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Background: Pulmonary hypertension (PH) can lead to right ventricular
hypertrophy, significantly increasing mortality rates. This study aims to clarify
PH-specific metabolites and their impact on genomic and post-translational
modifications (PTMs) in cancer, evaluatingDHA and EPA’s therapeutic potential to
mitigate oxidative stress and inflammation.

Methods: Data from 289,365 individuals were analyzed using Mendelian
randomization to examine 1,400 metabolites’ causal roles in PH. Anti-
inflammatory and antioxidative effects of DHA and EPA were tested in RAW
264.7 macrophages and cancer cell lines (A549, HCT116, HepG2, LNCaP).
Genomic features like CNVs, DNA methylation, tumor mutation burden (TMB),
and PTMs were analyzed. DHA and EPA’s effects on ROS production and cancer
cell proliferation were assessed.

Results: We identified 57 metabolites associated with PH risk and examined key
tumor-related pathways through promoter methylation analysis. DHA and EPA
significantly reduced ROS levels and inflammatory markers in macrophages,
inhibited the proliferation of various cancer cell lines, and decreased nuclear
translocation of SUMOylated proteins during oxidative stress and inflammatory
responses. These findings suggest a potential anticancer role through the
modulation of stress-related nuclear signaling, as well as a regulatory function
on cellular PTMs.
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Conclusion: This study elucidates metabolic and PTM changes in PH and cancer,
indicating DHA and EPA’s role in reducing oxidative stress and inflammation. These
findings support targeting these pathways for early biomarkers and therapies,
potentially improving disease management and patient outcomes.
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Background

Pulmonary hypertension (PH) is a multifactorial disorder
marked by elevated pulmonary arterial pressure, often leading to
right heart failure and eventual mortality (Hoendermis, 2011).
Pathogenic processes in PH overlap significantly with various
systemic diseases, notably cancer (Boucherat et al., 2017;
Guignabert et al., 2013). Recent studies have highlighted the role
of metabolic alterations in the progression of PH (Pugh and
Hemnes, 2010; Maron et al., 2020; Sharma et al., 2016). Notably,
PH has been linked to conditions like COVID-19, with organ-
specific findings suggesting potential associations with cerebral
aneurysms (Sharma et al., 2016; Finsterer, 2022). Furthermore,
connections between pneumonia, stroke, and metabolic
disturbances underscore the complexity of PH’s etiology,
emphasizing the interplay of genetic and metabolic factors in its
pathogenesis (Hassan et al., 2021). Specific metabolic pathways are
implicated in PH, with studies focusing on elements such as plasma
homocysteine and chronic obstructive pulmonary disease (COPD)
(Hu et al., 2023; Chaudhary et al., 2019; Xu et al., 2021). The
exploration of metabolic abnormalities, particularly in
postmenopausal diabetic women, has potential therapeutic
implications, especially considering the growing interest in
nanotechnology for cancer drug delivery (Chen Y. et al., 2022).

Metabolites act as signaling molecules, influencing cellular
pathways associated with PH by regulating gene expression and
protein function (Milanesi et al., 2020; Han and Chandel, 2021).
Research indicates that certain metabolites can affect PH through
oxidative stress and inflammatory processes, often involving post-
translational modifications (PTMs) such as phosphorylation,
acetylation, and SUMOylation (Ebert et al., 2022; Diskin et al.,
2021). The relationship between hormonal influences and vascular
function provides additional insights, particularly through the role
of estrogen receptors in ovarian cancer (Su et al., 2023). Tumor
growth may stimulate pulmonary arteries, potentially inducing PH,
while emerging genomic studies suggest an interconnectedness
between pan-cancer traits and PH pathogenesis, though many
underlying mechanisms remain unexplored (Chen H. et al.,
2022). Recent findings on m6A RNA methylation in cancer stem
cells offer novel perspectives on the genetic links between PH and
cancer (Chen H. et al., 2022; Ma and Ji, 2020). PH appears to share
molecular pathways with epigenetic processes involved in the
epithelial-mesenchymal transition in ovarian cancer, suggesting
possible commonalities in their progression (Prayudi et al., 2023).

In cancer, complex interrelations are observed among CNVs,
DNA methylation, tumor mutation burden (TMB), and PTMs (Cai
et al., 2019). CNVs can influence gene expression by altering gene
copy numbers, potentially impacting PTM frequency (Henrichsen

et al., 2009; Orozco et al., 2009). DNA methylation, through gene
silencing or activation, affects PTM-encoding genes and regulates
PTM levels (Qi et al., 2023; Ji et al., 2023). Increased TMB generates
neoantigens that attract immune infiltration, often correlating with
inflammation-related gene overexpression, potentially altering PTM
patterns (Wang and Li, 2019). PTMs directly regulate protein
function and, by impacting transcription factors, modulate
downstream gene expression (Filtz et al., 2014). PTMs are
indirectly regulated by CNVs and DNA methylation, forming a
complex regulatory network that influences tumor progression and
the immune microenvironment, providing crucial insights for
biomarkers and targeted therapies in cancer research.

Certain metabolites function as signaling molecules under
physiological and pathological conditions, potentially modulating
PH-related gene expression and protein function through
intracellular signaling pathways (Frezza, 2017). Studies show that
specific metabolites directly affect PH bymodulating oxidative stress
and inflammatory responses, often involving PTM modifications of
key proteins, such as phosphorylation, acetylation, and
SUMOylation (Schopfer et al., 2011). As critical regulatory
mechanisms for protein function, PTMs dynamically respond to
cellular metabolic changes (Wang et al., 2016). For example,
oxidative stress or metabolic dysregulation can alter PTMs,
affecting protein stability, activity, or subcellular localization
(Wang et al., 2016). This suggests that fluctuations in specific
metabolites may influence PH progression by modulating PTM
frequency or patterns. Metabolites might directly affect pulmonary
vascular function by promoting SUMOylation, phosphorylation, or
other modifications of transcription factors or structural proteins,
potentially exacerbating or alleviating PH symptoms (Yao et al.,
2019). Moreover, studies on the therapeutic potential of natural
products in cervical cancer offer new strategies for PH treatment via
metabolic and genetic pathways (Mukherjee et al., 2022). In
summary, we hypothesize a close association among metabolites,
PH, and PTMs, with metabolic fluctuations potentially impacting
PTM-regulated protein activity and thus contributing to PH
progression. This hypothesis provides a new perspective on
understanding metabolite-related regulatory mechanisms in PH
and establishes a foundation for studying PTMs as biomarkers
and therapeutic targets in PH.

There is also an increasing need to dissect the causal
relationships between metabolites and PH, alongside genomic
alterations in various cancers. The current research landscape
often lacks clarity regarding specific metabolite interactions with
genetic changes across distinct cancer types and their implications
for PH. Mendelian randomization has recently gained attention as a
valuable tool in addressing these issues. By combining
bioinformatics with single-cell sequencing, researchers can
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uncover the characteristics of immune responses within different
microenvironments, providing strong data support for the
development of personalized treatment plans. The advancement
of these technologies has facilitated the broader application of
transcriptomics, metabolomics, and proteomics in disease
diagnosis and treatment (Liu et al., 2024; Chauleau and Trassin,
2024; Shi et al., 2024; Jang and Choi, 2024). This study aims to bridge
existing knowledge gaps by exploring the causal relationships
between metabolites and PH and examining PTM-associated
genomic alterations across cancer types. By analyzing how
metabolites impact genetic changes within the context of cancer,
this study seeks to elucidate the pathways linking PH and cancer,
providing a more comprehensive understanding of their shared
mechanisms. Ultimately, our goal is to identify potential therapeutic
targets and diagnostic biomarkers, advancing early detection and
personalized treatment strategies. Integrating perspectives on the
interactions between metabolic and genetic factors is crucial for a
comprehensive understanding of complex diseases like PH.

