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Staphylococcus aureus is an important pathogen due to its ability to form strong
biofilms and antibiotic resistance. Biofilms play an important role in bacterial
survival against the host immune system and antibiotics. Natural compounds
(NCs) have diverse bioactive properties with a low probability of resistance,
making them promising candidates for biofilm control. NC such as curcumin,
cinnamaldehyde, carvacrol, eugenol, thymol, citral, linalool, 1,8-cineole, pinene,
cymene, terpineol, quercetin, and limonene have been widely utilized for the
inhibition and destruction of S. aureus biofilms. NCs influence biofilm formation
through several procedures. Some of the antibiofilm mechanisms of NCs are
direct bactericidal effect, disrupting the quorum sensing system, preventing
bacteria from aggregation and attachment to surfaces, reducing the microbial
surface components recognizing adhesive matrix molecules (MSCRAMMs),
interfering with sortase A enzyme, and altering the expression of biofilm-
associated genes such as icaADBC, agr, and sarA. Furthermore, these
compounds affect extracellular polymeric substances (EPS) and their
components, such as polysaccharide intercellular adhesin (PIA) and eDNA.
However, some disadvantages, such as low water solubility and bioavailability,
limit their clinical usage. Therefore, scientists have considered using
nanotechnology and drug platforms to improve NC’s efficacy. Some NC, such
as thymol and curcumin, can also enhance photodynamic therapy against S.
aurous biofilm community. This article evaluates the anti-biofilm potential of NC,
their mechanisms of action against S. aureus biofilms, and various aspects of their
application.
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Introduction

Staphylococcus aureus is a bacterium that forms biofilms widely
linked to infections acquired in community and hospital settings
(Mastoor et al., 2022). The bacterium’s capacity to build biofilms
restricts the effectiveness of antimicrobial drugs, heightening the
infection’s severity and potentially exacerbating the disease’s
consequences (e.g., cystic fibrosis), presenting a significant clinical
obstacle (Ramasamy et al., 2017b).

The ability of S. aureus to attach firmly to both natural and
abiotic surfaces is attributed to the presence of proteins that facilitate
adhesion to host tissues and surfaces. As a result, it produces
biofilms that are both mechanically and chemically resilient
(Ramasamy et al., 2017a). A key characteristic of this bacterium
is its high concentration of microbial adhesionmolecules, referred to
as Microbial Surface Component Recognizing Adhesive Matrix
Molecules (MSCRAMMs). Intracellular adhesion (IcaA),
clumping factors A and B (ClfA and ClfB), collagen-binding
adhesion (cna), fibronectin-binding proteins (fnb), and other
similar proteins are types of adhesion proteins (Simpson et al.,
2004). Notably, while several factors affect the formation of biofilms
in S. aureus, polysaccharide intercellular adhesins (PIA) expressed
by the ica operon have the main impact (Mastoor et al., 2022).

A biofilm is a complex network of closely packed, membrane-
like structures created by bacteria that attach to a surface and release
a matrix of polysaccharides, fibrin, lipid proteins, and other
substances (Xu et al., 2022). Intricate aggregation of extracellular
polymers on the biofilm surface results in a complex and organized
overall structure that successfully safeguards the stability of the
biofilm on the carrier surface. Full eradication of biofilm using
conventional methods is often challenging (Srinivasan et al., 2008).
Bacterial biofilms enable survival in hostile conditions and
frequently exhibit resistance to drugs and human defenses,
therefore playing a role in developing persistent illnesses (Kim Y.
et al., 2022). Specifically, avoiding the development of harmful
biofilms on food and surfaces, especially those of medical
equipment, is immensely significant. Multiple processes
contribute to the antimicrobial resistance of biofilms, including
decreased antibiotic penetration, varying growth rates of bacterial
cells, nutritional gradients within the biofilm, and the existence of
latent variations (persister phenomena) that are highly resistant to
antibiotics. The presence of antibiotics triggers additional
mechanisms contributing to the antimicrobial resistance of
biofilm. These mechanisms include the production of unique
antibiotic-resistance genes specific to biofilm and mutational
processes (Kot et al., 2019).

In addition to being resistant to β-lactam antibiotics,
methicillin-resistant S. aureus (MRSA) strains frequently exhibit
resistance to other widely used antibiotic groups, including
aminoglycosides, fluoroquinolones, macrolides, tetracycline, and
chloramphenicol (Kot et al., 2020). The constrained therapeutic
alternatives for MRSA infections lead to elevated mortality rates and
escalated budgetary burdens. Consequently, novel approaches, such
as nanoparticles (NPs), bacteriophages, enzymes, and natural
compounds, have garnered more interest. Natural compounds,
such as botanical extracts, oils, and their derived chemicals, have
demonstrated efficacy against various microorganisms and have
been employed to fight against diseases and infections (Mastoor

et al., 2022; Kargaran et al., 2024). A diverse range of secondary
metabolites, primarily phenols or their oxygen-substituted
derivatives, created by several medicinal plants exhibit a broad
spectrum of antibacterial properties (Nostro et al., 2015).

Recent studies have shown that certain natural chemicals,
including curcumin, cinnamaldehyde, eugenol, carvacrol, and
thymol, not only prevent the production of biofilms but also
remove fully developed biofilm formations (Doke et al., 2014;
Rangel et al., 2018). Moreover, the concurrent administration of
antibacterial medications and various natural compounds can serve
as a highly efficient approach to addressing prevalent bacterial
infections owing to its heightened potency and efficacy,
diminished drug toxicity, optimized dosages, and decreased
probability of acquiring resistance strains (Ushimaru et al., 2012).
Therefore, this study focuses on the interactions between natural
compounds and biofilm communities of S. aureus, as well as
different pharmacological platforms utilized to enhance the
effectiveness of natural compounds against this bacterial
biofilm community.

Carvacrol

Carvacrol, scientifically also referred to as 2-methyl-5-(1-methyl
ethyl)-phenol, is a monoterpene phenol found in the essential oils of
several Lamiaceae species such as Thymus, Origanum, Thymbra,
Satureja, and Coridothymus. It has been determined that Origanum
vulgare contains the greatest quantity of carvacrol (Baser, 2008;
Aprotosoaie et al., 2019). This compound is categorized as Generally
Recognized as Safe (GRAS) by the U.S. Food and Drug
Administration (FDA), and it is used as a flavoring agent in
sweets, beverages, and chewing gum (Center for Food and
Applied, 2006; Burdock, 2009). The broad-spectrum antibacterial
activity and biofilm inhabitation capacity of carvacrol have been
extensively investigated (Dorman and Deans, 2000; Inouye et al.,
2001; Burt, 2004; Nostro et al., 2015). In this regard, recently
published studies have demonstrated the anti-biofilm effect of
carvacrol against S. aureus (Nostro et al., 2007; Burt et al., 2014;
García-Salinas et al., 2018; Peng et al., 2018; Mouwakeh et al., 2019;
Kostoglou et al., 2020; Walczak et al., 2021; Li et al., 2022b). For
example, in one study, 4–8 μg/mL of carvacrol inhibited S. aureus
biofilm formation (Peng et al., 2023).

Carvacrol interacts with the lipid bilayer of the bacterial
cytoplasmic membrane, leading to a disruption of its integrity,
collapse of the proton motive force, extrusion of cellular material,
and a reduction in energy metabolism that affects genetic material
synthesis (Ben Arfa et al., 2006; García-Salinas et al., 2018; Martínez
et al., 2021). Increased membrane damage may hinder the early
bacterial attachment phase and disrupt the normal formation of
biofilms (Nostro et al., 2012a; Nostro et al., 2012b; Kerekes et al.,
2013). In addition, the polar groups present in carvacrol minimize
the contact angle values of the material, resulting in a reduction in
surface hydrophobicity. This phenomenon may subsequently
impact the early stage of bacterial adhesion and undermine
biofilms’ typical formation. An alternative hypothesis is that the
existence of these molecules on the surface decreased the available
space for bacterial invasion (Nostro et al., 2012b). For example, a
study found that adding carvacrol and curcumin improved the
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properties of Poly (Butylene Succinate)-based films. The films
displayed significant antibiofilm activity and reduced biofilm
formation by 8.22%–87.91%. Due to these properties, the authors
suggested that these films can be used in food packaging, medical
and pharmaceutical products, and related applications (Łopusiewicz
et al., 2021).

