA” (cluster #2), and
“ceRNA” (cluster #4) reflected the current research direction.

Furthermore, through the burst detection function of CiteSpace,
we explored the top 15 co-cited references with strong citation bursts
(Table 5). The paper that first exhibited strong citation burst over the
past 20 years was “A microRNA expression signature of human solid
tumors defines cancer gene targets,” authored by Stefano Volinia and
published in 2006. The paper titled “microRNA expression in human
prostate cancer” published in 2008 received the strongest citation
burst (46.12), followed by “Kati P Porkka, 2007” (42.48), and “Stefan
Ambs, 2008” (38.65). These papers constitute significant events in
the current knowledge base of PC-related ncRNA research.

3.6 Analysis of keywords

Identifying the high-frequency keywords in research on PC-
associated ncRNAs facilitates the rapid recognition of the hot topics
of interest within the academic community. Supplementary Table S5
lists the top 50 most frequent keywords, with the 15 highest-ranking
ones being “PC” (1938), “expression” (1,258), “miRNA” (809),
“proliferation” (688), “metastasis” (632), “progression” (521),
“growth” (492), “cancer cell” (490), “invasion” (447), “gene” (360),
“biomarker” (352), “lncRNA” (329), “androgen receptors” (284),
“cancer” (268), and “apoptosis” (265). Among these high-frequency
keywords, those pertaining to ncRNAs include “miRNA” (809),
“lncRNA” (329), and “circRNA” (82). The co-occurrence analysis of
keywords helps elucidate the relationships between different knowledge
points in PC-associated ncRNA research, thereby contributing to the
construction of a knowledge map for the field. To obtain a better
network visualization of the keyword co-occurrence, we merged similar
keywords from 2,951 articles, resulting in a co-occurrence map with
129 filtered nodes, 137 connections, and 11 clusters (Figure 5A). The
modularity Q score was 0.8081, and the mean silhouette S reached
0.9215, indicating the highly convincing keyword network. In addition,
we presented a visualization of the evolution of keywords in different
clusters over time in the form of a timeline view (Supplementary Figure
S3). “gene” (cluster #0) was the largest cluster, encompassing keywords
such as “miRNA,” “mRNA,” “polymorphism,” “amplification,”
“receptor.” and “activation.” “progression” (cluster #1) was the
second largest cluster, including keywords such as “invasion,”

TABLE 4 Top 10 active journals of ncRNA research in PC from 2004 to 2023.

Rank Journal Counts H-index Total citations IF (2023)

1 PLoS One 102 49 6,567 2.9

2 Prostate 97 42 5,343 2.6

3 Oncotarget 95 49 5,408 NA

4 Oncogene 61 40 5,663 6.9

5 Scientific Reports 60 26 1,627 3.8

6 Oncology Letters 54 20 941 2.5

7 Cancers 48 13 521 4.5

8 European Review for Medical and Pharmacological Sciences 48 18 869 NA

9 Cancer Research 47 41 6,656 12.5

10 International Journal of Molecular Sciences 46 15 680 4.9

The data were extracted using CiteSpace.
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“growth,” “signature,” “circRNA,” and “cancer.” Followed by “lncRNA”
(cluster #2), including keywords such as “mechanism,” “ceRNA,”
“mesenchymal transition,” “chromatin,” and “sequence.”

Burst detection of keywords is employed to identify new or
rapidly increasing keywords, which may represent cutting-edge
topics or novel areas of research. By using CiteSpace, we
obtained the top 10 keywords with the strongest bursts
(Figure 5B). The top three keywords with the strongest burst
were “circRNA” (19.52), “gene” (18.64), and “signature” (14.52).
Notably, the keywords “circRNA,” “EVs,” and “exosome” continued
to show significant burst activity in 2023, indicating that these topics
are key directions for future research. In addition, we extracted all
miRNAs, lncRNAs, and circRNAs from the keywords, and merged
and standardized similar miRNAs. Table 6 lists the frequently
occurring miRNAs, lncRNAs, and circRNAs, all of which have
been confirmed to play significant roles in the development of PC.

