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Objective: Resistance to antiseizure medications (ASMs) is a major challenge in
the treatment of patients with epilepsy. Despite numerous newly marketed ASMs,
the proportion of drug-resistant people with epilepsy has not significantly
decreased over the years. Therefore, novel and innovative seizure models for
preclinical drug screening are highly desirable. Here, we explore the efficacy of a
broad spectrum of ASMs in suppressing seizure activity in two established
Drosophila melanogaster bang-sensitive mutants. These mutants respond with
seizures to mechanical stimulation, providing a promising platform for
screening novel ASMs.

Methods: Seven frequently used ASMs (brivaracetam, cenobamate, lacosamide,
lamotrigine, levetiracetam, phenytoin, and valproate) were administered to the
bang-sensitive mutants easily shocked2F (eas2F) and paralyticbss1 (parabss1). After
48 h of treatment, the flies were vortexed to induce mechanical stimulation. The
seizure probability (i.e., ratio of seizing and non-seizing flies) as well as the seizure
duration were analyzed.

Results: In case of eas2F mutants, treatment with the sodium channel blockers
phenytoin and lamotrigine resulted in a robust reduction of seizure probability,
whereas flies treated with lacosamide showed a decrease in seizure duration.
Treatment with valproate resulted in both a reduction in seizure probability and in
seizure duration. In contrast, levetiracetam, brivaracetam and cenobamate had
no effect on the bang-sensitive phenotype of eas2F flies. In case of parabss1 flies,
none of the tested medications significantly reduced seizure activity, supporting
its role as a model of intractable epilepsy.

Significance: Our results show that particularly sodium channel blockers as well
as valproate are effective in suppressing seizure activity in the bang-sensitive
mutant eas2F. These findings demonstrate the usability of Drosophila for
screening drugs with antiseizure properties. Due to fewer ethical concerns,
the short life cycle, and low maintenance costs, Drosophila might provide an
attractive and innovative high-throughput model for the discovery of novel
antiseizure compounds.
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Introduction

Epilepsy is one of the most common chronic neurological
disorders that affects more than 45 million people worldwide
(Beghi et al., 2019). The main objective of epilepsy treatment is
to achieve complete seizure control. However, about one-third of
patients remain refractory to currently available antiseizure
medications (ASMs) and experience ongoing seizures (Kwan and
Brodie, 2000). Drug-resistant epilepsy is associated with an
increased risk of psychosocial dysfunction, injuries, restricted
quality of life, and premature death (Loscher et al., 2020). Thus,
there is an unmet clinical need to develop more effective
therapeutics, particularly with novel mechanisms of action.

The identification of potential novel therapeutics requires
preclinical seizure models. A broad range of different animal
models has been introduced over the years, such as the maximal
electroshock seizure (MES) and the subcutaneous pentylenetetrazole
(PTZ) seizure tests in rodents (Loscher, 2011; Loscher, 2017).
However, despite the introduction of numerous new ASMs, the
rate of drug-resistant people with epilepsy has not significantly
declined (Chen et al., 2018). One possible explanation could be
that current models might only identify substances with similar
characteristics and therefore have no efficacy in case of drug-
resistant epilepsies (Loscher, 2011). In addition, it must be
considered that rodent models have some further limitations. For
instance, the throughput of candidate compounds in drug
screenings is considerably limited due to regulatory restrictions
(e.g., by Institutional Animal Care and Use Committees), high
costs as well as laborious experimental procedures. Additional
model organisms enabling high-throughput screenings in a more
cost-effective manner are highly desirable. Recent research has
therefore focused on the development of alternative seizure
models, including non-mammalian model organisms, such as
roundworms, zebrafish, and fruit flies (Baraban, 2007; Cunliffe
et al., 2015; Johan Arief et al., 2018; Rosch et al., 2019; Kasture
et al., 2022; Fischer et al., 2023; Miguel Sanz et al., 2023; Shah
et al., 2024).