The biofilm-reducing potency of carvacrol is not necessarily
correlated with its biocidal properties. Experimental evidence has
demonstrated that carvacrol can impede biofilms’ development
without diminishing cell survival. Actually, carvacrol may involve
something opposite to the immediate eradication of bacteria
(Kachur and Suntres, 2020). It was hypothesized that carvacrol
affects the gene coding for quorum sensing (QS). An essential set of
regulatory genes involved in biofilm development include sarA,
agrA, and agrB. AgrA and AgrB are the primary regulatory
molecules of the QS system. Inhibiting their signaling impacts
the maturation phase of the biofilm (Burt et al., 2014; Peng et al.,
2023). The accessory gene regulator (agr) regulates the QS
mechanism and the pathways involved in synthesizing the
exopolysaccharide matrix. At sub-inhibitory concentration,
carvacrol produced inhibitory effects on the expression of sarA
and agrA (Figure1) (Valliammai et al., 2020b; Li et al., 2023;
Martínez et al., 2023; Peng et al., 2023). By regulating agrA,
carvacrol disrupts QS signaling and subsequently influences
biofilm matrix synthesis (Martínez et al., 2023). As a global

regulator of biofilm formation, staphylococcal accessory regulator
A (SarA) upregulates ica operon expression and promotes biofilm
development by binding to the ica promoter (Tormo María et al.,
2005). The icaADBC operon encodes PIA, also known as poly-N-
acetylglucosamine (PNAG), which is a significant component of the
biofilm matrix in S. aureus (Jefferson et al., 2004). PIA/PNAG
primary role is to facilitate intercellular aggregation, enhance
bacterial attachment to the carrier surface, and enable immune
evasion, therefore becoming the determining element in the
adhesive aggregation stage of the biofilm (Peng et al., 2023).

In addition to PIA/PNAG, SarA also controls adhesion proteins
FnbA and FnbB (Fibronectin-binding proteins A and B), which are
essential for the attachment of bacterial cells (Brahma et al., 2019; Kot
et al., 2019; Li et al., 2019; Valliammai et al., 2020b). As a consequence of
the downregulation of SarA, the levels of icaA, icaD, fnbA, and fnbB
were likewise reduced by the administration of carvacrol (Selvaraj et al.,
2020; Alfaiz, 2021; Uc-Cachón et al., 2024). Moreover, carvacrol
interacts with SarA through anionic bonding, subsequently affecting
biofilm matrix synthesis (Selvaraj et al., 2020). Carvacrol also binds to
clumping factor B (ClfB) with high affinity (Alfaiz, 2021). ClfB is an S.
aureus protein that plays a crucial role in biofilm formation by adhering
to host tissues through binding to ligands such as fibrinogen,
cytokeratin 10, and other proteins. It can also act to mediate
bacterial aggregation and thus enhance the ability of the bacteria to
form structured biofilm. Therefore, carvacrol disrupts biofilm

FIGURE 1
The interactions of carvacrol and S. aureus cell in a biofilm community. Carvacrol decreases the expression of the sarA gene. This gene affects the ica
operon and the agr system. (A) By reducing the expression of icaADBC operon and increasing the expression of icaR following the use of carvacrol, the
expression of proteins affecting the production, processing, and release of PIA/PNAG, an essential component of EPS, occurs. Also, reducing the
expression of rbf by carvacrol has a negative effect on the ica operon. As a result, EPS and, subsequently, biofilm formation is affected. (B)Decreased
expression of agr system genes following carvacrol treatment affects the function of the quorum sensing system. In this system, the production,
processing, and release of AIP are done by the proteins of this system, and as a result of these changes, the production of AIP decreases. As a result, the
communication of cells with each other is disturbed, adversely affecting biofilm formation. (C) Also, using carvacrol decreases the expression of fnbA and
fnbB genes. It disrupts the function of ClfB, which results in a decrease in the attachment of bacteria to tissues and disruption in the early stages of
biofilm formation.
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formation in this manner (Wertheim et al., 2008; Abraham and
Jefferson, 2012).

Additionally, carvacrol negatively regulates the expression of the
rbf gene (Martínez et al., 2023). The rbf gene enhances biofilm
formation by stimulating the expression of the icaADBC operon,
which subsequently leads to increased production of PIA/PNAG
(Cue et al., 2009; Cue et al., 2012). Accordingly, by downregulating
the rbf gene, carvacrol affects biofilm formation. An interesting
result of the upregulation of icaR by carvacrol is that this gene
encodes a transcriptional repressor that decreases the expression of
the icaADBC operon, resulting in the suppression of PIA synthesis
(Peng et al., 2023). By inhibiting the expression of icaA, icaB, icaD,
icaC, sarA, fnbA, fnbB, rbf, and agrA, and upregulate icaR, carvacrol
diminishes PIA/PNAG production, impedes bacterial adhesion,
affects bacterial morphology, disrupts QS, and ultimately
destabilizes the biofilm (Peng et al., 2023).

In the end, it is noteworthy to mention that cell death and
decreased bacterial density leads to the reduction in the expression
of QS activation of genes (Gonçalves et al., 2012; Espina et al., 2015;
Gobin et al., 2022). Due to the lower initial bacterial counts, the
concentration of autoinducers (small molecules secreted by bacteria)
decreased. For activation of the QS response, the concentration of
autoinducers exceeded a requisite threshold (Karatan and Watnick,
2009). Carvacrol significantly reduced the Autoinducer-2 (AI-2) of
S. aureus biofilms. This inhibition of AI-2 activity helps reduce
biofilm formation and bacterial virulence in S. aureus (Li
et al., 2020).

The stability of biofilms is attributed to the presence of a matrix
composed of extracellular polymeric substances (EPS) generated by
bacteria. EPS are the primary constituents of bacterial biofilms and
consist of polysaccharides, proteins, and nucleic acids (Krogsgård
Nielsen et al., 2017; Nagaraj et al., 2017). EPS reduction may impact

TABLE 1 Studies that used curcumin-based photodynamic therapy for managing S. aureus biofilm.

Year of
publication

Study model Bacteria Light
source

Outcome References

2018 PDT with CUR MRSA LED (450 nm) The photosensitizer curcumin and blue LED
resulted in the reduction of monospecies

MRSA biofilms

Araújo et al. (2018)

2020 aPDT (CUR and LED light) MSSA and MRSA LED (455 nm) aPDT significantly reduced biofilm viability
for both MSSA and MRSA. MRSA biofilms
were generally more resistant to aPDT than

MSSA biofilms

Teixeira et al. (2020)

2020 PDT with CUR-silica
nanoparticles

Staphylococcus aureus
and Pseudomonas

aeruginosa

Laser light
(460 nm)

CUR-silica nanoparticles as photosensitizers
show a photodynamic inactivation effect

against the biofilm form of S. aureus and P.
aeruginosa

Mirzahosseinipour
et al. (2020)

2021 CUR-mediated PDT VRSA Blue laser
(20 J/cm2)

aPDT significantly reduced preformed VRSA
biofilms

Akhtar et al. (2021)

2021 CUR-aPDT treatment VRSA Blue laser light
(20 J/cm2)

CUR-aPDT-treated VRSA biofilm was nearly
completely eradicated. Also, microbial

biomass and EPS synthesis were reduced

Akhtar and Khan
(2021)

2021 PDT and SPDT with CUR MSSA Blue LED light
(70 J/cm2)

Combining photodynamic and sonodynamic
therapy (SPDT) is a promising approach to

combat S. aureus biofilms

Alves et al. (2021)

2022 AHMSN are used as the
carrier for the

photosensitizer CUR.

S. aureus Blue LED
(450 nm)

Compared with the control group, the number
of viable bacteria in the biofilm was reduced by

37.76%–98.20%

Zhao et al. (2022)

2022 Photosensitizer (CUR) and
irradiation

MRSA LED (450 nm) PDT with CUR significantly reduced the
growth of MRSA biofilm. The PDT group
showed a notable reduction in bacterial

viability

Ribeiro et al. (2022)

2023 PDT with CUR-loaded
alginate microfibers

MRSA Blue LED When exposed to blue light, CUR-loaded
alginate microfibers effectively eradicated the

biofilms

Sharma et al. (2023)

2023 PDI, SDI and SPDI
with CUR

MSSA Blue LED
(35 J/cm2)

All treatments reduced the bacteria’s adhesion
ability, cell metabolism, and total biomass and
generated ROS. SPDI was more effective in S.

aureus inactivation

Alves et al. (2023)

2023 aPDT with CUR-loaded
micelles and free CUR

MRSA and Candida
albicans

LED (450nm,
47m/Wcm2)

Free CUR and CUR-loaded micelles with blue
light decreased the biofilm biomass to 36% and
30% for MRSA and C. albicans, respectively

Trigo-Gutierrez et al.
(2023)