Materials and methods

Integration analysis of exercise-related
genes and metabolomics

The GENECARD database identifies genes associated with
exercise, providing insights into their functions and relationships
in various biological processes. Using the MetaboAnalyst platform,
we conduct an integration study of these genes with
metabolomics data.

Genomic features of cross-over genes in
pan-cancer

We use DNA methylation and copy number variation (CNV)
data from The Cancer Genome Atlas (TCGA) database for our pan-
cancer study. After extracting CNV data for genes that overlap in
different tumor types, the genes are classified as amplifications or
deletions, and the rates of each are computed to find their
frequencies in distinct tumor tissues. UALCAN (http://ualcan.
path.uab.edu/analysis.html) is used to analyze the promoter DNA
methylation levels of overlapping genes in both normal and
malignant tissues. The “Gene Visualisation” feature of the
MethSurv database provides DNA methylation patterns of
various malignancies. Additionally, the R package
“TCGAbiolinks” is used to retrieve mutation data in the
Mutation Annotation Format (MAF), and the “maftools” R
package is used to compute the TMB.

Pan-cancer GSEA enrichment analysis

Using the “limma” R package, we perform differential
expression analysis between tumor and normal samples from
TCGA. P-value criteria and log2 fold change (log2fc) are used to
identify genes with substantial variations in expression. Gene Set
Enrichment Analysis (GSEA) was performed using the

“clusterProfiler” package in R. This analysis involved formatting
the data dimensions appropriately and visualizing the results with
examples to highlight significant findings.

Tumor prognostic analysis

We assessed the predictive ability of overlapping gene
expressions on patient survival outcomes using TCGA datasets,
focusing on overall survival (OS). Survival analysis was conducted
using the Kaplan-Meier method and log-rank test to evaluate
survival across different cancer types. The “survival” and
“survminer” R packages were utilized to generate survival curves.
Additionally, the Cox proportional hazards model was employed to
investigate the relationship between FGA and NOTCH3 expression
and overall survival outcomes in pan-cancer patients, using the
“forestplot” R package for visualization.

Immune infiltration

We employ markers from the CIBERSORTx website (https://
cibersortx.stanford.edu/) and the main algorithm from CIBERSORT
to assess the infiltration levels of 22 immune cell types in tumor
samples. This analysis is facilitated by the CIBERSORT. R script.
Heat maps are used to illustrate the findings of Spearman correlation
analysis, which is used to investigate the link between single-gene
data and immune infiltration matrix data across pan-cancer
datasets. This is a specific technique used to evaluate immune
cell populations, which helps to understand the role of tumor
microenvironment in cancer progression.

Methylation analysis

Our methylation analysis specifically targets the TSS1500 region,
which spans from −200 to −1,500 base pairs upstream of the
transcription start site. We also focus on the TSS200 region, which
is located within −200 base pairs upstream of the TSS. Additionally, we
examine the first exon and the 5′untranslated region (5′UTR). Each
sample’s methylation level is represented by the median value. In order
to investigate the association between methylation levels and gene
expression, we conduct a Spearman’s correlation analysis. The
Spearman rank correlation coefficient, a non-parametric statistic, is
used to assess the monotonic association between two variables,
regardless of their distribution. The independent variable in this
context is the methylation levels, while the dependent variable is the
gene expression levels. The correlation between these two variables is
evaluated by computing the Spearman rank correlation coefficient. In
addition, theWilcoxon rank-sum test is used to analyse the distribution
of promoter methylation data between the tumor and normal groups.

Gene set enrichment analysis and
GSVA analysis

We conduct Gene Ontology (GO) enrichment analysis on the
chosen gene sets utilising the “clusterProfiler” tool. Furthermore, the
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Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment
analysis is performed using the identical software package. In order
to evaluate the activity of a pathway, we utilise the GSVA software
and analyse the data using four different methods: zscore, gsva,
ssgsea, and plage. With the exception of the zscore parameter, the
scores obtained from the other techniques are transformed into
unitless Z-scores using the formula (x-μ)/σ. This is done to maintain
uniformity among tumor data. TheWilcoxon Rank Sum Test is used
to assess statistical disparities between tumor and normal tissues.
The findings are visualised by creating box plots using the
ggplot2 program.

RAW 264.7 cell line

The RAW 264.7 cell line is acquired from the Shanghai Cell
Bank, which is a division of the Chinese Academy of Sciences. The
cells are cultivated in RPMI-1640 medium (Gibco Invitrogen Co.,
San Diego, CA, United States) with the addition of 10% foetal bovine
serum (Gibco BRL, Grand Island, NY, United States), 100 units/mL
penicillin, and 0.1 mg/mL streptomycin. The culture conditions are
upheld at a temperature of 37°C, with a humidity level of 95% and a
CO2 concentration of 5%. Docosahexaenoic acid (DHA) is dissolved
in dimethyl sulfoxide (DMSO) to form a 1 millimolar (mM)
concentrated solution, which is then kept at a temperature
of −20°C. During the experiment, the stock solution is mixed
with DMSO to provide a final concentration of 2 μM DHA and
EPA for the RAW 264.7 cells. These cells are then subjected to a 48-h
treatment. The DHA (D2534, purity >99%) and a standard for
37 fatty acids are obtained from Sigma (St. Louis, MO,
United States), whereas eicosapentaenoic acid (EPA) is acquired
from Sigma-Aldrich (St. Louis, MO, United States).

Cell culture and colony formation assay

The following cell lines—LNCaP (prostate cancer), HepG2 (liver
cancer), A549 (lung adenocarcinoma), and HCT116 (colorectal
cancer)—were cultured under standard conditions. Each cell line
was maintained in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-
streptomycin. Cells were incubated at 37°C in a humidified
atmosphere containing 5% CO₂. The culture medium was
replaced every 2–3 days, and cells were subcultured upon
reaching 80%–90% confluence using 0.25% trypsin-EDTA for
detachment. All cell lines were authenticated prior to
experiments to ensure reliability and reproducibility of the
results. For the colony formation assay, cells were seeded into 6-
well plates at a density of 500–1,000 cells per well and allowed to
adhere overnight. The cells were then cultured in DMEM
supplemented with 10% FBS at 37°C in a humidified incubator
with 5% CO₂. The medium was refreshed every 3–4 days. After
10–14 days, when visible colonies had formed, the medium was
removed, and the cells were gently washed twice with phosphate-
buffered saline (PBS). The colonies were fixed with 4%
paraformaldehyde for 15 min at room temperature and
subsequently stained with 0.5% crystal violet solution for 20 min.
After washing away the residual stain with tap water, the plate was

air-dried. After 7–10 days, colonies containing more than 50 cells
were counted under a microscope, and the colony formation
efficiency was calculated as the number of colonies divided by
the number of cells seeded.