The fruit fly Drosophila melanogaster has served as a model
organism in biomedical research for more than a century (Bellen
and Yamamoto, 2015) and has greatly advanced the understanding
of many fundamental biological processes, such as genetics,
inheritance, and development (Jennings, 2011; Yamaguchi and
Yoshida, 2018). Among features that make Drosophila an
attractive model organism are: fewer ethical restrictions (in line
with the 3R principles - Replacement, Reduction, Refinement), a
short generation time, the ease of maintenance, the cost-
effectiveness, and the availability of a broad spectrum of
sophisticated genetic tools (Jennings, 2011). The genome of the
fly has been fully sequenced and encodes around 13,600 genes
distributed across four pairs of chromosomes (Adams et al.,
2000). Approximately 75% of all human disease-associated genes
have a corresponding gene in Drosophila, making it a suitable model
to study human disorders (Reiter et al., 2001). Despite obvious
anatomical differences between fruit flies and humans, fundamental
cellular and molecular processes show a high degree of similarity
between these two species. The adult fly exhibits structures that are
functionally analogous to the mammalian brain, heart, lung, kidney,
gut, and reproductive system (Pandey and Nichols, 2011). The fly

brain consists of some 100,000 neurons capable of mediating a wide
range of complex behaviors, such as courtship, navigation, sleep,
learning and memory (Pandey and Nichols, 2011). In addition, flies
respond to various drugs that act within the central nervous system
in a similar way to mammals (Pandey and Nichols, 2011), making it
a suitable tool for drug screening (Desai et al., 2006; Chang
et al., 2008).

The fruit fly has been used as a model to study epilepsy since the
discovery of bang-sensitive mutants (for review see Fischer et al.,
2023). These mutant flies characteristically respond to a mechanical
shock, termed “bang”, with stereotypic seizure activity. This
complex behavioral response can be divided into different phases,
including an initial seizure, followed by temporary paralysis, and a
recovery seizure (Song and Tanouye, 2008; Parker et al., 2011a;
Fischer et al., 2023). A well-established example of a bang-sensitive
mutant is easily shocked2F (eas2F), carrying a variant in the gene
encoding ethanolamine kinase, an enzyme involved in the synthesis
of phosphatidylethanolamine. Presumably, mutations in this gene
alter the phospholipid composition of membranes, which then leads
to disturbances in neuronal excitability (Pavlidis et al., 1994).
Paralyticbss1 (parabss1), another bang-sensitive fly line, harbors a
gain-of-function mutation in the voltage-gated sodium channel
gene para (Parker et al., 2011b), which is orthologous to the
human SCN1A to SCN5A and SCN7A to SCN11A genes (Takai
et al., 2020). This mutant is characterized by the most severe
phenotype of all bang-sensitive mutants. Furthermore, it has
been proposed as a model for intractable epilepsy because its
phenotype was the most difficult to suppress by ASMs and
seizure-suppressor mutations in previous analyses (Kroll
et al., 2015).

In this study, we screened the capacity of seven frequently used
ASMs to suppress seizure activity in two established Drosophila
bang-sensitive mutants, namely eas2F and parabss1. We show that
several sodium channel blockers as well as valproate can suppress
seizure activity in the eas2F mutant, whereas none of the tested drugs
significantly influences the bang-sensitive phenotype of parabss1 flies.

Materials and methods

Fly stocks and drug treatment

All flies were kept in plastic vials containing standard cornmeal
food at 25°C. The eas2F flies were kindly donated by Richard Baines
(University of Manchester, United Kingdom). The parabss1 flies were
a gift from Deepti Trivedi (National Centre for Biological Sciences,
India). The Canton-S flies (#64349) were obtained from the
Bloomington Drosophila Stock Center (IN, United States). The
following drugs were used: brivaracetam (Tocris Bioscience),
cenobamate (Alsachim), lacosamide (Sigma-Aldrich), lamotrigine
(Selleck Chemicals), levetiracetam (Sigma-Aldrich), phenytoin
(Sigma-Aldrich) and valproate (Sigma-Aldrich). Levetiracetam,
brivaracetam and valproate were dissolved in water, whereas
lacosamide, lamotrigine, phenytoin and cenobamate were
dissolved in ethanol. In case of the eas2F mutant, three different
drug concentrations were used, i.e., 0.03, 0.3 and 3 mM. These
concentrations were selected based on a recommendation for pilot
drug screenings inDrosophila (Pandey and Nichols, 2011). In case of
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parabss1, we only used the highest concentration (3 mM). The
method of drug preparation was adapted from Polet et al. (2024).
100 μL of the drug solution were equally distributed by pipet on top
of the food and left to impregnate overnight. The concentrations
noted in the graphs refer to the concentration of the solution added
on top of the food (e.g., 100 μL of a 3 mM solution). Flies were kept
on ASM containing food for 48 h. This period was chosen based on
previous studies (e.g., Kasture et al., 2022). Solvent only treated flies
served as control.