CUR: curcumin. PDT: photodynamic therapy. MRSA: methicillin-resistant Staphylococcus aureus. MSSA: methicillin-susceptible S. aureus. VRSA: vancomycin-resistant S. aureus. aPDT:

antimicrobial Photodynamic Therapy. SPDT: sonophotodynamic therapy. EPS: extracellular polymeric substances. PDI: photodynamic inactivation. SDI: sonodynamic inactivation. ROS:

reactive oxygen species. AHMSN: Amino-modified hollow mesoporous silica nanoparticles.
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the biofilm’s structure and trigger bacterial susceptibility to external
stimuli (Selvaraj et al., 2021). Carvacrol has been found to interfere
with the synthesis of EPS, making the bacterial community more
exposed to environmental threats (Li et al., 2020; Selvaraj et al.,
2020). PIA/PNAG is one of the important components of EPS, and
as previously mentioned, carvacrol can inhibit PIA/PNAG synthesis
(Peng et al., 2023). Another component of EPS is extracellular DNA
(eDNA); carvacrol can also reduce the production of eDNA (Li et al.,
2023). Additionally, carvacrol inhibits the formation of biofilms by
effects on membrane lipids, therefore preventing the buildup of

proteins and stopping the microcolony stage (Knowles et al., 2005;
Nostro et al., 2007; Miladi et al., 2016; Kasthuri et al., 2022).
Furthermore, carvacrol reduces the synthesis of S. aureus slime
(Sethupathy et al., 2017; Kannappan et al., 2019; Selvaraj et al., 2020).
It is important to note that slime synthesis is crucial in biofilm
formation (Daniela et al., 2014). Due to its relatively hydrophilic
nature, carvacrol exhibits the ability to penetrate through biofilms,
which alters their physical stability and destroys the enclosed
bacteria (Ben Arfa et al., 2006; Nostro et al., 2012a; Suntres et al.,
2015; Li et al., 2020). These results prove that carvacrol can disrupt

TABLE 2 Studies utilizing nanoparticles as a delivery platform for various natural compounds to inhibit and eradicate Staphylococcus aureus biofilm.

Year of
publication

Natural
compounds

Drug platforms Strains MIC
(conc.)

MBIC
(conc.)

Outcome References

2020 Curcumin Graphene (Gr)-based
nano-formulation
containing Curcumin
and ZnO-NPs

MRSA 31.25–62.5
(µg/mL)

128–512
(µg/mL)

The drag platform
inhibited the biofilm more

efficiently than
monotherapy with
GrZnO-NCs and
Curcumin alone

Oves et al. (2020)

2020 Limonene Levofloxacin-loaded
limonene-based
nanoemulsion

MRSA 3.12
(mg/mL)

½ MIC Nanoemulsion improved
the eradicating efficacy of
biofilm. The MIC of the
loaded nanoemulgel was
two-fold less than that of

the drug alone

Mehanna et al.
(2020)

2021 Curcumin Encapsulation of
curcumin within a
physiological lipid
matrix of solid lipid
nanoparticles (CSLNs)

S. aureus 64 (µg/mL) 512
(µg/mL)

The synthesized
nanoparticles

demonstrated better
penetration and

interaction with the
biofilm matrix and higher

cell uptake

Sandhu et al.
(2021)

2021 Gallo-tannin A natural polyphenol,
gallo-tannin, is used to
reduce and cap the
Fe2O3 nanoparticles

MDR S. aureus,
E. coli and

Pseudomonas
aeruginosa

500–750
(µg/mL)

½ - 1 MIC GT-Fe2O3 exhibited
efficient antibacterial
properties, inhibited

biofilm formation, and
disrupted bacterial
quorum sensing

Ahmed et al.
(2021)

2024 Curcumin Curcumin-chitosan
magnetic nanoparticles
(Cur-Chi-MNP)

MRSA and MSSA 4.69 and
75 (μg/mL)

9.38 and
37.5
(μg/mL)

The synthesized
nanoparticles showed

antimicrobial activity on
planktonic cells of S.

aureus and inhibited the
biofilm community

Salazar-Sesatty
et al. (2024)

2021 Caffeine Caff-AuNPs S. aureus KCTC
1916

512 (μg/mL) 256
(μg/mL)

The Caff-AuNPs showed
the ability to prevent
biofilm formation and
disperse mature biofilms

Khan et al. (2021)

2022 Coumaric acid
(p-CoA) and gallic

acid (GA)

Rhamnolipid (RHL)-
coated Fe₃O₄
nanoparticles with
p-CoA and GA using
polyvinyl
alcohol (PVA)

MSSA, MRSA and
VRSA

4–32 (μg/
mL)

2–16
(μg/mL)

NPs reduced initial
adhesion and biofilm

formation and
downregulated the icaA

and icaD genes

Sharaf et al.
(2022)

2024 Rutin Rut-CS NPs S. aureus 500–1,000
(µg/mL)

NR ½ MIC of Rut-CS NPs
effectively inhibited the

biofilm formation
(22.5%–37.5%)

Esnaashari and
Zahmatkesh

(2024)

ZnO-NPs, Zinc oxide nanoparticles; MBIC, minimum biofilm inhibitory concentration; MDR, multidrug-resistant; MIC, minimum inhibitory concentration; MSSA, methicillin-susceptible

Staphylococcus aureus; ROS, reactive oxygen species; MRSA, methicillin-resistant Staphylococcus aureus; MBC, minimum bactericidal concentration; VRSA, vancomycin-resistant

Staphylococcus aureus; NP, nanoparticle; NR, not reported; Rut-CS NPs, Rutin-loaded chitosan nanoparticles; Caff-AuNPs, gold nanoparticles using caffeine.
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the biofilm matrix and strengthen the bacterial removal process
(Kasthuri et al., 2022).

Factors such as instability, volatility, and low water solubility
might reduce the antibacterial effectiveness of essential oils and their
components. Additionally, the direct use of carvacrol still faces
restrictions (Hyldgaard et al., 2012; Scaffaro et al., 2018). To this
end, novel approaches have been devised to generate active systems
capable of enhancing the stability and extending the biological
efficacy of carvacrol (Nostro et al., 2015; Scaffaro et al., 2018;
Ayres Cacciatore et al., 2020; Cui et al., 2024). A practical
approach to address this problem is the utilization of liposomes.
Liposomes are sphere-shaped colloidal entities with phospholipid
bilayer membranes and an interior aqueous compartment. They can
encapsulate and regulate vital oil components’ release, enhancing
stability and facilitating their biological effects (Desai et al., 2012; Cui
et al., 2016a; Cui et al., 2016b). In a study, carvacrol and its isomer,
thymol, were encapsulated in liposomes and examined against S.
aureus and Salmonella enterica (Engel et al., 2017). The data
obtained indicate a reduced release rate of encapsulated thymol/
carvacrol. Short-term therapies with free carvacrol and thymol may
be more effective in managing bacterial populations, particularly
against S. aureus. However, due to their long-lasting antibacterial
effects, encapsulated antimicrobials should be considered for
disinfecting surfaces and equipment and using them as food
preservatives (Pan et al., 2014; Cui et al., 2016a; Engel et al.,
2017). In another study, carvacrol was incorporated into
electrospun membranes of poly (lactic acid) (PLA) (Scaffaro
et al., 2018). The progressive liberation of carvacrol from PLA

membranes demonstrated substantial antibacterial efficacy over
144 h, reducing biofilm formation by 92%–96% and 88%–95%
for S. aureus and Candida albicans in single and mixed cultures.
Furthermore, a significant reduction in the number of cells, biomass,
metabolic activity, and vitality of biofilms formed after 24 and 48 h
was shown (Scaffaro et al., 2018). Therefore, as mentioned, the
findings of recently published studies highlighted the potential of
nanobiotechnology, specifically electrospun nanofibrous
membranes, as a viable delivery system for carvacrol. This
technology offers an ecological alternative in developing novel
antibiofilm strategies and shows promise as an agent for
controlling infections associated with S. aureus biofilms. Briefly,
carvacrol disrupts biofilm formation through different mechanisms,
including interference with QS, membrane disruption, inhibition of
bacterial adhesion, matrix penetration, inhibition of EPS
production, and gene expression changes. Therefore, these
manifold effects make carvacrol a potent agent against S.
aureus biofilms.

Curcumin

Curcumin is an orange-yellow pigment found in the rhizome of
Curcuma longa (Borra et al., 2014). Curcumin exhibits a wide range
of therapeutic effects, including antimicrobial, and antiseptic
activities (Prakash et al., 2011; Kunnumakkara et al., 2017; Wang
H. et al., 2019). Curcumin has been shown in recent research to
effectively suppress the development of biofilms, particularly in Gram-

FIGURE 2
Inhibitory effect of natural compounds against different stage of S. aureus biofilm. CN: cinnamaldehyde. *: all of the natural compounds with
detrimental effect against mature biofilm are: Carvacrol-thymol- Cinnamaldehyde, Eugenol, Curcumin, Citral, Linalool, Geraniol, Myrcene, Limonene,
Myrtenyl Acetate, 1,8-Cineole, α-Pinene, Terpinolene, Linalyl acetate, α-Terpineol, Terpinen-4- ol, Tannin, and Ellagic acid.
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TABLE 3 Numerous investigations have utilized diverse natural compounds to hinder and break down the biofilm formed by S. aureus.