Inhibition of reactive oxygen species (ROS)
production

The RAW 264.7 cells were diluted to a concentration of
250,000 cells/mL. Luminol, a light-enhancing compound, and
zymosan, which stimulates the production of ROS, were added to
each well. The resulting chemiluminescent emission from the
formation of ROS was then measured.

Immunofluorescence detection

Immunofluorescence detection was performed as previously
described (Im et al., 2019; Chen et al., 2024a). Cells were initially
fixed with a 4% paraformaldehyde (PFA) solution for 15 min,
followed by blocking for 1 h. The samples were then incubated
overnight with the primary antibody at 4°C. On the second day, the
samples were brought to room temperature (25°C) and stained with
a fluorescently labeled secondary antibody for 1 h. After washing
with PBS, a coverslip was mounted using an anti-fade mounting
solution containing DAPI from Abcam. Fluorescence microscopy
was then used to capture images.

Statistical analysis

A P-value of <0.05 was considered statistically significant,
ensuring the reliability and accuracy of our findings regarding
metabolites and pulmonary hypertension. Mean ± standard
errors are reported for the data.

Results

Causal relationship between metabolites
and the risk of pulmonary hypertension

To address this inquiry, we utilized a two-sample MR
methodology to evaluate the potential causal relationship between
metabolites and the risk of PH. The intercept test conducted using
MR Egger indicated no signs of horizontal pleiotropy (p > 0.05 for all
instrumental variables), thereby reinforcing the reliability of our
results. Additionally, the outcomes of the leave-one-out sensitivity
analysis, employing a jackknife approach, are presented in Figure 1.
Our analysis identified 57 metabolites with a significant causal
association with the development of PH, using a significance
threshold of 0.01 (Supplementary Figure S1). Among these,
metabolites such as Glucuronide of piperine (P = 0.030, OR =
1.316, 95% CI = 1.026–1.689), N-lactoyl valine (P = 0.034, OR =
2.029, 95% CI = 1.052–3.911), and N-stearoyl-sphingadienine (d18:
2/18:0) (P = 0.007, OR = 1.570, 95% CI = 1.126–2.189) were found to
be positively associated with an increased risk of PH. Conversely,
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FIGURE 1
Flowchart of MR Analysis for Pulmonary Hypertension. The flowchart above depicts the systematic approach employed in our mediation analysis to
investigate the correlation between 1,400 metabolites and the incidence of pulmonary hypertension. The process begins with the introduction of the
1,400 metabolites, followed by screening for single nucleotide polymorphisms (SNPs) strongly associated with them. SNPs in linkage disequilibrium,
characterized by an r2 value greater than 0.0001 and a p-value less than 1e-5, are excluded if they are within 10,000 base pairs of each other.
Excluded from consideration are instrumental variables (IVs) that are associated with possible confounders, and instrumental variables that lack sufficient
power are also avoided. The data are standardised, and IVs that are palindromic are removed to ensure a reliable introduction of alleles between the
exposure and result SNPs. The specific result being studied is pulmonary hypertension. Single nucleotide polymorphisms (SNPs) are standardised ormade

(Continued )
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metabolites such as Cerotoylcarnitine (C26) (P = 0.027, OR = 0.688,
95% CI = 0.493–0.959), Docosatrienoate (22:3n6) (P = 0.041, OR =
0.642, 95% CI = 0.420–0.982), and 5-dodecenoylcarnitine (C12:1)
(P = 0.036, OR = 0.545, 95% CI = 0.309–0.962) exhibited a protective
effect against PH, showing negative correlations. Further reverse MR
analysis assessed the impact of PH on these metabolites. The results
suggested a negative correlation between PH and S-methylcysteine
levels (P = 0.045, OR = 1.014, 95% CI = 1.000–1.028). TheMR Forest
Plot (Supplementary Figure S1) visually represents the odds ratios
(ORs) and 95% confidence intervals (CIs) for each metabolite, with
data analyzed across different MR techniques. The metabolites
examined include a broad spectrum of biological compounds,
such as amino acids, lipids, and carbohydrates. In the forest plot,
horizontal lines representing the ORs and CIs indicate significant
associations when they do not cross the null value (OR = 1). To
ensure robust causal inference, we employed multiple MR
methodologies, including Inverse-Variance Weighted (IVW), MR
Egger, weighted median, weighted mode, and simple mode
approaches, using genetic predictors derived from genome-wide
association studies (GWAS). The IVW method combined the effect
estimates of genetic instruments, MR Egger addressed directional
pleiotropy, and the weighted median provided reliable estimates
even when up to 50% of the data came from invalid instruments.
These diverse approaches strengthen the robustness and validity of
our findings. This comprehensive analysis underscores significant
causal relationships between specific metabolites and the risk of PH,
identifying potential therapeutic targets and biomarkers for disease
prevention and management.

Identification of metabolic pathways and
exercise-related genes associated with
pulmonary hypertension

The analysis of metabolic pathways and exercise-related genes in
the context of PH provided significant insights into potential
therapeutic targets. Figure 2A depicts the top 25 enriched
metabolic pathways identified from metabolomics data of PH
patients, analyzed using the MetaboAnalyst 6.0 platform. The
pathways are ranked by p-value (left panel) and enrichment ratio
(right panel). Pathways such as D-Arginine and D-Ornithine
metabolism, starch and sucrose metabolism, and galactose
metabolism exhibited significant associations with PH. The size
and color of the dots represent the enrichment ratio and statistical
significance, respectively, with higher ratios and more significant
p-values highlighted in red. These findings suggest that disturbances
in amino acid and carbohydrate metabolism play crucial roles in the
pathophysiology of PH, potentially offering novel avenues for
metabolic intervention. In Figure 2B, a network of exercise-

related genes and their associations with various diseases was
constructed using data from the GeneCards database. The
network includes genes such as IL6, IL1B, COL1A1, COL5A1,
IL10, IFNG, PRL, MPO, ACE, CCL2, REN, and F2, which are
linked to a wide array of diseases, including inflammatory bowel
disease, diabetes mellitus, rheumatoid arthritis, and Parkinson’s
disease. These genes are known to play critical roles in
inflammation, immune regulation, and metabolic processes. The
network analysis underscores the relevance of these genes in the
physiological response to exercise and their potential role in
modulating the immune and metabolic dysregulation observed in
PH. The identification of key metabolic pathways and gene-disease
associations provides a foundation for future research aimed at
developing exercise-based therapeutic strategies, which could
modulate these metabolic and immune processes to improve
outcomes for PH patients.

