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Introduction

In a recent Forum contribution to Trends in Pharmacological Sciences, (Wang and
Pratt, 2024) discussed the potential of targeting post-translational modifications (PTMs) of
small heat shock proteins (sHsps), such as phosphorylation, glycosylation and glycation
(Wang and Pratt, 2024). They conclude that simple loss-of-modification studies, using
mutations at the modification sites, can also cause indirect structural effects. Accordingly,
they emphasized that identifying the enzymes responsible for specific modifications is
crucial for developing inhibitors against particular sHsp modifications. However, additional
aspects should be considered in this approach, as demonstrated here in particular for sHsp
phosphorylation.

Discussion and prospective

Hsp27 (HSPB1) is the most extensively studied mammalian sHsp, with its major
PTMs – phosphorylations at two serine residues conserved in mice and humans – known
for over 30 years (Gaestel et al., 1991). Only 1 year after these PTM sites were identified, the
primary enzyme responsible was characterized as MAPK-activated protein kinase 2 (MK2),
which is itself phosphorylated and activated by the stress-dependent protein kinase
p38 MAPK (Stokoe et al., 1992; Rouse et al., 1994) (Figure 1). First, this signaling
pathway elegantly explained the stress-dependent phosphorylation of Hsp27. Second,
the genetic deletion of MK2 in mice revealed an unexpected yet essential role of this
enzyme in p38 MAPK-dependent signaling for the biosynthesis of inflammatory cytokines
(Kotlyarov et al., 1999).

Since p38 MAPK inhibitors failed in the process to develop effective novel anti-
inflammatory therapies, many pharmaceutical companies began screening for inhibitors
targeting MK2. Nowadays, ATP-competitive (PF3604422), covalent (CC99677) and
activation-preventing (ATI-450) inhibitors against MK2 are available, all of which
effectively inhibit Hsp27 phosphorylation (Wang et al., 2018; Ronkina and Gaestel, 2022).

Mechanistically, it was found that MK2 stabilizes cytokine mRNAs through direct
phosphorylation of the AU-rich RNA element-binding protein tristetraprolin (TTP)
(Tiedje et al., 2016) and supports the survival of immune and other cells by directly
phosphorylating the central cell-death kinase RIPK1 (Oberst, 2017). As a result, there are at
least three physiological relevant substrates of MK2: Hsp27, TTP and RIPK1 (Figure 1).
This number is likely underestimated, as more MK2 substrates have been identified
(Ronkina and Gaestel, 2022). Considering that the approximately 520 human protein
kinases phosphorylate over 100,000 non-redundant sites in the proteome, each kinase, on
average, targets around 200 sites.

While TTP is expressed in many but not all cell types, RIPK1 is ubiquitously
expressed. Inhibition of Hsp27 phosphorylation by the highly selective MK2 inhibitors
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will simultaneously inhibit RIPK1 phosphorylation and, where
present, TTP phosphorylation. This makes it impossible to
differentiate between the effects of phosphorylation of Hsp27,
RIPK1 and TTP and other MK2 substrates. Therefore, it is not
possible to identify the function of these particular PTMs of
Hsp27 by inhibiting the responsible enzyme.

Wang and Pratt (2024) also described our lab’s use of mutants to
analyze the phosphorylation-dependent function of mouse Hsp27 in
transiently transfected cells. Our results demonstrated that the
oligomers of ectopically expressed Hsp27 with phospho-
mimicking mutations decrease in size, correlating with reduced
chaperone and stress-protective properties. Additionally, we
demonstrated that in vitro phosphorylation of recombinant
Hsp27 similarly results in a reduction in oligomeric size (Rogalla
et al., 1999). It is worth noting that we subsequently analyzed
endogenous Hsp27 in MK2-deficient cells. In the absence of
MK2, the stress-dependent disaggregation of Hsp27 complexes
was impaired, and Hsp27 showed delayed subcellular
accumulation in stress granules (Vertii et al., 2006). However, in
this analysis, we could not exclude the possibility that the observed
cellular effects were at least partly due to changes in TTP-dependent
cytokine production or RIPK1’s apoptotic activity in the MK2-
deficient cells.

Two different mouse knockout lines of Hsp27 have been
generated. The first uses lacZ replacement of a large part of
Hsp27 and reports no significant phenotype resulting from the
deletion (Huang et al., 2007). Interestingly, in the second
approach using a loxP-mediated complete deletion of
Hsp27 in mice, the authors detected a small but significant
increase in cytokine production (Crowe et al., 2013). It is
possible that the deletion of Hsp27 leads to “over-

phosphorylation” of the other substrates of MK2 involved in
inflammation stimulation such as TTP and RIPK1, thereby
masking the direct function of Hsp27 (Figure 1).

The only approach not yet undertaken to understand
Hsp27 phosphorylation is a knock-in strategy in mice,
utilizing CRISPR-directed mutagenesis to alter the
phosphorylation sites (through deletion and/or phospho-
mimicking replacements). However, given that the phenotypes
observed in the complete Hsp27 knockout mice are relatively
mild or even absent, it is questionable whether significant effects
will be seen with this knock-in strategy. Nevertheless, if
phosphorylation has a substantial role in Hsp27 function, a
phospho-mimic knock-in could still yield a functionally
relevant phenotype. The potential redundancy among the ten
different existing human sHsps and their ability to form
heterogeneous complexes could further complicate the
interpretation of the results. Nonetheless, the author remains
optimistic that new ideas and approaches will eventually
elucidate the phosphorylation-dependent in vivo function(s)
of Hsp27.
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FIGURE 1
The stress-dependent p38/MK2 pathway and its substrates in wild type (A), MK2-deficient (B) and Hsp27-deficient cells (C). p38 – p38 MAPK,
MK2 – MAPKAP kinase 2, TTP – tristetraprolin, RIPK1 – TNF-receptor-interacting protein kinase 1, Hsp27 – Hspb1. Solid arrows represent
phosphorylation events, with red circles indicating the resulting phosphorylations. For the MK2 substrates, the size of the red circles should reflect the
relative level of phosphorylation. The number of distinct phosphorylation sites on the protein kinases and substrates are not depicted in this figure.
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