Year of
publication

Compounds Bacterial
strains

Source MIC (conc.) Outcome References

2010 Fisetin and esculetin Staphylococcus aureus Purchased from
Sigma-Aldrich

64 and >512 (μg/mL) Both compounds at a
25 μg/mL concentration
significantly reduced
biofilm formation

Dürig et al. (2010)

2011 Citral, geraniol and
myrcene

S. aureus, Escherichia
coli, Streptococcus
agalactiae, Bacillus

cereus and

Compounds of
lemongrass oil

0.15–2.5 (µL/mL)
Myrcene did not
possess antimicrobial
activity

These compounds
suppressed the primary
attachment and biofilm
formation of S. aureus

and destroyed pre-formed
biofilms of this bacterium

Aiemsaard et al.
(2011)

2011 Linalool and linalyl
acetate

S. aureus Purchased from
Pollena Aroma

0.19 (v/v %) These compounds
eradicated biofilm of S.
aureus by up to 90%

Budzyńska et al.
(2011)

2011 α-terpineol and
terpinen-4- ol

S. aureus Purchased from
Pollena Aroma

0.19 (v/v %) These compounds
reduced the biofilm of S.
aureus by up to 90% at
concentrations of 0.38%
and 0.19%, respectively

Budzyńska et al.
(2011)

2012 Proanthocyanidins S. aureus ATCC
35556 and MRSA

Cranberry extracts 0.08–5 (mg/mL) The extracts inhibited
biofilm production with
MBIC between 1.30 and

10 mg/mL

LaPlante et al.
(2012)

2013 Ellagic acid S. aureus and MRSA Purchased from
Sigma Aldrich

100 (μg/mL) Ellagic acid at ½ MIC
inhibited biofilm
formation and also
disrupted pre-formed

biofilms

Bakkiyaraj et al.
(2013)

2014 Citral and
cinnamaldehyde

S. aureus and
Salmonella Enteritidis

Purchased from
Aladdin

0.4–0.8 (mg/mL) The compounds citral
and cinnamaldehyde
showed substantial
inhibition of mixed

biofilm formation, while
citral was found to

decrease the synthesis of
AI-2

Zhang et al. (2014)

2014 Eugenol and citral S. aureus, MRSA and
Listeria

monocytogenes

Purchased from
Sigma-Aldrich

0.06–0.1 (mg/mL) These compounds at
subinhibitory

concentration decreased
bacterial adherence

Apolónio et al.
(2014)

2014 Genistein, resveratrol,
cranberry extract,

protocatechuic acid, and
p-hydroxybenzoic acid

S. aureus Sigma Chemical Co. >2000 (µl/mL) These compounds
showed antibiofilm

activity

Morán et al.
(2014)

2014 Resveratrol MRSA Was isolated from
natural products

350 (μg/mL) This compound can
destroy QS and the
synthesis of capsular
polysaccharides and
surface proteins

Qin et al. (2014)

2015 Citral and limonene S. aureus Purchased from
PubChem

500–5,000 (µL/L) The compounds
inhibited biofilm

formation, and the delay
in cell attachment is
likely one of the key
factors contributing to
their effectiveness

Espina et al. (2015)

(Continued on following page)
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TABLE 3 (Continued) Numerous investigations have utilized diverse natural compounds to hinder and break down the biofilm formed by S. aureus.

Year of
publication

Compounds Bacterial
strains

Source MIC (conc.) Outcome References

2015 Sabinene, α-terpinyl
acetate, bornyl acetate,

limonene

MRSA Compounds of
Chamaecyparis
obtusa EO

0.1–0.4 (mg/mL) C. obtusa EO inhibited
the biofilm formation of

MRSA and the
expression of virulence
factor genes such as sea,

agrA, and sarA

Kim et al. (2015)

2015 1.8-Cineole, methyl
eugenol, and α-terpinyl

acetate

S. aureus Compounds of
Laurus nobilis L

3.91–15.62 (mg/mL) L. nobilis EO inhibited
biofilm up to 70%

Merghni et al.
(2015)

2015 Saponin S. aureus Extract of Camellia
oleifera seeds

94.5 ± 9.7 (μg/mL) The saponin showed
significant biofilm

inhibition and decreased
the eDNA.

Ye et al. (2015)

2016 Thymol, menthol and
1,8-cineole

S. aureus and MRSA Purchased from
Kemika, Sigma-
Aldrich, and Merck

0.250–0.375, 1, and
4–8 (mg/mL)
respectively

Thymol and menthol
showed acceptable anti-
biofilm effects, while 1,8-
cineole had weak activity

against biofilm

Kifer et al. (2016)

2016 Citral and linalool S. aureus Purchased from
Sigma-Aldrich

0.02 and 0.12 (v/v %) Citral and linalool
inhibited the growth of S.

aureus, pre-formed
biofilms, adhesion, and
invasion abilities, and
downregulated the

virulence genes of this
bacterium

Federman et al.
(2016)

2016 Darwinolide MRSA Isolated from the
Dendrilla
membranosa

132.9 (μM) Darwinolide displays an
IC50 value of 33.2 μM
against the biofilm

von Salm et al.
(2016)

2017 p-cymene and
γ-terpinene

S. aureus Purchased from
Sigma-Aldrich and
Acros Organics

64–1,024 (µg/mL) A significant anti-biofilm
activity of EO’s was

noticed

Miladi et al. (2017)

2017 Citral S. aureus Purchased from
Sigma-Aldrich

0.5 (mg/mL) Citral had the property of
inhibiting biofilm
formation and

eliminating biofilm cells

Porfírio et al.
(2017)

2017 α-Tocopherol S. aureus Extracted from
Dicranopteris linearis

>5 (mg/mL) α-Tocopherol affects the
biofilm matrix to disrupt

biofilms

Mawang et al.
(2017)

2018 α-caryophyllene S. aureus ATCC
25923

Produced by Tokyo
Kasei Kogyo Co.

0.507 (mg/mL) This compound showed
good antibacterial and
antibiofilm activity

Peng et al. (2018)

2018 Carvacol, γ-terpinene,
and α-terpinene

S. aureus Compounds of
Thymus daenensis EO

0.0625 (μg/mL) The EO effectively
suppressed the

development of biofilms
by S. aureus

Sharifi et al. (2018)

2018 Thymol, γ-terpinene,
pcymene and
α-terpinene

S. aureus Compounds of
Satureja hortensis EO

0.125 (μg/mL) S. hortensis EO
significantly reduced
biofilm biomass

Sharifi et al. (2018)

2018 1,8-cineole S. aureus and MRSA Purchased from
Huiles & Sens

0.048–3.125 (mg/mL) 1,8-cineole displayed the
potent efficacy against the
development of biofilms
and showed anti-quorum

sensing activity

Merghni et al.
(2018)

2019 Thymoquinone MRSA and MSSA Compound of Nigella
sativa EO

0.0625 (mM) Thymoquinone
effectively reduced the
development of bacterial

biofilm

Mouwakeh et al.
(2019)

(Continued on following page)
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TABLE 3 (Continued) Numerous investigations have utilized diverse natural compounds to hinder and break down the biofilm formed by S. aureus.

Year of
publication

Compounds Bacterial
strains

Source MIC (conc.) Outcome References

2019 Trans-cinnamaldehyde,
terpinen-4-ol, and

thymol

S. aureus, L.
monocytogenes,
E. coli, and

Pseudomonas putida

Purchased from
Sigma-Aldrich

0.25–4 (mg/mL) Significant inhibition of
monoculture biofilms

was seen with
components at ± MIC

concentration

Kerekes et al.
(2019)

2019 Carvacrol, cymene and
thymol

S. aureus Compound of
Satureja montana EO

0.39–0.78 (mg/mL) The EO decreased
bacterial biofilm

formation

Vitanza et al.
(2019)

2020 Citral MRSA Purchased from Alfa
Aesar

200 (µg/mL) Citral exhibits anti-
adherence activity and

also regulates the
expression of biofilm-

associated genes

Valliammai et al.
(2020b)

2020 Citral S. aureus, Candida
tropicalis and

Candida albicans

Extracted from
Cymbopogon
flexuosus EO

0.0156–0.0313 (v/v %) Citral decreased the
biofilm biomass and cell
viability in the biofilm,
interfered with the

adhesive properties, and
disrupted the biofilm

matrix

Gao et al. (2020)

2020 Geranyl acetate,
γ-terpinene, geraniol,

terpinolene,
α-pinene, p-cimene,

and linalool

S. aureus Compounds of
Leptospermum
petersonii EO

1.0 (µg/mL) The EO caused a 79.88%
suppression of the
biofilm formed by S.

aureus

Caputo et al.
(2020)

2020 1,8-cineole, trans-
sabinene hydrate
acetate, globulol,
longicyclene,

terpinolene, and
camphene

S. aureus Compounds of
Eucalyptus gunnii EO

0.5 (µg/mL) This EO caused a 60.17%
suppression of S. aureus

biofilm activity.