Prognostic significance of overlapping gene
expression in various cancers

This study investigates the prognostic relevance of
12 overlapping genes (ACE, CCL2, COL1A1, COL5A1, F2,
IFNG, IL1B, IL6, IL10, MPO, PRL, and REN) across different
cancer types by analyzing their correlation with overall survival
(OS). The hazard ratios (HRs) and 95% confidence intervals (CIs)
for each gene’s expression were calculated, revealing important
trends in cancer prognosis. As illustrated in Figure 3A, ACE
expression is protective against kidney renal clear cell carcinoma
(KIRC) and mesothelioma (MESO) but may present risks in uterine
carcinosarcoma (UCS). Elevated ACE levels confer significant
advantages for certain cancers while being detrimental to others.
Regarding CCL2 (Figure 3B), increased expression correlates with
higher risk in kidney renal papillary cell carcinoma (KIRP) and low-
grade glioma (LGG), indicating its role as a negative prognostic
marker for these malignancies. COL1A1 expression is associated
with risk in various cancers (Figure 3C), including breast invasive
carcinoma (BRCA), head and neck squamous cell carcinoma
(HNSC), and stomach adenocarcinoma (STAD), whereas it
provides protective effects in kidney chromophobe (KICH),
highlighting its complex role depending on cancer type. For
COL5A1 (Figure 3D), high expression is linked to increased risk
in liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma
(LUAD) but offers protective benefits for KIRC, demonstrating its
dual nature in cancer prognosis. The F2 gene (Figure 3E)
predominantly exhibits protective effects across various cancers,
although it poses risks in KIRC and bladder urothelial carcinoma
(BLCA). Similarly, cancers like sarcoma (SARC) and LGG present
adverse outcomes, reflecting the gene’s varied impact on different

FIGURE 1 (Continued)

consistent across the initial and final datasets. Reverse MR is conducted, and the analysis of MR proceeds with the remaining significant independent
variables that have a p-value less than 5e-5, an r-squared value less than 0.001, and a coefficient of 10,000. Multiple MR techniques are employed to
evaluate causation, such as IVW, Weighted Median, MR Egger, Simple Mode, and Weighted Mode. A heterogeneity test is performed to assess the
uniformity of the outcomes across various tactics. The MR-PRESSO Global Test is employed to identify and address horizontal pleiotropy. Sensitivity
analysis is conducted to verify the reliability and stability of the results. This comprehensive method ensures that the identified connections between
metabolites and pulmonary hypertension are strong and less likely to be confused by pleiotropy or other predispositions.

Frontiers in Pharmacology frontiersin.org06

Zhang et al. 10.3389/fphar.2024.1490892

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1490892


FIGURE 2
Metabolic Pathways and Exercise-Related Genes Related to Pulmonary Hypertension. (A) This section presents the top 25 metabolic pathways significantly
associatedwith pulmonary hypertension (PH). On the left, pathways are displayed based on their p-values, while the right side features thosewith high enrichment
ratios. Each dot represents a distinct pathway, colored by p-value (with red indicating more significant values) and sized according to the enrichment ratio. Data
analysis was conducted using the MetaboAnalyst 6.0 platform, which provides comprehensive metabolomics data analysis and visualization. The pathways
were identified from metabolomics data collected from patients with PH. (B) This well-structured network illustrates the associations between exercise-related
genes and various diseases or disorders. Using the GeneCards database, genes such as IL6, IL1β, COL1A1, COL5A1, IL10, IFNG, PRL, MPO, ACE, CCL2, REN, and
F2 were identified, along with detailed gene information. In the network, nodes represent the genes, while edges indicate their associations with diseases. These
genes are linked to a range of conditions, including inflammatory bowel disease, diabetesmellitus, rheumatoid arthritis, and Parkinson’s disease, amongothers. The
colors and sizes of the nodes reflect the strength and nature of the links, as well as their importance. This network aims to enhance understanding of the broader
impact of these genes on various physiological and pathophysiological states, with particular emphasis on pulmonary hypertension and exercise physiology.
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FIGURE 3
Expression of Overlapping Genes and Their Correlation with Tumor Prognosis. This figure presents forest plots illustrating the hazard ratios (HRs)
and 95% confidence intervals (CIs) for 12 overlapping genes (ACE, CCL2, COL1A1, COL5A1, F2, IFNG, IL1β, IL6, IL10, MPO, PRL, and REN) across various
cancers. The plots depict the relationship between the expression patterns of these genes and OS, highlighting their prognostic significance in cancer
outcomes. Each plot presents the gene expression data in multiple cancers, highlighting both protective and risky associations with survival
outcomes. (A) ACE (OS): High ACE expression was protective in kidney renal clear cell carcinoma (KIRC) and mesothelioma (MESO), but risky in uterine
carcinosarcoma (UCS). (B) CCL2 (OS): Elevated CCL2 expression was linked to higher risk in kidney renal papillary cell carcinoma (KIRP) and low-grade
glioma (LGG). (C) COL1A1 (OS): COL1A1 expression demonstrated risky trends in breast invasive carcinoma (BRCA), head and neck squamous cell
carcinoma (HNSC), and stomach adenocarcinoma (STAD), while showing protective effects in kidney chromophobe (KICH). (D) COL5A1 (OS): High

(Continued )

Frontiers in Pharmacology frontiersin.org08

Zhang et al. 10.3389/fphar.2024.1490892

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1490892


tumor types. In terms of IFNG (Figure 3F), sensitivity to expression
levels is evident, as it shows protective trends in esophageal
carcinoma (ESCA) and KIRC, yet poses risks in BRCA. A similar
pattern is observed with IL1B (Figure 3G), which has crucial
protective roles in KIRC and BRCA while being associated with
significantly higher risks for stomach adenocarcinoma (STAD) and
skin cutaneous melanoma (SKCM), despite its complex involvement
in inflammatory pathways within tumors. For IL6 (Figure 3H), high
expression indicates a poor prognosis in lung squamous cell
carcinoma (LUSC) and BLCA, while demonstrating protective
effects for KIRC, illustrating the dual aspects of cancer
progression. IL10 (Figure 3I) correlates with increased risk in
KIRP and pancreatic adenocarcinoma (PAAD), yet displays
protective tendencies in LUSC, emphasizing its variable role
across different tumor microenvironments. MPO (Figure 3J)
becomes concerning, as elevated expression is associated with
LIHC and LUSC, while providing protective benefits in BLCA,
indicating its differing impacts based on tumor type. Lastly, PRL
(Figure 3K) shows high expression linked to risks in colon
adenocarcinoma (COAD) and BRCA, yet has favorable effects for
KIRC, showcasing the diverse roles this gene plays in tumor biology.
Finally, REN (Figure 3L) exhibited protective trends in cancers such
as KIRC and kidney renal papillary cell carcinoma (KIRP), while
being associated with increased risk in LGG and UCS, highlighting
its potential as a prognostic marker.

Analysis of copy number variation,
methylation, and TMB of overlapping genes
in pan-cancer

Next, we explored CNV, methylation, and TMB analysis of pan
cancer overlapping genes to clarify their functional characteristics.
Figure 4A shows the distribution of CNV rates among the
overlapping genes across 20 different cancer types. Each bar in
the graph represents the variation in CNV for individual genes
across these cancers, with distinct colors indicating different cancer
types. For instance, COL1A1 and COL5A1 showed significant CNV
gains in cancers like BRCA and STAD, while ACE and IFNG
exhibited frequent CNV losses in KIRC and LUAD. Figure 4B
presents the differential expression analysis of these overlapping
genes across various tumors. Notably, IL6 and IL10 were
significantly upregulated in cancers such as PAAD and LIHC,
suggesting their potential roles in tumor progression and
inflammation. Figure 4C explores the correlation between CNV
and gene expression in various malignancies. This figure reveals that
genes like COL1A1 and COL5A1 display strong positive correlations