4 Discussion

4.1 General information

With the rapid development of information technology and
increased medical academic papers, bibliometrics has been applied
in various medical fields and plays an irreplaceable role in

quantitative analysis. In this study, we retrieved publications
indexed in WoSCC over the past 20 years and excluded records
unrelated to ncRNA research in PC. Ultimately, 2,951 published
articles were included in our bibliometric analysis. Between
2009 and 2023, there was a marked increase in both the total
number of publications and citations concerning ncRNA research
in PC, underscoring its emergence as a rapidly expanding area of
interest. China had the highest number of publications and the
second-highest number of citations, which shows its significant
contribution in this field. As the most influential country, the
United States collaborated with 26 countries/regions and
maintained its closest partnership with China. In terms of
institutional distribution, Fudan University, which had the
highest number of publications, primarily collaborated with the
Naval Medical University, Tongji University, and Chinese Academy
of Sciences. The research focus of these institutions mainly revolves
around understanding the mechanisms by which miRNAs (Li et al.,
2014; Xiang et al., 2015), lncRNAs (Yao et al., 2020), and circRNAs
(Kong et al., 2021) contribute to the progression of PC. According to
the author analysis, Rajvir Dahiya was themost active and influential
author in this field.

Additionally, we identified the top 10 most cited articles in
ncRNA research related to PC. The most cited paper was published
in Nature by Gao et al. (2009), which was groundbreaking in linking
changes in miR-23a/b expression and glutamine metabolism to PC

FIGURE 4
The network map of co-cited references related to ncRNA research in PC from 2004 to 2023. Each node represents a filtered co-cited reference,
with the size of the node indicating its co-citation frequency. Each link between two nodes indicates a co-citation relationship between the respective
references. Both the data and figures were generated using CiteSpace.

Frontiers in Pharmacology frontiersin.org07

Zhou et al. 10.3389/fphar.2024.1483186

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1483186


progression and proposed that c-Myc plays a crucial role in
regulating crucial metabolic pathways in PC. The paper with the
highest annual citation frequency was published by Vo et al. (2019)
in 2019 in Cell, which highlighted the potential of circRNAs as
diagnostic biomarkers and therapeutic targets for PC.

4.2 Knowledge base

We further explored the theoretical foundations of PC-related
ncRNA research through co-citation analysis of the references.
Through CiteSpace clustering analysis, all co-cited references
were categorized into a network map containing 10 clusters with
diverse labels, where “EVs” (cluster #0), “circRNA” (cluster #2), and
“ceRNA” (cluster #4) reflected the current research trends. The top
10 frequently co-cited references included four epidemiological
studies and six foundational studies. These epidemiological
findings consistently highlighted PC as a leading cause of cancer-
related deaths in men and a significant public health concern in
China (Siegel et al., 2014; Chen et al., 2016; Siegel et al., 2017; Sung
et al., 2021). Among the six foundational studies, four investigated
microRNA profiles in PC (Porkka et al., 2007; Ambs et al., 2008;
Ozen et al., 2008; Schaefer et al., 2010), whereas the other two
focused on exploring the molecular and genomic characteristics of
the disease (Taylor et al., 2010; Network, 2015). Moreover, we
identified the top 15 popular references in PC-related ncRNA

research based on citation bursts, which include most of the
highly co-cited references mentioned above. It is worth noting
that the study by Mitchell et al. (2008) underscored the potential
of circulating miRNAs in serum or plasma as stable blood-based
biomarkers for cancer classification and prognostication, specifically
demonstrating that miR-141 effectively distinguished PC patients
from healthy controls. This research provided the first strong
evidence supporting the diagnostic utility of circulating miRNAs
in PC. Ribas et al. (2009) were the first to discover that high
expression of miR-21 promoted the growth of PC and conferred
castration resistance, while inhibition of miR-21 reduced androgen-
driven proliferation of PC cells. This study provided crucial
molecular insights into targeting miRNAs for the treatment of
PC. In summary, co-citation analysis of the references enables us
to better understand the knowledge structure of PC-related ncRNAs
and to identify the core references within this field.