Caputo et al.
(2020)

2020 Eucalyptol and α-pinene S. aureus and E. coli Compounds of
rosemary EO

0.5 (mg/mL) This EO strongly inhibits
biofilm formation and
induces morphological
alterations in biofilms

Liu et al. (2020)

2020 4-terpineol and
terpinolene

S. aureus and E. coli Compounds of tea
tree EO

0.25 (mg/mL) This EO was shown to be
highly detrimental to the
developed biofilm and
inhibited induced

morphological biofilm
changes

Liu et al. (2020)

2020 Luteolin S. aureus Obtained from the
Chengdu Pulis

16–64 (µg/mL) Luteolin destroyed the
cell membrane integrity
and inhibited biofilm

formation

Qian et al. (2020)

2020 Linoleic acid S. aureus DSM 1104 Purchased from
Sigma-Aldrich

64 (µg/mL) It showed biofilm
inhibition at sub-MIC

concentrations

Yuyama et al.
(2020)

2020 Carnosol clinical strains of S.
aureus

Purchased from
Sigma-Aldrich

32 to 256 (μg/mL) A reduction in biofilm
development and

preformed biofilm was
observed

Shen et al. (2020)

2020 Tormentic acid S. aureus NCTC 6571 Extract of
Callistemon viminalis

12.5 (µg/mL) It detachment of biofilm
and decreased eDNA and
capsular polysaccharides

Chipenzi et al.
(2020)

2021 Citral MRSA Purchased from
Sigma-Aldrich

5–40 (mg/mL) Citral decreased the
biomass of S. aureus and

Oliveira et al.
(2021)

(Continued on following page)
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TABLE 3 (Continued) Numerous investigations have utilized diverse natural compounds to hinder and break down the biofilm formed by S. aureus.

Year of
publication

Compounds Bacterial
strains

Source MIC (conc.) Outcome References

the expression of the
icaA and icaD genes

2021 β-caryophyllene,
d-limonene, γ-terpinene

S. aureus and MRSA Compounds of
Croton
piauhiensis EO

0.15 and 1.25 (v/v %) The EO showed
antibacterial and anti-
biofilm effects against

S. aureus

Do Vale et al.
(2021)

2021 α-pinene, linalool,
caryophyllene,

germacrene D and
β-eudesmol

S. aureus Compounds of
Teucrium polium EO

15–75 (µg/mL) The EO showed
antibiofilm activity and

synergistic activity
against S. aureus strains

Alarjani and
Skalicky (2021)

2021 Epigallocatechin gallate S. aureus Compound of
Camellia sinensis

7.81–62.5 (μg/mL) Sub-inhibitory
concentrations were able

to inhibit biofilm
production

Knidel et al. (2021)

2021 Piperine S. aureus MTCC 96 NR 1,000 (µg/mL) It inhibited the biofilm
formation and motility
and accumulated ROS in

the bacterial cells

Das et al. (2021)

2021 Gallic Acid S. aureus Purchased from
Sigma–Aldrich

≈100–200 (mg/L) It markedly reduced
bacterial growth, biofilm
formation, biomass, and

EPS levels

Albutti et al.
(2021)

2021 Estragole (methyl
chavicol or tarragon)

S. aureus ATCC
25923

Compound of
Artemisia
dracunculus EO

1.25 (μL/mL) It showed anti-biofilm
and anti-QS activities

Mohammadi
Pelarti et al. (2021)

2022 Borneol and citral S. aureus and
Pseudomonas
aeruginosa

Borneol from
Guangdong
Huaqingyuan, and
Citral from Aladdin
Biochemical

NR Citral and borneol
exhibited promising

anti-biofilm results, and
their combination

significantly enhanced
the anti-biofilm effect

Wang et al. (2022)

2022 Citral and geranial S. aureus,
Staphylococcus

epidermidis, Klebsiella
pneumoniae and

E. coli

Compounds of
Backhousia
citriodora EO

6.25–12.50 (µL/mL) Promising antibacterial
and antibiofilm effects
were observed against the

tested strains

Lim et al. (2022)

2022 Limonene S. aureus and P.
aeruginosa

Purchased from
Sigma Aldrich

20–40 (mL/L) Limonene works well to
inhibit biofilms and
destroys mature
monospecies and

multispecies biofilms

Gambino et al.
(2022)

2022 Linalool, Myrtenyl
acetate, 1,8-cineole, and

α-pinene

P. aeruginosa, S.
aureus, L.

monocytogenes,
E. coli, and

Pectobacterium
carotovorum

Derived from Myrtus
communis L

3–6 (mg/mL) The EO successfully
suppressed the survival
of the cells in the biofilm

and regulated the
metabolic signaling

system

Caputo et al.
(2022)

2022 Luteolin S. aureus Newman
and agrBDC mutant

Purchased from
Dalian Meilun

64 (µg/mL) Luteolin inhibits biofilm
formation and reduces
the transcription of agrA

Yuan et al. (2022)

2022 Luteolin MRSA N315 Purchased from
Aladdin

64 (µg/mL) Luteolin inhibited the
biofilm formation and

promoted the
morphological changes

Sun et al. (2022)

2022 Anthocyanin S. aureus Obtained from
Lycium ruthenicum
Murr

3.125 (mg/mL) It can inhibit the biofilm
formation and damage
the biofilm structure

Dong et al. (2022)

(Continued on following page)
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TABLE 3 (Continued) Numerous investigations have utilized diverse natural compounds to hinder and break down the biofilm formed by S. aureus.

Year of
publication

Compounds Bacterial
strains

Source MIC (conc.) Outcome References

2022 Protocatechuic acid and
p-coumaric acid

S. aureus Compounds of
Hericium
erinaceus (HE)

NR HE exhibited antibiofilm
activities with MBIC =

12.5 mg/mL

Darmasiwi et al.
(2022)

2023 Linalool MRSA and VRSA Purchased from
Sigma-Aldrich

0.5–2 (µg/mL) Linalool showed
antimicrobial and

antibiofilm activities

Abd El-Hamid
et al. (2023)

2023 Carvone and limonene MRSA Derived from Carum
carvi L

0.16 (v/v %) The EO has a substantial
impact on the formation
of MRSA biofilm and

possesses potent
antibacterial properties

Liu et al. (2023)

2023 α-pinene and
α-terpineol

MRSA Compounds of Pinus
koraiensis EO

2 (mg/mL) The EO reduced the
formation of MRSA
biofilms, cell viability,
and the expression of
agrA and sarA genes

Kim et al. (2023)

2023 Squalene, γ-terpinene,
pinene, p-cymene,
caryophyllene oxide

S. aureus Compounds of
Syzygium
malaccense EO

11.7–15 (mg/mL) The inhibition
percentage of biofilm

formation by the strains
was enhanced by
increasing the

concentration of EOs

Salem et al. (2023)

2023 Globulol, pinene,
p-cymene, and
γ-terpinene

S. aureus compounds of
Syzygium
samarangense EO

7.5–11.7 (mg/mL) The EO showed good
dose-dependent

antimicrobial and anti-
biofilm activity

Salem et al. (2023)

2023 Limonene, β-myrcene,
and α-pinene

S. aureus Compound of Citrus
sinensis EO

2.50–3.125 (mg/mL) The EO showed potent
antibacterial and

antibiofilm activity and
significantly reduced cell
adhesion to the surface

Abdel Samad et al.
(2023)

2023 Tannin MSSA and MRSA Isolated from
Penthorum chinense
Pursh (TPCP)

156.25 and
312.5 (μg/mL)

TPCP destroyed
preformed biofilms,

decreased the secretion
of exopolysaccharides
and extracellular DNA,

and regulated the
expression of icaA, sarA,
cidA, sigB, and agrA

Qin et al. (2023)

2023 β-sitosterol, phytol,
stigmasterol, and lupeol

S. aureus Pulicaria crispa
hexane fraction

62.5–125 (µg/mL) The biofilm formation
was reduced by 75.21% at

a 250 μg/mL
concentration

Abo-Elghiet et al.
(2023)

2023 β-ocimene, trans-
geraniol, camphor, and

eucalyptol

MRSA Boesenbergia rotunda
EO (BREO)

4 (mg/mL) BREO inhibited biofilm
formation

Apinundecha et al.
(2023)

2023 trans-sabinene hydrate
and terpinen-4-ol

MRSA Compounds of
Origanum
majorana EO

0.3 (mg/mL) The EO showed a biofilm
inhibition rate of 76.6%

Piasecki et al.
(2023)

2024 α-pinene S. aureus and MRSA The main compound
of Euphorbia EO

50–120 (µL/mL) This EO exhibited
antimicrobial and anti-
biofilm activities and
inhibited bacterial

attachment

Boutoub et al.
(2024)

2024 Chlorogenic acid and
carnosol

XDR S. aureus and P.
aeruginosa

Chlorogenic acid
Purchased from
Merck and carnosol

≥1,024 μg/mL Both compounds
effectively inhibited
biofilm formation

Sheikhy et al.
(2024)
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positive bacteria (Moshe et al., 2011; Batista de Andrade Neto et al.,
2021; Alqahtani et al., 2024). An in vitro study demonstrated that a
100 μg/mL concentration of curcumin successfully inhibits the
development of S. aureus biofilm (Moshe et al., 2011). Noteworthy,
curcumin has the potential to disrupt the structural integrity of the
bacterial cell membrane before the initial stages of biofilm development,
which include the attachment of cells to a surface, the assembly of cells
to form micro colonies, and the maturation of the biofilm into a
cohesive structure (Tan et al., 2019; Pamukçu et al., 2022). Additionally,
curcumin can interfere with the planktonic cells and further inhibit
biofilm reformation (Tan et al., 2019).