Vortex assay

Adult male flies were collected using CO2 1–3 days after
eclosion and transferred to a food vial prepared with the
respective drug (max. 10 flies per vial). After 48 h, the flies
were transferred to an empty vial (max. 5 flies per vial) and
allowed to recover from anesthesia for 1–2 h. For seizure
induction, the vials were vortexed using a Vortex-Genie 2
(Scientific Industries) at maximum speed for 10 s as described
previously (Kuebler and Tanouye, 2000; Mituzaite et al., 2021).
The seizure activity was recorded using a video camera. The ratio
of seizing and non-seizing flies (termed seizure probability) as well
as the seizure duration were measured. The seizure duration was
defined as the time from the end of the vortex stimulation until the
fly regained posture and mobility.

Statistical analysis

To test whether the rate of seizing flies differed between the
testing conditions, we performed a Fisher’s exact test. For seizure
duration, statistical outliers were excluded using the ROUTE
method, and normal distribution was confirmed by Shapiro-Wilk
test. The seizure duration was analyzed by a one-way ANOVA
followed by Tukey’s post hoc t-tests. Statistical significance was set at
p < 0.05 with *p < 0.05, **p < 0.01, ***p < 0.001. All error bars shown
represent the standard deviation (SD).

Results

Effects of different solvents on the seizure
activity in eas2F flies

To validate the utility of Drosophila as a screening tool for
antiseizure compounds, we fed two established bang-sensitive
mutants with a broad spectrum of frequently used ASMs
for 48 h. The tested drugs comprised (i) sodium channel
blockers (phenytoin, lacosamide, lamotrigine), (ii) synaptic vesicle
glycoprotein 2 A (SV2A) modulators (levetiracetam, brivaracetam)
and (iii) drugs with multiple mechanisms of action (valproate,
cenobamate). Drug consumption was verified using food coloring
(Supplementary Figure S1). For the initial screening, we chose the
eas2F mutant because it features a relatively short seizure duration
compared to other bang-sensitive mutants and is thus a more
suitable model for large-scale screens. The seizure activity was
induced by vortex stimulation (Kuebler and Tanouye, 2000;

Mituzaite et al., 2021) and the seizure probability and seizure
duration were measured.

To analyze possible confounding effects of the solvent on the
seizure activity, we compared the seizure activity of eas2F flies treated
with either water, ethanol, or dimethyl sulfoxide (DMSO) alone.
Treatment with DMSO lead to a significant decrease in seizure
probability and seizure duration. In contrast, no differences were
observed between flies treated with water or ethanol (Figures 1A, B).
Therefore, we used ethanol as a solvent for hydrophobic agents
instead of DMSO in our screening experiments.

Influence of ASM treatment on seizure
activity in eas2F flies

In our screening paradigm, we tested three different
concentrations (0.03, 0.3, and 3 mM) of each ASM, based on a
recommendation for pilot drugs screenings in Drosophila (Pandey
and Nichols, 2011). Treatment with the sodium channel blockers
phenytoin and lamotrigine resulted in a dose-dependent reduction
of seizure probability, whereas no significant effect was observed for
the sodium channel blocker lacosamide (Figure 2). In addition to
phenytoin and lamotrigine, a robust decrease in seizure probability
was observed in flies treated with valproate (Figure 2). Interestingly,
this effect was only significant for 0.03 and 0.3 mM but not for
3 mM. In contrast, no effects on the seizure probability were
observed for the SV2A modulators levetiracetam and
brivaracetam as well as for cenobamate (Figure 2). Next, we
investigated the effects of the same ASMs on the seizure duration
of eas2F flies. Here, flies treated with lacosamide showed a
significantly shorter seizure duration than the control flies, but
only at the highest concentration (3 mM) (Figure 3). In addition,
flies treated with valproate also showed a significantly reduced
seizure duration, whereas no changes were observed for