between CNV and expression levels in cancers such as BRCA and
STAD, indicating that CNV gains directly enhance the expression of
these genes. Conversely, negative correlations were observed for
IFNG in LUAD, suggesting that CNV losses are associated with
reduced gene expression in certain contexts. Figure 4D delves into
the relationship between promoter methylation and gene expression
across different cancers. The data show that hypermethylation of
genes like ACE and F2 is associated with decreased expression in
tumors such as LUAD and KIRC, underscoring the role of epigenetic
silencing in these cancers. On the other hand, IL1B and
IL6 exhibited hypomethylation coupled with increased expression
in cancers like colorectal adenocarcinoma (COAD) and BRCA,
indicating that promoter demethylation may activate oncogenic
pathways in these tumors. Figure 4E highlights the association
between TMB and gene expression across various cancer types.
This analysis reveals that genes such as IL6 and MPO show
significant positive correlations with TMB in high-mutation
cancers like LUSC and esophageal carcinoma (ESCA), suggesting
that higher mutation loads might drive the overexpression of these
inflammatory mediators. Conversely, genes like REN and PRL show
a negative correlation with TMB in cancers like KIRC, implying that
these genes might be suppressed in tumors with a high mutation
burden. Figure 4F illustrates the δ-values of promoter methylation in
tumors versus normal tissues for the overlapping genes across
different cancers. The data indicate that COL5A1 and MPO
exhibit significant hypermethylation in tumor tissues compared
to normal tissues in cancers like STAD and BRCA, which is
associated with their reduced expression. Conversely, IL10 and
IFNG exhibit hypomethylation in pancreatic adenocarcinoma
(PAAD) and lung squamous cell carcinoma (LUSC) tumors,
which correlates positively with elevated mRNA levels. This
suggests their potential role in fostering a pro-tumorigenic
microenvironment. The GSEA was performed on a diverse set of
cancer types, including cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), glioblastoma multiforme
(GBM), head and neck squamous cell carcinoma (HNSC), kidney
renal clear cell carcinoma (KIRC), acute myeloid leukemia (LAML),
liver hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), ovarian serous
cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD),
prostate adenocarcinoma (PRAD), rectum adenocarcinoma
(READ), skin cutaneous melanoma (SKCM), stomach
adenocarcinoma (STAD), testicular germ cell tumors (TGCT),
and uveal melanoma (UVM) (Supplementary Figure S2). A
comprehensive analysis of thousands of pathways was conducted,
encompassing critical cellular processes such as the canonical
xenobiotic metabolism system, WNT beta-catenin signaling,

FIGURE 3 (Continued)

COL5A1 expression was associated with increased risk in liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD), but protective in
KIRC. (E) F2 (OS): F2 expression was predominantly protective in KIRC and bladder urothelial carcinoma (BLCA), but risky in sarcoma (SARC) and LGG. (F)
IFNG (OS): IFNG expression showed protective trends in esophageal carcinoma (ESCA) and KIRC, but risky in BRCA. (G) IL1β (OS): IL1B expression was
protective in KIRC and BRCA, but associated with increased risk in stomach adenocarcinoma (STAD) and skin cutaneous melanoma (SKCM). (H) IL6
(OS): Elevated IL6 expression was linked to risky prognosis in lung squamous cell carcinoma (LUSC) and BLCA, but protective in KIRC. (I) IL10 (OS):
IL10 expression was associated with increased risk in KIRP and pancreatic adenocarcinoma (PAAD), while showing protective effects in LUSC. (J) MPO
(OS): MPO expression demonstrated risky trends in liver hepatocellular carcinoma (LIHC) and LUSC, while being protective in BLCA. (K) PRL (OS): High
PRL expression posed a risk in colon adenocarcinoma (COAD) and BRCA, but was protective in KIRC. (L) REN (OS): REN expression was protective in KIRC
and kidney renal papillary cell carcinoma (KIRP), but risky in low-grade glioma (LGG) and UCS.
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FIGURE 4
Analysis of Copy Number Variation, Methylation, and TMB of Overlapping Genes in Pan-Cancer. (A) Distribution of copy number variation (CNV)
rates among overlapping genes across 20 different cancer types. The graph shows the variation in CNV for each gene across selected cancer types, with
distinct colors representing different cancers. (B) Differential expression analysis of overlapping genes across multiple tumors. The top bar chart
represents the number of genes that are upregulated (red) or downregulated (green) in each cancer type. Below, the dot plot shows the expression
levels of these genes, with the size of each dot reflecting the significance of differential expression (-log10(FDR)) and the color indicating the log2 fold
change. (C) Association of gene dosage with expression changes in different cancers. The dot plot displays the correlation coefficients (color-coded)
between CNV and gene expression levels. (D) Relationship between promoter methylation and gene expression in different cancers. This plot illustrates
the correlation coefficients (color-coded) for the effect of promoter methylation changes on gene expression. (E) Association between TMB and gene
expression in distinct malignancies. The dot plot presents the correlation coefficients (color-coded) for the relationship between TMB and gene
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FIGURE 4 (Continued)

expression levels, with the dot size indicating the significance (-log10 (p-value)) of these associations. This analysis helps to identify genes whose
expression is influenced by the overall mutation load in tumors. (F) δ-values of promoter methylation in tumors versus normal tissues for overlapping
genes across different cancers. This graphic displays the δ-values (difference in methylation levels) between tumors and normal tissues, with the size of
the dots indicating the significance (-log10 (p-value)).

FIGURE 5
Correlation Analysis of OverlappingGeneswith ImmuneCell Infiltration. (A–J)Heatmaps showing correlations between the expression of key genes
(ACE, CCL2, COL1A1, COL5A1, F2, IFNG, IL1β, IL6, IL10, MPO, PRL, and REN) and the infiltration of various immune cell types across different tumor types.
Each subfigure (A–J) illustrates the correlation between the expression of a single gene and the abundance of multiple immune cell types, including
B cells, T cells (CD8+ and CD4+ subsets), NK cells, macrophages, dendritic cells, and mast cells. The color intensity in the heatmaps corresponds to
the correlation coefficient (r), where purple indicates positive correlations and green indicates negative correlations. The significance of the correlations is
denoted by the size of the squares, with larger squares indicating higher statistical significance (p < 0.05). (K) Radial plot representing the expression
patterns of key overlapping genes (ACE, CCL2, COL1A1, COL5A1, F2, IFNG, IL1β, IL6, IL10, MPO, PRL, and REN) across various cancer types in relation to
TMB. The circumference of the plot represents different cancer types, while the colored lines indicate the expression patterns of each gene in relation to
TMB, with data points standardized for comparison. Pearson correlation coefficients were used to assess the strength of these relationships. (L)Heatmap
depicting the MAF of the overlapping genes across different cancer types. The intensity of the color in each cell represents the frequency of minor alleles,
with deeper hues indicating higher frequency. Each cell corresponds to a specific gene-cancer type combination, derived from extensive cancer
genomics studies. The statistical significance of the MAF data was determined using chi-square tests.
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FIGURE 6
Comprehensive Analysis of Promoter Methylation, Gene Expression Correlation, Pathway Activity, and Enrichment Analysis in Various Tumors. (A)
Heatmap showing differences in promoter methylation levels across multiple cancers. Each row represents a specific gene, while each column indicates
a type of cancer. Red represents higher promoter methylation levels in tumor tissues compared to normal tissues, while blue indicates lower promoter
methylation levels in tumor tissues. (B) Heatmap illustrating the correlation between promoter methylation levels and mRNA expression in distinct
cancers. Each row represents a gene, and each column indicates a type of cancer. Red indicates a positive correlation between promoter methylation
levels and gene expression, while blue indicates a negative correlation, highlighting the complex relationship between methylation and gene expression.
(C–F) Boxplots depicting pathway activity Z-scores in tumor tissues versus normal tissues across various cancers. The vertical axis lists different types of
cancer, while the horizontal axis represents pathway activity Z-scores. Wilcoxon Rank Sum Tests were used to assess statistical significance when
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unfolded protein response, and epithelial to mesenchymal transition
(EMT), among others.