The previously published research findings indicated that the
curcumin concentration needed to suppress biofilm formation was
far lower than the dosage needed to suppress S. aureus growth.
Accordingly, the authors proposed that the inhibitory effect of
curcumin on biofilm formation is attributed to its ability to impede
the process of biofilm formation itself rather than its bactericidal
properties (Moshe et al., 2011). Therefore, curcumin has shown good
potential by targeting bacterial adhesion and preventing biofilm
formation. One of the possible mechanisms for this phenomenon is
an interaction of curcumin with enzymes necessary for bacterial
attachment to the host cells. For example, sortase A, an enzyme
essential for the ability to attachment to host tissues, is one of these
enzymes. By inhibiting sortase A, cells cannot bind to cell-matrix
proteins, such as fibronectin, thus curcumin disrupting the process of
adhesion (Park et al., 2005; Loo et al., 2016). Apart from targeting sortase
A, the fnbA gene and clumping factor A (clfA) were downregulated by
curcumin (Khaleghian et al., 2023). FnbA and ClfA facilitate bacterial
aggregation and adherence to host tissues and surfaces by binding to
fibronectin and fibrinogen. This interaction is essential for the initial
stages of biofilm development (Lebeaux et al., 2013; Murai et al., 2016).
Also, curcumin significantly decreases elastin-binding protein (ebp)
expression, which plays a role in the binding of S. aureus to the host
elastin protein and promotes bacterial attachment and invasion (Targhi
et al., 2021). Consequently, curcumin interferes with the attachment of
bacteria during biofilm formation.

Besides anti-adhesion activity, curcumin prevented biofilm
formation by interfering with EPS synthesis. Effective interaction
of curcumin with the biofilm-forming proteins of S. aureus results in
reduced microbial biomass and generation of EPS, which are crucial
for biofilm structure (Akhtar and Khan, 2021; Akhtar et al., 2021;
Gao et al., 2023; Sharma et al., 2023). One of those that curcumin
interacts with to affect biofilm formation is N-acetylglucosaminyl
transferase (IcaD), a protein that produces PIA (Khaleghian et al.,
2023). Additionally, a recently published study reported that
curcumin downregulated the expression of the icaADBC operon
genes (icaA, icaB, icaC, icaD) (Khaleghian et al., 2023). As
mentioned earlier, the icaADBC operon encodes proteins and
enzymes responsible for PIA synthesis. Therefore, by inhibiting
this operon, curcumin interrupts the synthesis of PIA, the
attachment of bacteria to each other and surfaces, and thus
affects the formation and preservation of biofilm (Vuong et al.,
2004). This change makes the biofilm more susceptible to
mechanical removal and the action of antimicrobial agents.

Additionally, curcumin can reduce the expression of some genes
associated with QS and enhance the proliferation of biofilms
(Khaleghian et al., 2023; Sharma et al., 2023). An essential
function of the agr system, which consists of AgrB, AgrC, AgrA,
and AgrD, is to control virulence factors and biofilm development in
S. aureus (Bezar et al., 2019). AgrB and AgrD are responsible for
producing and processing autoinducible peptide (AIP) (Zhang et al.,
2002; Zhang and Ji, 2004). AgrC is a histidine kinase receptor located
in the bacterial cell membrane and detects the presence of AIP in the
environment (Lina et al., 1998). When AgrC is activated, it
phosphorylates AgrA. AgrA then upregulates or downregulates
various target genes (Novick et al., 1995). Recent studies showed
that curcumin downregulated genes responsible for QS, such as
agrA, agrB, and agrC (Khaleghian et al., 2023; Sharma et al., 2023).
Studies have shown that the suppression of agr system is important
for developing biofilms, whereas the activation of the agr system is
crucial for separating biofilms (Boles and Horswill, 2008; Dastgheyb
et al., 2015).

TABLE 3 (Continued) Numerous investigations have utilized diverse natural compounds to hinder and break down the biofilm formed by S. aureus.

Year of
publication

Compounds Bacterial
strains

Source MIC (conc.) Outcome References

identified from Salvia
abrotanoides

2024 Gallic acid MRSA Purchased from
Beijing Solarbio

32 (μg/mL) It significantly inhibited
bacterial adhesion and
aggregation, affecting the
overall structure of the

biofilm

Sang et al. (2024)

2024 β-citronellol and
geraniol

MRSA Extracted from
Pelargonium
graveolens

1.56 (µL/mL) It exhibited anti-adhesive
properties and

demonstrated the ability
to interact with SarA

proteins

Elghali et al.
(2024)

2024 Epigallocatechin gallate S. aureus Sourced from Nagara
Science

NR It reduced biofilm
formation and the

expression of virulence
factor-related genes

Oura et al. (2024)

MSSA, methicillin-susceptible Staphylococcus aureus; AI-2, autoinducer-2; EO, essential oil; MIC, minimum inhibitory concentration; MRSA, methicillin-resistant Staphylococcus aureus; NR,

not reported; VRSA, vancomycin-resistant Staphylococcus aureus; EPS, extracellular polymeric substances; eDNA, extracellular DNA; IC50, half-maximal inhibitory concentration; MBIC,

minimum biofilm inhibitory concentration; ROS, reactive oxygen species.
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Recently published studies have employed the combination of
photodynamic therapy (PDT) and curcumin for S. aureus biofilm
elimination (Table 1). In these studies, curcumin was used as a
photosensitizer (PS) and produced reactive oxygen species (ROS)
such as superoxide radicals and singlet oxygen molecules (1O2)
(Akhtar et al., 2021; Sharma et al., 2023). ROS oxidizes the
biomolecules of microorganisms, resulting in biological damage
and decreasing microbial growth, metabolic activities, microbial
biomass, and bacterial adhesion ability, and considerable changes
in the carbohydrate and protein composition of the extracellular
matrix of S. aureus (Ribeiro et al., 2022; Sharma et al., 2023).
Bacterial cells include ample scavengers, including catalase,
peroxidase, and superoxide dismutase, to counteract the
bactericidal effects caused by free radicals. However, these
scavengers cannot counteract the singlet oxygen molecule,
resulting in extensive cell damage when exposed to 1O2 (Kim
et al., 2001; Akhtar et al., 2021). This oxidative stress can damage
bacterial cells and inhibit their ability to form and sustain biofilms
(Sharma et al., 2023). In addition, the cost of curcumin compared to
other photosensitizers is low (Araújo et al., 2014).

Considerable attempts have been undertaken to enhance the
administration of curcumin (Alemi et al., 2018). For example,
curcumin loaded on chitosan nanoparticles (CSNP) was used to
improve the therapeutic performance of curcumin by increasing its
bioavailability (Ma et al., 2020). CSNPs have attracted significant
attention as a therapeutic carrier because of their biodegradability,
biocompatibility, and freedom from toxicity (Das et al., 2010; Li
et al., 2018). A positively charged CSNP can transport curcumin into
biofilms and induce its release within the biofilm, affecting the cells
therein. However, the inhibitory effect of CSNP-Cur on the biofilm
development of S. aureus bacteria was somewhat weaker than that of
free curcumin. The sustained release of curcumin from CSNP-Cur
led to a reduced concentration and diminished antibiofilm action
(Ma et al., 2020). However, the diffusion of free curcumin into a
preformed biofilm is hindered by the EPS of the biofilm, thereby
diminishing the antibiofilm effects of curcumin. Conversely, CSNP-
Cur demonstrated superior antibiofilm efficacy compared to free
curcumin (Ma et al., 2020). In another study, a niosome was used to
encapsulate curcumin to solve the low solubility and stability issue.
Niosomal curcumin exhibited a 2-4-fold reduction in multi-drug
resistant (MDR) S. aureus biofilm relative to free curcumin
(Khaleghian et al., 2023).