4.3 Research hotspots

To explore the research hotspots in PC-related ncRNAs, we
analyzed the keywords from 2,951 articles. High-frequency
keywords with co-occurrence rates exceeding 500 included “PC,”
“expression,” “miRNA,” “proliferation,” “metastasis,” and
“progression,” indicating that research primarily focused on the
molecular mechanisms of miRNAs in PC proliferation and

TABLE 5 Top 15 co-cited references with strong citation bursts related to ncRNA research in PC from 2004 to 2023.

Rank Co-cited reference Author Journal Year Burst
strength

1 A microRNA expression signature of human solid tumors defines cancer gene
targets

Stefano Volinia Proc Natl Acad Sci
U S A

2006 33.29

2 MicroRNA expression profiling in prostate cancer Kati P Porkka Cancer Res 2007 42.48

3 Widespread deregulation of microRNA expression in human prostate cancer M Ozen Oncogene 2008 46.12

4 Genomic profiling of microRNA and messenger RNA reveals deregulated
microRNA expression in prostate cancer

Stefan Ambs Cancer Res 2008 38.65

5 Circulating microRNAs as stable blood-based markers for cancer detection Patrick S Mitchell Proc Natl Acad Sci
U S A

2008 24.27

6 MicroRNA profile analysis of human prostate cancers A W Tong Cancer Gene Ther 2009 21.29

7 miR-21: an androgen receptor-regulated microRNA that promotes hormone-
dependent and hormone-independent prostate cancer growth

Judit Ribas Cancer Res 2009 19.19

8 Diagnostic and prognostic implications of microRNA profiling in prostate
carcinoma

Annika Schaefer Int J Cancer 2010 38.55

9 Integrative genomic profiling of human prostate cancer Barry S Taylor Cancer Cell 2010 31.91

10 Cancer statistics, 2013 Rebecca L. Siegel CA Cancer J Clin 2013 24.98

11 Cancer statistics, 2014 Rebecca L. Siegel CA Cancer J Clin 2014 32.53

12 Cancer Statistics, 2017 Rebecca L. Siegel CA Cancer J Clin 2017 31.19

13 The Molecular Taxonomy of Primary Prostate Cancer Cancer Genome Atlas
Research Network

Cell 2015 26.97

14 Cancer statistics in China, 2015 Wanqing Chen CA Cancer J Clin 2016 21.43

15 Prostate cancer Gerhardt Attard Lancet 2016 20.94

The data were extracted using CiteSpace.
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metastasis. Commonly mentioned miRNAs included miR-21, miR-
200, miR-375, miR-34, miR-145, miR-141, miR-205, miR-1, miR-
143, miR-17, and miR-182. Aside from “miRNA,” “lncRNA” and
“circRNA” were also high-frequency keywords associated with
ncRNAs, highlighting their significant relevance in the field of
PC. We also used CiteSpace for keyword burst detection, which
revealed that recent emergent keywords include “circRNA,” “EVs,”
and “exosome,” all of which represent cutting-edge areas in ncRNA
research related to PC. Here, we provide a brief discussion on the
potential of circRNAs and EVs in PC.

4.3.1 circRNAs
Early detection of PC remains crucial in reducing cancer-related

mortality in men. The identification of potential cancer biomarkers

significantly enhances the diagnosis and ongoing monitoring of PC,
thereby improving patient outcomes. PSA liquid biopsy is the most
common method for PC detection. However, its limited specificity
in distinguishing between benign prostatic hyperplasia (BPH) and
PC poses significant challenges for early detection and diagnosis
(Stenman et al., 1999). circRNA was first discovered in RNA viruses
in 1976 and was initially considered as splicing noise based on its
biogenesis (Sanger et al., 1976). Until recent years, the rapid
development of RNA sequencing technology has led to the
identification of numerous circRNAs in eukaryotes, offering
promising insights for the discovery of novel PC-related
biomarkers based on liquid biopsies (Wang et al., 2014; Maass
et al., 2017). As a newly discovered, abundant, and conserved
class of ncRNAs, circRNAs originate from precursor mRNA and