Correlation of overlapping gene expression
with immune cell infiltration andminor allele
frequency across cancers

In this study, we conducted a comprehensive pan-cancer analysis of
the relationship between the expression levels of key overlapping genes
across various cancer types and immune cell infiltration, TMB, and
MAF, highlighting the crucial roles of these overlapping genes. Using
heatmaps, radial plots, and MAF heatmaps generated by CIBERSORT,
we systematically evaluated these relationships. The heatmaps
presented in Figures 5A–J show significant correlations between the
expression levels of key genes (ACE, CCL2, COL1A1, COL5A1, F2,
IFNG, IL1B, IL6, IL10, MPO, PRL, and REN) and immune cell
infiltration levels, including B cells, CD8+ T cells, regulatory T cells
(Tregs), natural killer (NK) cells, macrophages, immature dendritic cells
(iDC), activated dendritic cells (aDC), and mast cells. Our findings
provide strong evidence of the association between gene expression and
immune cell infiltration from a pan-cancer perspective. To illustrate the
expression patterns of these TMB-associated overlapping genes across
cancer types, radial plot analysis revealed a bimodal distribution of
TMB-related gene expression levels, suggesting their potential role as
regulatory factors in cancer mutation processes (Figure 5K).
Additionally, the heatmap in Figure 5L shows the MAF of these
overlapping genes across different cancer types, with observed MAF
differences potentially reflecting the heterogeneity of genetic alterations
and selective pressures encountered in tumorigenesis. Overall, this study
reveals critical insights into the genetic and immunological
characteristics of cancer, suggests potential biomarkers for cancer
detection and prognosis, and highlights molecular mechanisms that
may drive tumor progression.

Pathway analysis in various tumors

An integrated analysis of promoter methylation and its
correlation with gene expression, alongside pathway activity and
enrichment, can yield valuable insights into tumorigenesis across
different cancers. Heatmaps presented in Figure 6A illustrate the
varying levels of promoter methylation among multiple cancer
types, with red indicating significantly higher methylation and
blue indicating substantially lower methylation when comparing
tumor tissues to normal tissues. In Figure 6B, we plot promoter
methylation levels against mRNA expression, where red represents a
positive correlation and blue indicates a negative correlation,
highlighting the complex interplay between methylation and gene

expression. Subsequent boxplots (Figures 6C–F) present pathway
activity Z-scores in tumor tissues versus normal tissues across
different cancers, with the Wilcoxon Rank Sum Test employed to
assess statistical significance. These plots reveal significant
differences in pathway activity between tumor and normal
tissues, with distinct patterns observed in specific cancer types.
Figure 6G offers a scatter plot of KEGG pathway enrichment
analysis, where the color gradient from yellow to blue represents
the level of significance, and the size of each dot reflects the
proportion of enriched genes within each pathway. This analysis
identifies critical pathways that are highly enriched in tumors,
providing potential targets for therapeutic intervention.
Furthermore, Figure 6H displays a radial plot of GO
enrichment analysis.

Anti-inflammatory and antioxidative effects
of DHA and EPA on LPS-stimulated RAW
264.7 cells and cancer cells

This study evaluated the antioxidative and anti-inflammatory
effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid
(EPA) on LPS-stimulated RAW 264.7 macrophages and various
cancer cell lines, demonstrating a marked reduction in oxidative
stress, inflammatory cytokine expression, and cancer cell
proliferation. Flow cytometry analysis revealed that both DHA
and EPA significantly reduced ROS levels in LPS-stimulated
RAW 264.7 cells (Figure 7A). Compared to the LPS-only group,
cells treated with DHA and EPA exhibited notably lower ROS levels.
Immunofluorescence staining was employed to assess the expression
of IL-6 and IL-1β in RAW 264.7 cells. In the DHA + LPS and EPA +
LPS treatment groups, IL-6 expression was significantly reduced
compared to the LPS-only group (Figure 7B). Similarly, DHA and
EPA treatments decreased IL-1β expression, a key pro-inflammatory
cytokine, as indicated by reduced red fluorescence (Figure 7C).
These findings suggest that DHA and EPA effectively suppress
LPS-induced inflammatory responses at the cellular level. The
effects of DHA and EPA on cancer cell proliferation were
evaluated using colony formation assays in various cancer cell
lines (LNCaP, HCT116, HepG2, and A549). Compared to the
untreated control group, cells treated with DHA and EPA
showed a marked reduction in colony formation, indicating a
significant inhibitory effect on cancer cell proliferation
(Figure 7D). This finding implies that DHA and EPA may
possess anticancer properties by inhibiting cell growth.
Immunofluorescence analysis also examined the nuclear
translocation of SUMO1, a protein involved in stress response
pathways, under inflammatory conditions. In the LPS-stimulated
group, there was a notable increase in SUMO1 nuclear localization

FIGURE 6 (Continued)

comparing tumor and normal tissues. (G) Scatter plot displaying KEGG pathway enrichment analysis. The color gradient from yellow to blue
represents the level of significance, with yellow being more significant. The size of each dot corresponds to the fraction of enriched genes within each
pathway, highlighting the degree of enrichment and identifying critical pathways involved in tumorigenesis. (H) Radial plot illustrating Gene Ontology
(GO) enrichment analysis. The radius of each sector represents the negative log10 of the adjusted p-value, with larger sectors indicating higher levels
of enrichment. The gray circlemarks the position where the adjusted p-value equals 0.05. This plot emphasizes themost significantly enriched GO terms,
providing insights into the molecular functions and biological processes that are critically altered in cancer.
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(Figure 7E). Treatment with DHA and EPA resulted in reduced
SUMO1 nuclear translocation, suggesting that these fatty acids may
modulate stress-related post-translational modifications, further
enhancing their anti-inflammatory effects. In conclusion, these
findings indicate that DHA and EPA exert antioxidative and
anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by
reducing ROS production and downregulating pro-inflammatory
cytokine expression. Their ability to inhibit cancer cell proliferation
and regulate SUMO1-associated nuclear translocation highlights
their potential therapeutic applications in managing
inflammation and cancer.

Discussion

In this study, we utilized two-sample Mendelian randomization
to investigate the causal relationship between metabolites and PH

(Alhathli et al., 2023; Wang et al., 2021). Our analysis identified
57 metabolites that are significantly and causally associated with PH.
Notably, piperidine, glucuronide, and N-lactose-valine were
positively correlated with PH, while scoparone (C26) and
docosahexaenoic acid (DHA) exhibited negative associations with
PH (Re et al., 2023). These findings underscore the metabolic basis
of PH and suggest pathways that may contribute to its pathogenesis.
Additionally, our pan-cancer genomic analysis uncovered
substantial alterations in copy numbers, methylation patterns,
and TMB of ASOH genes associated with both PH and various
malignancies. Key genes, including IL6, IL1B, and COL1A1,
emerged from GSEA and tumor prediction analysis, highlighting
the broad relevance of these genomic alterations across diseases.