Additionally, in another study, curcumin was encapsulated in
liposomes. In addition to promoting the uptake of this compound in
bacterial cells, liposomes provide regulated release of medications.
Encapsulating curcumin in liposomes halved its minimum
inhibitory concentration (MIC) for S. aureus compared to the
free form, and antibiofilm activity was observed at lower
concentrations (Bhatia et al., 2021). Also, combining curcumin
with metal ions can enhance its properties. Curcumin-based
metallodrugs increase stabilization and improve curcumin’s
bioavailability and solubility (Wanninger et al., 2015). Curcumin
conjugating to RuII–polypyridyl complexes [Ru (bpy)2 (cur)] (PF6)
showed promising results. Its MIC against S. aureus was 1 μg/mL
and reduced the biofilm by 48% at 10 × MIC compared to the
untreated (Srivastava et al., 2019). The aforementioned findings
demonstrate that different drug delivery systems can be employed to
augment the effectiveness of curcumin in suppressing biofilm

formation. Nevertheless, the available data in this field are
currently somewhat restricted, and it is imperative to conduct
more comprehensive studies before the clinical application of
curcumin-based drug delivery systems.

Curcumin has several ways to disrupt S. aureus biofilms,
including inhibiting sortase A activity, interfering with
attachment, changing bacterial surface properties, interacting
with biofilm matrix, and inducing oxidative stress. Together,
these factors diminish the ability of S. aureus to form or protect
its biofilm communities, making them more sensitive to host
defenses and traditional antimicrobial treatments.

Cinnamaldehyde

Cinnamaldehyde is a bioactive compound derived from
cinnamon bark, known for its diverse spectrum of effects,
including anticancer, antifungal, and antibacterial properties. It
has been classified as GRAS by the Flavoring Extract
Manufacturers’ Association and has been authorized by the FDA
for use in food (Nostro et al., 2012b; Xu et al., 2022). In recent years,
scientists have shown interest in utilizing cinnamon and its
derivative components, particularly cinnamaldehyde, to suppress
S. aureus biofilms, in addition to its antibacterial properties (Jia et al.,
2011; Nostro et al., 2012b; Zodrow et al., 2012; Budri et al., 2015;
Nostro et al., 2015; Campana et al., 2017; García-Salinas et al., 2018;
Kot et al., 2018; Mishra et al., 2021; Wang et al., 2021; Kim Y. et al.,
2022; Mastoor et al., 2022).

Cinnamaldehyde blocks ATPase and cell-wall biosynthesis and
alters membrane structure and integrity to suppress bacteria, yeasts,
and filamentous molds (Deng et al., 2018). The results of the Xu et al.
study demonstrated that cinnamaldehyde induced the destruction of
the cell wall of S. aureus and altered the permeability of the cell
membrane, leading to the release of potassium ions, alkaline
phosphatase, protein, and multiple other compounds (Xu et al.,
2022). The results of this study indicated a continual increase in the
extracellular potassium ion content in the bacterial solution treated
with 1 × MIC of cinnamaldehyde, demonstrating the detrimental
effects of this compound on the bacteria (Xu et al., 2022). In line with
these findings, another study proposed that the mechanism by
which cinnamaldehyde acts may be associated with cell death
and/or the deactivation of bacterial virulence factors, regardless
of showing high affinity or not to the non-native penicillin-
binding protein (PBP2a) responsible for S. aureus (Fernandez-
Soto et al., 2023).

In addition to the abovementioned research, several studies have
investigated the molecular interactions between cinnamaldehyde
and S. aureus biofilms. An investigation carried out byMastoor et al.
revealed that the application of α-methyl-trans-cinnamaldehyde and
α-bromo-trans-cinnamaldehyde led to a notable reduction in the
expression of icaA, clfA, and fnbA genes in the isolates that were
treated. Given the crucial function of icaA in biofilm development in
S. aureus, reducing its gene expression in the treated group could
perhaps elucidate the mechanism by which cinnamaldehyde acts
against biofilms (Knobloch et al., 2002). In addition, the adhesin
proteins ClfA and FnbA, along with other MSCRAMMs, facilitate
the early adherence of bacteria to surfaces and are present in all
isolates of biofilm-forming S. aureus. Hence, the reduction in its
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expression offers a valuable understanding of the specific
mechanism by which the chemical inhibits the development of
biofilms (Mastoor et al., 2022). Furthermore, the metabolic
activity of S. aureus in biofilm was considerably reduced when
trans-cinnamaldehyde was present at 1/2 minimum biofilm
inhibition concentration (MBIC). Both the weakly and highly
adherent strains exhibited reduced expression levels of the genes
encoding laminin-binding protein (eno), elastin-binding protein
(ebps), and fibrinogen-binding protein (fib) in the presence of
trans-cinnamaldehyde at 1/2 MBIC compared to the untreated
biofilm. The expression level of icaA and icaD, which are
involved in the manufacture of polysaccharide intercellular
adhesion, was more than half lower in the poorly adhering strain
with the presence of trans-cinnamaldehyde compared to biofilm
without trans-cinnamaldehyde. The findings suggested that trans-
cinnamaldehyde effectively inhibits the attachment of MRSA to key
components of the extracellular matrix, including elastin and
laminin. This inhibition thus hinders the spread of
staphylococcal cells and the onset of colonization in host tissue.
Thus, the authors postulated that trans-cinnamaldehyde shows
potential as an anti-biofilm therapeutic for the treatment of
MRSA biofilm-associated infection (Kot et al., 2019).

Finally, the results of the recently published study demonstrated
that combining cinnamaldehyde and β-lactam antibiotics can
synergistically enhance the activity and sensitivity of clinical
MRSA isolates to β-lactam treatment while preventing MRSA
biofilm formation. Mechanistic investigations revealed that the
potentiating impact of cinnamaldehyde on β-lactams was
primarily due to the suppression of mecA expression via the
targeting of the staphylococcal accessory regulator sarA.
Cinnamaldehyde alone or in combination with β-lactams reduced
the sarA expression and enhanced the SarA protein’s
phosphorylation. This process, in turn, hindered the binding of
sarA to the mecA promoter element and suppressed the expression
of virulence genes, including those responsible for biofilm
formation, α-hemolysin, and adhesin. Impediment of sarA–mecA
interaction disrupted PBP2a production, reducing MRSA resistance
to β-lactams. Moreover, cinnamaldehyde completely reinstated the
anti-MRSA effects of β-lactam antibiotics in live experimental
models of bacteremia and biofilm infections in mice. The authors
asserted that cinnamaldehyde functions as a β-lactam adjuvant and
can be used as an alternate treatment to address multidrug-resistant
MRSA infections (Li J. et al., 2024).

Various drug delivery platforms could be useful in improving
cinnamaldehyde efficacy. Ramasamy et al. proposed that
nanodispersions containing cinnamaldehyde (CNMA) may have
exerted their effects by numerous mechanisms, including the
inhibition of QS, attachment to cell walls facilitated by the
lipophilic character of CNMA, interaction with cytoplasmic
contents, release of CNMA, or induction of protein precipitation.
Crucially, the activity of cinnamaldehyde attached to the surface of
gold nanoparticles (CNMA-GNPs) was significantly higher than
that of free CNMA. This finding provides evidence that
nanodispersions enhance contact with biofilms. The authors also
asserted that the small dimensions of CNMA-GNPs could enable
them to penetrate the protective layers of EPS and effectively
eliminate bacteria. Moreover, the low pH in biofilm
environments can break down nanodispersions and facilitate the

persistent release of CNMA (Ramasamy et al., 2017a; Ramasamy
et al., 2017b).

Recently published studies reported antibacterial and
antibiofilm activity for cinnamaldehyde against S. aureus.
However, the exact interaction of cinnamaldehyde and this
bacterium’s biofilm community is not yet elucidated. Hence,
more confirmatory studies are needed in this field, and the usage
of nanotechnology to improve the clinical usage of cinnamaldehyde
should be considered in future studies.

Thymol

Thymol, also known as 2-isopropyl-5-methylphenol, is a
monoterpene phenol that is widely distributed in several plant
species, including Ocimum gratissimum, Thymus vulgaris,
Thymus ciliates, Carum copticum, Thymus zygis, and Satureja
intermedia (Nagoor Meeran et al., 2017). Thymol is categorized
as GRAS by the FDA for use in foods for human consumption or as
food additives (Jo et al., 2022). Studies have demonstrated the good
antibacterial activity of thymol against various strains of bacteria,
including S. aureus (Aksoy et al., 2020; Nunes et al., 2021).
Furthermore, this compound showed antibiofilm activity against
this bacterium in several studies (Nostro et al., 2007; Kifer et al.,
2016; Peng et al., 2018; Aksoy et al., 2020; Kostoglou et al., 2020; Jo
et al., 2022). For example, in one study, 0.33–0.59 mg/mL of thymol
inhibited 90% of S. aureus biofilm formation (Kifer et al., 2016).