FIGURE 5
The co-occurrencemap (A) and burst detection (B) of keywords related to ncRNA research in PC from2004 to 2023. Each node represents a filtered
co-occurring keyword, with the size of the node indicating its co-occurrence frequency. Each link between two nodes indicates a co-occurrence
relationship between the respective keywords. Nodes with purple rings indicate higher centrality, highlighting their importance within the network. Both
the data and figures were generated using CiteSpace.
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TABLE 6 Important miRNAs, lncRNAs, and circRNAs in PC from 2004 to 2023.

ncRNA Expression Gene Target(s) Function(s) Reference

miRNA miR-21 ↑ p57Kip2, IRS1, SREBP-1,
BTG2, TGFBR2

Cell proliferation, lipogenesis, EMT,
migration

Coppola et al. (2013), Mishra et al. (2014a),
Mishra et al. (2014b), and Kanagasabai et al.

(2022)

miR-200 ↓ SNAI2, Kaiso, ZEB1 EMT Liu et al. (2013) and Abisoye-Ogunniyan
et al. (2018)

miR-375 ↑ SEC23A, YAP1, PTPN4 Cell proliferation, migration, invasion,
apoptosis, chemo-resistance

Szczyrba et al. (2011), Wang et al. (2016),
and Gan et al. (2022)

miR-34 ↓ AKT, p53 Cell proliferation, migration, invasion,
apoptosis, EMT, joint regulation of stem cell

compartment

Majid et al. (2013) and Cheng et al. (2014)

miR-145 ↓ MELK, NCAPG, BUB1,
CDK1, MYC, RAS, ERG

Cell proliferation, migration, invasion Hart et al. (2013), Goto et al. (2017), and
Iscaife et al. (2018)

miR-141 ↓ CDC42, CDC42EP3,
RAC1, ARPC5, CD44,
EZH2, TRAF5, TRAF6

Cell proliferation, migration, invasion, CSC
properties, EMT, bone metastasis

Huang et al. (2017) and Liu et al. (2017)

miR-205 ↓ SQLE, ΔNp63α, ZEB1/2,
PKCε, RHPN2

Cholesterol biosynthesis, basement
membrane maintenance, cell proliferation,

migration, invasion, apoptosis, EMT,
radiosensitivity

Gandellini et al. (2009), Gandellini et al.
(2012), El Bezawy et al. (2019), Jiang et al.

(2019), and Kalogirou et al. (2021)

miR-1 ↓ SNAI2, FN1, LASP1,
XPO6, TWIST1, E2F5,

PFTK1

Cell proliferation, EMT, bone metastasis Hudson et al. (2012), Liu et al. (2013), Chang
et al. (2015), and Li et al. (2018a)

miR-143 ↓ AKT1, KLK2, KRAS Cell proliferation, migration, EMT, chemo-
resistance

Xu et al. (2011), Chu et al. (2016), and
Armstrong et al. (2023)

miR-17 ↑ TIMP3 Cell proliferation, migration, invasion Yang et al. (2013) and Stoen et al. (2021)

miR-182 ↑ MITF Cell proliferation, migration, invasion,
apoptosis, EMT

Wang et al. (2018) and Stafford and
McKenna (2023)

lncRNA lncRNA PCA3 ↑

lncRNA HOTAIR ↑ EZH2/miR-193a,
REST, AR

Cell proliferation, migration, invasion,
apoptosis, trimethylation, neuroendocrine

differentiation

Zhang et al. (2015), Ling et al. (2017), and
Chang et al. (2018)

lncRNA PCAT1 ↑ PHLPP/FKBP51/IKKα,
miR-145-5p/FSCN1

Cell proliferation, migration, invasion,
apoptosis

Xu et al. (2017) and Shang et al. (2019)

lncRNA MALAT1 ↑ miR-423-5p Cell proliferation, migration, invasion Ren et al. (2013) and Ferri et al. (2022)

lncRNA PVT1 ↑ PRC2, miR-15a-5p/KIF23 Cell proliferation, migration, invasion,
apoptosis