In this study, we strengthen our understanding of the directional
relationships between specific metabolites and the pathogenesis of
PH, underscoring their substantial impact on modulating PH risk
(Astore and Gibson, 2024; Choudhury et al., 2021). The substantial

FIGURE 7
Effects of DHA and EPA on Oxidative Stress, Inflammatory Cytokine Expression, and SUMO1 Nuclear Translocation in RAW 264.7 Cells and Cancer
Cell Lines. (A) Flow cytometry analysis of reactive oxygen species (ROS) levels in RAW 264.7 cells treated under different conditions: Control, LPS-
stimulated (LPS), LPS + DHA, and LPS + EPA. The x-axis represents “ROS Intensity (Arbitrary Units),” and the y-axis indicates “Cell Count.” DHA and EPA
treatments significantly reduced ROS levels in LPS-stimulated cells, demonstrating their antioxidative effects. (B) Immunofluorescence staining for
IL-6 in RAW264.7 cells under the following conditions: Control, LPS, LPS +DHA, and LPS + EPA. Both DHA and EPA treatments significantly inhibited LPS-
induced IL-6 expression, indicating an anti-inflammatory effect. (C) Immunofluorescence staining of IL-1β in RAW 264.7 cells under Control, LPS, LPS +
DHA, and LPS + EPA conditions. IL-1β appears in red, with DAPI-stained nuclei in blue. Merged images demonstrate intracellular IL-1β localization.
Treatment with DHA and EPA reduced LPS-induced IL-1β expression, further supporting their anti-inflammatory properties. (D) Colony formation assay
images showing the clonogenic potential of cancer cell lines (LNCaP, HCT116, HepG2, and A549) after treatment with DHA and EPA (300 μM) compared
to untreated controls. DHA and EPA treatments resulted in amarked decrease in colony formation across all cell lines, suggesting their potential to inhibit
cancer cell proliferation. (E) Immunofluorescence analysis of SUMO1 nuclear translocation. This reduction in SUMO1 nuclear translocation suggests that
DHA and EPA may modulate post-translational modifications involved in stress response pathways.
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overlap in metabolically regulated genes—such as IL6, IL1B, and
COL1A1—in lung epithelial cells associated with PH and all
published cancer analyses (where metabolites were elevated)
suggests shared mechanisms linking transcriptional changes to
genomic alterations (Thakur and Chen, 2019; Ibrahim and
Muhammad, 2020). The identification of 57 metabolites causally
linked to PH significantly enhances our understanding of its
metabolic pathogenesis. Moreover, phenolic compounds found in
lentils possess long-lasting antioxidant properties, allowing them to
effectively reduce symptoms of PH by decreasing oxidative stress
(Xia et al., 2023; Park et al., 2024; Żuchowski et al., 2021). This aligns
with studies on the influence of arsenic sulphide on the spread of
cancer to other parts of the body through the HIF-1α/VEGF
pathway, emphasizing comparable connections between
substances produced during metabolism and changes in the
genes in pulmonary hypertension (Lu et al., 2023). The study of
exercise-induced biomarkers and their relationship with PH offers a
new viewpoint on non-pharmacological therapies and their
processes (Yau et al., 2016; Reis, 2020). Our research elucidates
the roles of DHA and EPA in regulating ROS production and
inflammatory cytokine expression, both of which are pivotal in
improving endothelial function and mitigating vascular
inflammation associated with PH.

The presence of metabolites such as the glucuronide of
piperidine and N-lactoyl-valine demonstrates a positive
association with the progression of PH pathophysiology,
suggesting their potential role in exacerbating the condition.
Conversely, the negative associations with metabolites such as
scoparone and DHA suggest that these compounds may function
as protective agents and hold potential as therapeutic targets (Li
and Zhao, 2020; Chen et al., 2020). These findings are consistent
with previous research emphasizing the role of metabolic
dysregulation in cardiovascular diseases, while extending this
focus specifically to PH (Chan and Rubin, 2017; Harvey and
Chan, 2017). Additionally, the pan-cancer analysis provides
critical insights into genomic alterations associated with the
overlapping genes identified (Gröbner et al., 2018; Murphy
et al., 2016; Pleasance et al., 2020). Notably, the observed
changes in copy number, methylation patterns, and TMB
profiling are interconnected, highlighting their essential role in
understanding both cancer development and evolution
(Thomson et al., 2017; Chen C. et al., 2022). This supports the
hypothesis of a shared inflammatory etiology between PH and
various cancer types, particularly through genes such as IL6 and
IL1B that are strongly associated with inflammation and immune
responses (Naugler and Karin, 2008; Taniguchi and Karin, 2014).
Furthermore, collagen genes like COL1A1 and
COL5A1 emphasize the involvement of extracellular matrix
remodeling in both conditions (Dzobo et al., 2012; Machol
et al., 2022). DHA and EPA significantly alleviate vascular
inflammation and remodeling, which may be related to the
regulation of PPAR and NF-κB pathways, ultimately helping
to improve pulmonary vascular function (Łacheta et al., 2019).
Some fatty acids such as DHA and EPA can downregulate pro-
inflammatory cytokines that promote tumor growth, which may
improve the effectiveness of conventional treatments such as
chemotherapy and radiotherapy (Silva et al., 2015). In addition,
DHA and EPA can serve as adjunctive therapies for cancer

treatment. Combining these omega-3 fatty acids can help
improve patients’ quality of life by reducing chemotherapy
related side effects and enhance overall treatment efficacy by
regulating inflammatory responses (Silva et al., 2015). DHA and
EPA have the potential to serve as dietary supplements to support
immune function and alleviate cachexia, a common complication
in cancer patients (Szlendak and Kapała, 2024). This is consistent
with several studies suggesting that signaling networks, such as
the APC/Wnt/β-catenin pathway, are crucial in cancer,
corroborated by our findings on genetic changes occurring in
PH (De Jesus Perez et al., 2012; Billmann et al., 2018). These
results underscore the importance of a holistic approach for
studying and treating this complex disease (Chen et al., 2023;
Hiremath et al., 2022; Li et al., 2023), emphasizing the significant
impact of the microenvironment on tumor development and
progression (Mei et al., 2024; Wan et al., 2024).

While this study is comprehensive, it still have limitations.
The utility of MR analysis for causal inference can be affected by
the reliability and accessibility of genetic instruments (LaPierre
et al., 2023; Slob and Burgess, 2020). The findings may also be
complicated by pleiotropy, where genetic variants influence
multiple traits. Additionally, biases arising from specific
cohorts or datasets can lead to selection bias and limit the
generalizability of the results. Conclusions derived from
single-cohort-based GWAS data may have restricted
applicability. Variability in genetic associations across different
populations may lead to confounding. It is crucial to recognize
and address limitations inherent in MR research, such as
pleiotropy, which can confound the analysis. Employing
sensitivity analyses and robust genetic instruments could
improve methodological transparency. In addition, measuring
exposure such as metabolite levels, may result in attenuation of
causal estimates, thereby affecting the strength of associations
observed. Despite the pan-cancer study’s breadth, it may not
capture all genetic changes due to cancer heterogeneity (Tan
et al., 2015; Raynaud et al., 2018; Nakamura et al., 2020). Future
research should replicate these findings in larger, more diverse
populations to deepen our understanding of the underlying
mechanisms (Melamud et al., 2020; Frank et al., 2006).