FIGURE 1
Seizure activity of eas2F flies treated with different solvents (A)
Percentage of seizing eas2F flies after 10 s of vortex stimulation. Before
testing, the flies were fed with 100 μL of water, ethanol or DMSO for
48 h. The data for flies treated with water or ethanol were derived
from experiments shown in Figure 2. For statistical analysis, we
performed a Fisher’s exact test (***p < 0.001, compared to water and
ethanol). N indicates the total number of flies tested per condition. (B)
Seizure duration in seconds of the same eas2F flies. The data was
analyzed by a one-way ANOVA followed by Tukey’s post hoc t-tests
(**p < 0.01, ***p < 0.001). Error bars indicate SD.
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FIGURE 2
Seizure probability of eas2F flies treated with seven different ASMs. Percentage of seizing flies after 10 s of vortex stimulation. Before testing, the flies
were treated with three different concentrations (0.03, 0.3, 3 mM) of seven different ASMs (phenytoin, lacosamide, lamotrigine, cenobamate, valproate,
levetiracetam, brivaracetam) for 48 h. For statistical analysis, we performed a Fisher’s exact test (*p < 0.05, **p < 0.01, ***p < 0.001, compared to 0mM). N
indicates the total number of tested flies per condition.

FIGURE 3
Seizure duration of eas2F flies treated with seven different ASMs. Seizure duration in seconds of flies after 10 s of vortex stimulation. Before testing,
the flies were treated with three different concentrations (0.03, 0.3, 3 mM) of seven different ASMs (phenytoin, lacosamide, lamotrigine, cenobamate,
valproate, levetiracetam, brivaracetam) for 48 h. For statistical analysis, we performed a one-way ANOVA followed by Tukey’s post hoc t-tests (*p < 0.05,
***p < 0.001, compared to 0 mM). Error bars indicate SD.
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phenytoin, lacosamide, levetiracetam, brivaracetam, and
cenobamate (Figure 3).

Confirmation of parabss1 as a model of
refractory epilepsy

To investigate whether the observed effects on the seizure
activity are specific for the eas2F flies, we additionally tested the
same ASMs in parabss1, another bang-sensitive mutant and model of
intractable epilepsy. Here, we only tested the highest concentration
(3 mM) of each ASM. None of our ASMs showed a significant effect
on the seizure probability of these flies (Figure 4A). However, we
noted a tendency for some sodium channel inhibitors (lamotrigine
and cenobamate) to reduce the rate of seizing flies, which seems not
surprising as parabss1 is known to carry a gain-of-function mutation
in the voltage-gated sodium channel. In addition, none of our ASMs

had a significant effect on the seizure duration of parabss1 flies
(Figure 4B). Importantly, these results confirm parabss1 as a
model of refractory epilepsy.

Discussion

To demonstrate the utility of the fruit fly Drosophila as a
screening tool for novel antiseizure compounds, we tested the
capacity of seven frequently used ASMs to suppress seizure
activity in two established bang-sensitive mutants, eas2F and
parabss1. To avoid possible confounding effects caused by the
solvents in which the ASMs are dissolved, we also investigated
the effects of water, ethanol, and DMSO on the seizure activity of the
eas2F mutant. Surprisingly, we found that treatment with DMSO
alone caused a strong decrease in seizure probability and seizure
duration, whereas no significant differences were found between flies

FIGURE 4
Seizure activity of parabss1 flies treated with seven different ASMs. (A) Percentage of seizing flies after 10 s of vortex stimulation. Before testing, the
flies were treated with 3 mM of seven different ASMs (phenytoin, lacosamide, lamotrigine, cenobamate, valproate, levetiracetam, brivaracetam) for 48 h.
For statistical analysis, we performed a Fisher’s exact test (no significance, compared to control). N indicates the total number of tested flies per condition.
(B) Seizure duration in seconds of the same flies described above. For statistical analysis, we performed a one-way ANOVA followed by Tukey’s post
hoc t-tests (no significance, compared to control). Error bars indicate SD.
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treated with water or ethanol. The exact mechanisms of how DMSO
suppressed seizure activity in this model are not clear. However,
DMSO is known to block activation of sodium channels (Larsen et al.,
1996) and to decrease GABA-, NMDA- and AMPA-induced ion
currents (Nakahiro et al., 1992; Lu and Mattson, 2001). These effects
might alter the balance between inhibition and excitation and thus
affect neuronal excitability. Our findings are also consistent with a
recent study demonstrating a short-lasting decrease in epileptiform
activity in a mouse model of chronic temporal lobe epilepsy after
injection of 100% DMSO (Widmann et al., 2023). Therefore, the use
of DMSO as a solvent should be evaluated cautiously when studying
seizure activity in Drosophila bang-sensitive mutants. A potential
antiseizure effect of DMSO should be monitored closely by control
experiments.