Videira et al. (2021)

lncRNA UCA1 ↑ miR-143/MYO6, miR-
331-3p/EIF4G1, miR-204/

CXCR4

Cell proliferation, apoptosis,
radiosensitivity

He et al. (2019), Hu and Yang (2020), and Yu
et al. (2020)

lncRNA H19 ↑ PRC2 Cell proliferation, invasion, chemo-
resistance, histone modification, DNA

methylation, CSC properties,
neuroendocrine differentiation, chemo-

resistance

Singh et al. (2021)

lncRNA NEAT1 ↑ CYCLINL1/CDK19,
PSMA, CDC5L/AGRN

Cell proliferation, bone metastasis,
therapeutic resistance

Chakravarty et al. (2014), Li et al. (2018b),
and Wen et al. (2020)

lncRNA GAS5 ↓ miR-18a, miR-21/
PDCD4/PTEN, miR-

1284/AKT

Cell proliferation, apoptosis,
radiosensitivity

Yang et al. (2019) and Zhu et al. (2019)

lncRNA MEG3 ↓ miR-9-5p/QKI-5, miR-9-
5p/NDRG1

Cell proliferation, migration, invasion,
apoptosis

Wu et al. (2019) and Lian et al. (2024)

circRNA Hsa_circ_0003258 ↑ miR-653-5p/ARHGAP5,
IGF2BP3/HDAC4

migration, invasion, EMT Yu et al. (2022b)

(Continued on following page)
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are characterized by their covalently closed loop structure formed
through backsplicing (Jeck and Sharpless, 2014). With a unique
structure lacking free ends, circRNAs are less exposed to
exoribonuclease degradation (Jeck and Sharpless, 2014). This
stability enables their reliable presence in plasma, urine, and
saliva, reinforcing their potential as ideal circulating materials for
liquid biopsies. Several investigations have emphasized the potential
of circRNAs as biomarkers for PC. By utilizing exome capture RNA
sequencing, Vo et al. (2019) established the MiOncoCirc database
composed of circRNAs detected in tumor tissues, and identified
1,092 circRNAs in urine samples from PC patients. Chen et al.
(2019) performed ultra-deep non-poly-A RNA sequencing on
tumor samples from 144 patients with localized PC, revealing
76,311 distinct circRNAs. Among these, 171 circRNAs were
identified as being essential for the proliferation of PC cells
(Chen et al., 2019). These transcriptional profiles contribute to
advancing the application of circRNAs in the diagnostic
medicine of PC.

Furthermore, since circRNAs were first characterized as
transcriptional regulators that control the miRNA-mRNA axis,
an increasing body of research have preliminarily confirmed their
critical roles in the epigenetic regulation associated with PC (Hansen
et al., 2013; Zhou et al., 2021). Yu et al. (2022b) first observed the
overexpression of hsa_circ_0003258 in human PC tissues, which
was associated with the aggressive progression of the disease.
Subsequent investigation revealed that hsa_circ_
0003258 enhances the expression of Rho GTPase activating
protein 5 by sponging miR-653-5p and forming a complex with
insulin-like growth factor 2 mRNA binding protein 3 to stabilize
HDAC4 mRNA. This interaction activates the ERK signaling
pathway, accelerating the epithelial-mesenchymal transition
(EMT) and ultimately promoting PC metastasis (Yu et al.,
2022b). Xie et al. (2022) found that circSMARCC1 was
significantly upregulated in the plasma and tissues of PC
patients, promoting tumor proliferation and metastasis.
Mechanistically, circSMARCC1 sponges miR-1322 to regulate the
expression of CC-chemokine ligand 20 (CCL20), which activates PC
cell proliferation and EMT. Additionally, circSMARCC1 induces the
infiltration of tumor-associated macrophages and M2 polarization
through the CCL20-CCR6 axis, thereby facilitating the progression
of PC. Yu et al. (2022a) reported that the upregulation of circCEMIP