Our findings resonate with earlier studies that established the
significant role of metabolites in cardiovascular diseases and
cancer, suggesting that metabolic factors influence disease
progression and severity (Ussher et al., 2016; Wang and Zhao,
2018). Our integrative approach, combining MR and pan-cancer
analysis, uniquely elucidates the interconnected relationship
among metabolites, PH, and genomic perturbations,
distinguishing it from prior studies focused on specific
diseases (Zhong et al., 2022; Pocza, 2012). This research
carries substantial implications for clinical practice and future
research directions. Understanding the roles of specific
metabolites in PH may facilitate the development of targeted
therapeutics aimed at regulating these metabolic pathways
(Kaddurah-Daouk et al., 2014). The pan-cancer analysis also
identified genomic aberrations that could serve as biomarkers for
early cancer detection and prognosis, potentially leading to new
therapeutic interventions (Ding et al., 2019; Ibrahim et al., 2022).
For instance, network pharmacology and molecular docking
studies have explored the mechanisms of white peony
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medicinal herb in treating lupus nephritis (Cao et al., 2023).
Subsequent studies have demonstrated the impact of HER2 on
bladder cancer cell properties, revealing its contributory role in
bladder cancer progression and clinical outcomes (Li et al., 2024).
Additionally, PRMT5 has emerged as a key mediator of AKT’s
oncogenic activity through methylation, promoting tumor cell
metastasis, and targeting PRMT5 shows promise for cancer
therapy (Huang et al., 2022). Thus, this integrative approach
is powerful, particularly when considering both metabolic and
genetic factors in disease processes (Allum and Grundberg, 2020;
Barroso and McCarthy, 2019). By integrating several
investigations, a thorough comprehension of the connections
between metabolic pathways and cancer genomes is achieved,
therefore opening up possibilities for tailored treatments focused
on metabolism for PH (Bi et al., 2021; Gómez-Cebrián et al.,
2022; Le et al., 2019). By combining state-of-the-art
advancements and techniques, such as the application of
ultrasound to study non-invasive brain-machine interfacing,
there is potential to significantly transform the methods used
for diagnosing and treating PH (Jones and Hynynen, 2019). The
therapeutic implications of pharmacological drugs and the
comprehension of drug mechanisms are crucial (Cracowski
et al., 2022). Furthermore, examining the significance of trace
elements in the diagnosis of atherosclerosis provides fresh
perspectives on potential biomarkers for diagnosis and targets
for treatment in pulmonary hypertension (Meng et al., 2023;
Prashar et al., 2017; Bargieł et al., 2021).

Our research found that DHA and EPA suppress oxidative stress
and inflammatory responses in LPS-stimulated RAW 264.7 cells and
cancer cells, reducing nuclear translocation of SUMO proteins
commonly associated with inflammation. SUMOylation is a
critical protein modification process that typically plays a key
role in cellular responses to stress and inflammation (Guo and
Henley, 2014). When cells experience oxidative stress or
inflammatory stimuli, SUMOylated proteins may translocate to
the nucleus to enhance the expression of stress-response-related
genes (Pascual et al., 2005). However, if DHA and EPA can mitigate
inflammation and oxidative stress, this nuclear translocation activity
of inflammation-associated SUMO proteins would decrease
accordingly, potentially reducing the persistence and intensity of
inflammatory responses. In Alzheimer’s disease research, Chen et al.
were the first to reveal the role of SUMOylation in regulating
neuroinflammation, particularly through SUMO modification of
the insulin-like growth factor 1 receptor (IGF1R) in influencing
neuroinflammation (Chen et al., 2024a). Additionally, appropriately
controlling the nuclear translocation of CRM1-mediated
SUMOylated PKM2 protein can significantly reduce
neuroinflammation and improve cognitive function (Chen et al.,
2024b). Although this finding requires further investigation, it
provides potential insights into developing new neuroprotective
strategies. Similarly, SUMOylation can modulate the activity of
key transcription factors (such as NF-κB and STAT1) in
inflammatory signaling pathways, thereby reducing or enhancing
inflammatory responses (Parra-Peralbo et al., 2021). For instance, in
murine models, inhibiting NF-κB SUMO modification significantly
reduces inflammatory responses, decreasing the release of pro-
inflammatory factors like IL-6 and IL-1β (Yang et al., 2021;
Decque et al., 2016). This inhibition may achieve anti-

inflammatory effects by reducing NF-κB nuclear translocation,
providing theoretical support for the anti-inflammatory
mechanisms of DHA and EPA. SUMOylation also exhibits an
important dual role in cancer, potentially promoting tumor
progression or inhibiting it by regulating specific pathways. For
example, SUMOylation can regulate the activity of tumor
suppressor factors such as p53 and HIF-1α, thereby influencing
apoptosis and tumor progression (Lee et al., 2017). Some anticancer
drugs, such as SUMO E1 inhibitors like TAK-981, are being
investigated to suppress the abnormally increased SUMO activity
in cancer cells, thereby inhibiting cancer cell proliferation by
affecting the nuclear translocation of tumor-related genes
(Kukkula et al., 2021). As anti-inflammatory and antioxidant
agents, DHA and EPA may act through similar mechanisms,
showing promising applications in suppressing inflammation,
enhancing cellular function, or exhibiting anti-tumor properties.

These research findings significantly enhance the clinical
understanding of PH and its connection with cancer, advancing
the current knowledge of the pathophysiological mechanisms
linking these two conditions. On one hand, this study offers
crucial insights for developing early diagnostic techniques or
biomarkers to detect PH in cancer patients, which could lead to
earlier intervention and improved patient management. On the
other hand, these findings open up potential therapeutic avenues
by identifying novel targets and approaches for treating PH within
the cancer context, promising to improve overall patient outcomes.
DHA and EPA demonstrate substantial potential in alleviating
oxidative stress and inflammation, showcasing therapeutic
relevance in clinical settings. This study elucidates the molecular
mechanisms through which these fatty acids exert their effects,
including clinical trials assessing DHA and EPA’s efficacy in
specific cancer types. These trials provide alternative therapeutic
options and tailored treatment strategies for patients. Future studies
should prioritize validating these findings through experimental and
clinical trials to substantiate their therapeutic applications. Further
exploration of the pathways connecting metabolites with PH and
cancer could reveal novel therapeutic targets. Incorporating multi-
omics approaches, such as proteomics and transcriptomics, into
pan-cancer studies will provide a more holistic view of disease
processes, offering deeper insights into pathogenesis.

Conclusion

This study sheds new light on the metabolically driven causative
linkages in PH, as well as the pan-cancer genomic landscape of
overlapping genes. The researchers integrated findings from
Mendelian randomization studies and pan-cancer data to identify
key factors related to metabolism and genetic changes that may serve
as potential treatment targets or biomarkers. By tailoring
intervention measures based on individual biomarker
characteristics, clinicians can improve treatment outcomes and
reduce adverse reactions, thereby improving patient prognosis.
Future research could focus on validating identified metabolite
biomarkers in well-defined clinical cohorts. To ensure the
robustness of the research results, it is recommended to conduct
multicenter clinical trials to enhance the generalizability of the
efficacy of biomarkers for different populations and cancer types.
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