In case of eas2F flies, we found that treatment with the sodium
channel blockers phenytoin and lamotrigine caused a robust
reduction in seizure probability, whereas treatment with
lacosamide resulted in a decrease in seizure duration.
Interestingly, cenobamate, which is also classified as a sodium
channel blocker, had no significant effect on the seizure activity
of eas2F flies. These divergent effects among sodium channel blockers
might be explained by subtle differences in their mechanism of
action. For instance, phenytoin and lamotrigine exert their
antiseizure effects predominantly by enhancing fast inactivation
of sodium channels, whereas the sodium channel blocker
lacosamide primarily increases slow inactivation (Rogawski et al.,
2015). In contrast, cenobamate has a pronounced effect on
persistent rather than transient sodium currents. In addition, it is
also an allosteric modulator of GABAA receptors (Roberti et al.,
2021). Apart from phenytoin, lamotrigine and lacosamide, also
valproate showed a significant effect on the seizure activity of
eas2F flies. Notably, valproate caused both a reduction in seizure
probability and in seizure duration. This pronounced effect might be
due to the combination of different mechanisms by which valproate
exerts its antiseizure effects, including inhibition of voltage-gated
sodium and T-type calcium channels as well as by increasing the
concentration of GABA (Broicher et al., 2007; Loscher and Klein,
2021). Of note, the effect on seizure probability was not significant at
the highest concentration, which might be explained by toxic effects
that have been reported at higher doses (Polet et al., 2024). No
significant effects on the seizure activity were found for the SV2A
modulators levetiracetam and brivaracetam. There are several
possible reasons for this observation. For instance, the binding to
the Drosophila orthologue of SV2A, CG3168, might be insufficient
or the Drosophila orthologue is functionally not amply identical to
the human SV2A. Interestingly, levetiracetam was also devoid of any
antiseizure activity in two well-established screening models for
ASMs - the MES and PTZ seizure tests - highlighting its unique
profile among current ASMs (Klitgaard et al., 1998). In addition to
eas2F, we also tested the same ASMs in another bang-sensitive
mutant, i.e., parabss1. This mutant carries a gain-of-function
mutation in the Drosophila voltage-gated sodium channel (Parker
et al., 2011b) and is characterized by themost severe phenotype of all
bang-sensitive mutants. Moreover, its phenotype is the most difficult
to suppress by ASMs or seizure suppressor mutations. Hence, it has
been proposed as a model of intractable epilepsy (Kroll et al., 2015).
Concordantly, none of our tested drugs had a significant effect on
the seizure probability or seizure duration of this mutant, supporting

its role as a model of refractory epilepsy. However, it should be noted
that we only tested the highest concentration of each ASM in the
parabss1 mutant. Hence, we cannot rule out a potential effect at lower
doses, e.g., of valproate as seen in the eas2F mutant. Importantly,
variability in drug response is also commonly observed in people
with epilepsy, a phenomenon attributed to genetic differences, the
heterogeneous nature of epilepsy syndromes, and individual
variations in drug metabolism (Heavin et al., 2019; Wolking
et al., 2020a; Wolking et al., 2020b; Wolking et al., 2021). As
demonstrated in this study, the use of Drosophila mutants
effectively models this variability. Investigating why certain drugs
are not effective in one mutant but succeed in another could reveal
new targets for ASMs or novel mechanisms of drug resistance, which
could be pivotal for overcoming treatment-resistant forms of
epilepsy in humans.