in PC tissues promoted the invasion and metastasis of PC cells.
CircCEMIP functions as a ceRNA for miR-1248, reducing the
inhibitory effects of miR-1248 on its downstream target,
transmembrane 9 superfamily member 4, which induces mTOR
phosphorylation-mediated anoikis resistance (Yu et al., 2022a). In
addition to serving as miRNA sponges, circRNAs interact with
RNA-binding proteins and even participate in protein-coding
processes, thus modulating the pathological processes of PC.
Feng et al. (2019) identified that circ0005276, upregulated in PC
tissues, promoted the proliferation, migration, and EMT of PC cells
by interacting with the RNA-binding protein FUS to activate the
transcription of X-linked inhibitor of apoptosis protein. Wang et al.
(2024) discovered that the protein-coding circRNA circCCDC7 was
significantly downregulated in PC patients and indicated that it
upregulates FLRT3 by encoding the secretory protein circCCDC7-
180aa, thereby inhibiting PC cell activity and suggesting its potential
role as a tumor suppressor in PC. These studies highlight the critical
involvement of circRNAs in the proliferation, metastasis, and
treatment resistance associated with PC. Further exploration of
circRNAs will enhance our understanding of the pathogenic
mechanisms underlying PC and provide therapeutic strategies for
future clinical applications.

4.3.2 EVs
EVs are small vesicles naturally released by all cell types into the

extracellular space, initially believed to be membranous structures
derived from cells for the purpose of clearing metabolic waste (van
Niel et al., 2018). Subsequently, extensive research has uncovered
that EVs, particularly exosomes, participate in various intercellular
communication processes and have emerged as a prominent area of
interest in biomedicine and bioengineering (van Niel et al., 2018;
Kalluri and LeBleu, 2020). As nanoparticles encapsulated by a lipid
bilayer membrane, EVs function as optimal carriers for safely
transporting ncRNAs, playing a pivotal role in PC progression
and metastasis by transferring these biomolecules to target cells
(Mugoni et al., 2022). Liquid biopsies based on ncRNAs in EVs
provide a non-invasive alternative to tissue biopsies, offering an
abundant source of biological material and enabling the
identification of potential tumor markers that can inform the
staging and risk prognosis of PC (Hamed et al., 2024; Hu et al.,
2024). The miRNA family represents one of the most frequently

TABLE 6 (Continued) Important miRNAs, lncRNAs, and circRNAs in PC from 2004 to 2023.

ncRNA Expression Gene Target(s) Function(s) Reference

circSMARCC1 ↑ miR-1322/CCL20/CCR6 Cell proliferation, migration, invasion,
EMT, TAMs infiltration

Xie et al. (2022)

circSPON2 ↑ miR-331-3p/PRMT5/
CAMK2N1

Cell proliferation, migration, invasion Yao et al. (2022)

circARHGAP29 ↑ IGF2BP2/c-Myc/LDHA Chemo-resistance, glycolytic metabolism Jiang et al. (2022)

circEXOC6B ↓ AKAP12 Migration, invasion Zhang et al. (2023)

circCEMIP ↑ miR-1248/TM9SF4 Migration, invasion, autophagy, anoikis
resistance

Zhang et al. (2018) and Yu et al. (2022a)

circPDE5A ↓ WTAP/EIF3C/MAPK Migration, invasion, methylation Ding et al. (2022)

The data were extracted using CiteSpace.
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identified classes of ncRNAs linked to EVs. In a study comparing
blood samples from 102 PC patients with those of 50 healthy
controls, Souza et al. (2017) found that miR-200b levels in
circulating EVs were associated with PSA levels exceeding 10 ng/
mL and bone metastasis, whereas miR-200c expression was
associated with Gleason score. Similarly, miR-424 (Albino et al.,
2021) and miR-1246 (Bhagirath et al., 2018) in circulating EVs from
PC patients were correlated with the metastatic spread of tumor
cells. Some researchers have attached importance to the value of EVs
in predicting the efficacy of drug treatment and radiotherapy in PC
patients. For example, Guo et al. (2020) identified miR-423-3p as a
potential biomarker for early prediction of castration resistance by
analyzing plasma exosomal miRNAs in PC patients and those with
CRPC after ADT. Wang et al. (2016) showed that elevated levels of
miR-375 were involved in the chemo-resistance to docetaxel in
metastatic CRPC patients and were significantly associated with
their overall survival. Additionally, Yu et al. (2018) found that
57 miRNAs in serum exosomes exhibited significant changes
following carbon ion radiotherapy in localized PC patients, with
miR-654-3p and miR-379-5p emerging as potential predictors of
therapeutic response to this treatment.

It is evident that PC-derived EVs function as crucial carriers
of ncRNAs, facilitating the progression of PC through
intercellular communication, including tumor proliferation,
metastasis, angiogenesis, immune evasion, and drug resistance
(Hu et al., 2024). Recent studies have identified several miRNAs,
lncRNAs, and circRNAs within PC-derived EVs as potential
inhibitory targets in PC therapy, offering new insights into
precision medicine for this disease (Aghdam et al., 2019; Xu
et al., 2019; Zhou et al., 2021). Additionally, compared to
traditional delivery vehicles, EVs demonstrate superior
biocompatibility and delivery efficiency, and their intrinsic
advantages of naturally homing to tumor cells offer prospects
for PC therapeutic strategies targeting EVs (Hu et al., 2024).
Inhibiting the secretion of PC-derived EVs could be a critical step
in reducing communication within the tumor
microenvironment. Urabe et al. (2020) conducted a high-
throughput miRNA-based screening using the ExoScreen assay
and identified miR-26a as a regulator of EV secretion in PC cells.
The associated mechanism involved the modulation of the SHC4,
PFDN4, and CHORDC1 genes. Moreover, limited data
confirmed that certain normal cells exhibit antitumor activity
against PC. For instance, adipose-derived stromal cells release
EVs containing miR-145, which suppress the proliferation of PC
cells and induce apoptosis (Takahara et al., 2016). Exosomal miR-
205 and miR-99b-5p derived from human bone marrow
mesenchymal stem cells inhibit the proliferation, invasion, and
migration of PC cells (Jiang et al., 2019). A deeper understanding
of the roles of ncRNAs in EVs secreted by different cell types in
PC paves the way for novel therapeutic strategies based on
engineered EVs.

4.4 Limitations

In this study, we conducted the first bibliometric analysis
using data from the WoSCC to objectively assess the research
trends and current landscape in the field of PC-related ncRNAs.

While our approach offers valuable insights, it is important to
recognize certain limitations. First, although WoSCC is widely
considered the premier database for bibliometric studies, there
remains the possibility that some relevant articles were not
captured, potentially introducing minor biases in our findings.
Moreover, our analysis was based on data from publications
spanning 2004 to 2023, limiting its ability to reflect the most
recent advances in the field. Third, the nature of bibliometric
analysis tends to prioritize highly cited mainstream research,
potentially overlooking less cited but innovative studies.
Nevertheless, we believe these limitations do not substantially
diminish the relevance or contributions of the publications
included in our analysis to the field.

5 Conclusion

This study presented a comprehensive bibliometric analysis
of 2,951 articles on PC-related ncRNAs over the past 20 years.
The global publication output in this field had seen rapid growth
since 2011, indicating its emergence as a focal point of scholarly
attention. China led in publication output, while the
United States was the most influential nation, engaging in
collaborating with 26 other countries. Rajvir Dahiya stood out
as the most prolific and influential author. The research
landscape of PC- related ncRNAs was predominantly focused
on elucidating the molecular mechanisms by which miRNAs
drive PC proliferation and metastasis. Additionally, circRNAs
and EVs are emerging as pivotal areas of future exploration,
offering promising avenues for advancing the precise diagnosis
and targeted treatment of PC.
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