Drosophila offers several advantages as a model for drug
screening, including fewer ethical concerns, low maintenance
costs, and high progeny numbers for robust statistical analysis.
Furthermore, screening novel drug candidates in an in vivo
model, such as Drosophila, enables the identification of high-
quality hits that already exhibit key features such as oral
availability, metabolic stability, and low toxicity (Pandey and
Nichols, 2011). These characteristics cannot yet be adequately
mimicked in cell culture experiments or biochemical assays
(Pandey and Nichols, 2011). Another advantage of Drosophila is
the ease of generating transgenic flies expressing human disease-
associated variants (Link and Bellen, 2020), offering a promising
approach to test personalized therapy strategies. Indeed, there are
already several studies exploring disease-specific therapies in
Drosophila. For instance, a recent study investigated the
effectiveness of several ASMs in a Drosophila model of KCNT1-
epilepsy (Hussain et al., 2024). The authors found that cannabidiol
decreased the seizure phenotype of flies expressing the humanKCNT1
gene in GABAergic neurons with three different patient mutations.
Furthermore, they showed that vigabatrin significantly reduced the
seizure activity in two of the tested mutants, but increased seizure
activity in the third one. Another study explored the efficacy of several
ASMs in a Drosophila model of North Sea progressive myoclonus
epilepsy (Polet et al., 2024). The authors showed that treatment with
sodium barbital, clonazepam, ganaxolone and ethosuximide resulted
in a significant reduction of heat-induced seizures in flies with glial
knockdown of Membrin, the orthologue of human GOSR2. Another
study found that the serotonin precursor 5-hydroxytryptophan (5-
HTP) suppressed heat-induced seizures in a Drosophila model of
Dravet Syndrome but increased seizure-activity in a model of genetic
epilepsy with febrile seizures plus (GEFS+) (Schutte et al., 2014).
Importantly, these studies further support Drosophila as a model for
drug screening.

However, some limitations should be considered when using
whole animals in large-scale screens. For instance, the actual
physiological concentrations of candidate compounds within the
model organism can hardly be predicted. Therefore, it is hard to
interpret whether negative findings result from poor absorption,
distribution issues, or an actual absence of biological activity
(Giacomotto and Segalat, 2010). At least in our case, food
coloring was used to verify consumption of the drugs. However,
it is noteworthy that it is still hardly possible to determine the exact
amount of the ingested drug. Hence, we cannot rule out subtle
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differences in drug intake. Furthermore, the duration of treatment
that is required to achieve a positive effect is difficult to estimate.
Thus, we cannot rule out that a longer treatment would have
resulted in a stronger antiseizure effect in our experiments.
However, the main purpose of using small animals in large-scale
screens is to streamline the pool of candidate compounds to those of
higher quality, which ultimately promises both time and cost
efficiency (Giacomotto and Segalat, 2010).

Conclusion

In the present study, we screened the capacity of a broad range of
ASMs to suppress seizures in two established Drosophila bang-
sensitive mutants. We found a distinct, ASM-dependent pattern of
seizure response for sodium channel blockers and valproate in eas2F

flies and broad drug-resistance in parabss1 flies. Our results imply
that the fruit fly might be a suitable model for large-scale screening
of anti-seizure agents, promising a higher pace and throughput, and
bearing the potential to advance the discovery of novel antiseizure
compounds. Finally, we want to emphasize that the fruit fly is not
meant to replace rodent and other animal models in drug discovery
but complement current drug discovery pipelines as a high-
throughput instrument.
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SUPPLEMENTARY FIGURE S1
Verification of drug intake. The following drugs were diluted with food
coloring (brilliant blue FCF; E 133) to a final concentration of 3 mM:
brivaracetam (BRV), cenobamate (CBM), lacosamide (LCM), lamotrigine
(LTG), levetiracetam (LEV), phenytoin (PHT), valproate (VPA). 100 µL of the
drug/food coloring solution were equally distributed by pipet on top of the
food and left to impregnate overnight. Adult male flies (Canton-S) were
collected using CO2 1–3 days after eclosion and transferred to a food vial
prepared with the respective drug/food coloring solution (10 flies per vial).
After 48 h, the abdomen of each fly was visually inspected under a
microscope. All flies exhibited a blue colored abdomen, confirming ingestion
of each ASM. Untreated flies (without food coloring) served as control.
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