In a discussion on the antibiofilm activity of thymol, the primary
effect is related to its impact on bacterial cell death. Thymol may
induce membrane potential depolarization in S. aureus, impairing
membrane integrity and cellular demise. Consequently, thymol
induces an elevation in NADP + levels and a reduction in
cytoplasmic NADPH and ATP. Such observation suggests the
potential leakage of intracellular constituents and the disturbance
of the physiological equilibrium between NADP+ and NADPH.
Furthermore, thymol caused a substantial rise in the levels of lipid
oxidation throughout the cell membrane (Gómez-Sequeda et al.,
2020; Li et al., 2022a). Biofilms treated with thymol showed
decreased bacteria and viable cells (Yuan et al., 2020; Jo et al.,
2022; Uc-Cachón et al., 2024). In addition, inhibition of bacterial
growth and proliferation is achieved by thymol by modification of
membrane permeability, which disrupts both protein synthesis and
binary fission (Yuan et al., 2020; Walczak et al., 2021). Therefore,
with bacterial cell death, the number of cells required to form a
biofilm decreases, and thus, the early stages of biofilm formation
are disturbed.

As mentioned in the previous part, biofilm formation is initiated
by the adhesion of planktonic microorganisms to surfaces and is
regarded as a critical phase in the development of biofilms. Thymol
significantly reduces the adhesion of S. aureus and thus suppresses
the first stage of biofilm formation (Valliammai et al., 2020a; Jo et al.,
2022). Additionally, thymol decreased the expression of fnbA and
fnbB genes, which reduces the adhesion of S. aureus to the host tissue
(Schröder et al., 2006; Valliammai et al., 2020a).

Biofilms are attached to surfaces by non-specific hydrophobic
bonds. These bonds play an important role in the stability and
adhesion of biofilms (Rouws et al., 2010; Ali Mirani et al., 2018). Any
disruption in these hydrophobic bonds affects the ability of bacteria
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to attach to surfaces (Wojnicz et al., 2012). In this regard, thymol, as
the main compound of Plectranthus amboinicus, affected the
hydrophobicity of the surface of S. aureus, and the surface of
bacterial cells became hydrophilic. These changes can affect the
adhesion and aggregation of bacteria (Sawant et al., 2022).
Therefore, thymol showed anti-adhesion properties that can be
used in medical equipment (Bertuola et al., 2018; Valliammai
et al., 2021). For example, to control the corrosion of AZ31 Mg
alloy as a biodegradable implant and prevent bacterial adhesion, a
polymer layer was developed through thymol electro polymerization
(TOH). The bacterial adhesion on polyTOH-AZ31 was more than
30-fold smaller than the bare AZ31 alloy. Moreover, PolyTOH-
AZ31 increased the effectiveness of antibiotics and inhibited
planktonic growth at half of the MIC of the antibiotic (Bertuola
et al., 2018).

Thymol can decrease the synthesis of PIA/PNAG as the main
components of the EPS matrix in S. aureus biofilms (Valliammai
et al., 2020a; Yuan et al., 2020; Jo et al., 2022; Uc-Cachón et al., 2024).
A recent study indicated that bacteria without PIA/PNAG can
initially attach to biomaterials but cannot develop a biofilm at
later stages due to a significant decrease in cell-to-cell adhesion
(Yuan et al., 2020). Thymol decreased the expression of sarA in S.
aureus and inhibited the expression of other sarA-regulated genes,
such as icaA and icaD (Valliammai et al., 2020a; Yuan et al., 2020;
Valliammai et al., 2021; Kim B. C. et al., 2022). Notably, these genes
significantly affected biofilm formation, and by reducing their
expression, the synthesis of PIA, and consequently the formation
of biofilm, was affected. In addition, thymol inhibited the release of
eDNA, which plays key roles in bacterial adhesion, aggregation,
microcolony formation, and biofilm architecture (Yuan et al., 2020).
Moreover, thymol downregulated the cidA gene in S. aureus (Yuan
et al., 2020). The holin-like protein (CidA) has been shown to
positively increase the release of eDNA during biofilm development
(Rice et al., 2007). Besides, thymol, due to its relative hydrophilic
nature conferred by the free hydroxyl group, can permeate the
polysaccharide matrix of the biofilm and may disrupt it due to its
potent inherent antibacterial attributes (Nostro et al., 2007; Miladi
et al., 2017; Kostoglou et al., 2020).

Like other natural compounds, the strong antimicrobial effect of
thymol is practically limited by its high volatility, insolubility in
water, and weak oxidative stability (Amiri et al., 2024). These factors
restrict its usage in various practical applications. Therefore,
scientists considered the use of new approaches. For instance,
thymol loading in chitosan silver nanoparticles (T-C@AgNPs)
showed excellent antibacterial activity with MIC = 100 μg/mL
against MRSA. Moreover, T-C@AgNPs effectively reduced the
attachment of bacteria and downregulated the transcription of
the Coa, Eap, and SpA exoprotein genes. The decrease in the
mentioned genes indicated a slow binding and a reduction in the
coagulation mechanism (Manukumar et al., 2017). Another study
has developed thymol-loaded chitosan nanogels (Ty-CsNG) against
Gram-negative and Gram-positive MDR bacteria, including S.
aureus. Ty-CsNG reduced the MIC by 4–6 times compared to
free thymol. Moreover, antibiofilm activity and negligible
cytotoxicity were observed (Piri-Gharaghie et al., 2022). Utilizing
these methods leads to improved pharmacokinetic outcomes for
thymol and expands the range of its applications in medicine.
Noteworthy, other studies that used drug-platform to improve

natural compounds efficacy against S. aureus biofilm are
presented in Table 2.

In the end, thymol can also be used in PDT (Wang Z. et al., 2019;
Lu et al., 2021). Thymol acts as a “pro-photosensitizer” and is
oxidized to thymoquinone (TQ) and thymohydroquinone (THQ)
only in bacteria by blue light. The resultant TQ and THQ act as
photosensitizers, enhancing ROS production exponentially and
rapidly killing pathogens (Lu et al., 2021). ROS indiscriminately
damages cellular components, including lipids, proteins, plasma
membranes, and nucleic acids. The 1 × MIC thymol combined
with 75 J/cm2 or 100 J/cm2 blue light could completely remove the
viable biofilms of MRSA (Lu et al., 2021). In conventional PDT
methods, the photosensitizer enters both bacterial and mammalian
cells, generating ROS in both cell types, and posing safety and
efficacy challenges. In contrast, thymol as a pro-photosensitizer is
only converted to an active photosensitizer in bacteria, and thus, it
has higher safety and therapeutic properties. It has the potential for
application in topical therapy and biofilm-related treatments,
preventing subsequent bacterial invasion or dissemination
without causing any adverse effects on the host cells (Lu et al., 2021).

Ultimately, how thymol can suppress the formation of S. aureus
biofilm includes bacterial death before biofilm formation, inhibiting
bacterial movement and attachment, interfering with the structure
of the biofilm matrix, and generating reactive oxygen species in
photodynamic treatments. However, some drawbacks limit the
clinical usage of this natural compound. To this end, scientists
should consider using thymol-based drug platforms more when
managing bacterial biofilm.

Eugenol

Eugenol, 4-allyl-2-methoxyphenol, is an odorous oily liquid
extracted from specific essential oils, particularly clove and
cinnamon, colorless to pale yellow. It has been a flavoring agent
in food and cosmetic formulations (Zhang et al., 2018). Empirical
investigations have demonstrated that eugenol possesses several
potentially advantageous biological characteristics, such as
antibacterial, antioxidant, and anti-inflammatory effects (Gill and
Holley, 2004; Mohammed and Al-Bayati, 2009; Yadav et al., 2013).
Additionally, several studies have demonstrated the eugenol
potential for inhibiting and eradicating S. aureus biofilm (García-
Salinas et al., 2018; Kostoglou et al., 2020). For instance, in one study,
a 240–320 μg/mL concentration of eugenol eradicates 50% of S.
aureus biofilm (Miladi et al., 2017).

Eugenol can decrease biofilm cell density by killing or inhibiting
bacterial growth. When the density of biofilm cells decreases,
aggregation and cell-to-cell connections also decrease so that the
loosely arranged cells easily separate from each other (Yadav et al.,
2015). Since eugenol is a lipophilic molecule, it can disturb the
organization of several strata of polysaccharides, fatty acids, and
phospholipids, therefore modifying the fluidity and permeability of
the cell membrane and finally resulting in cell lysis (Yadav et al.,
2015; Wijesinghe et al., 2021). This cell membrane destruction by
eugenol has led to the cells’ rough and shrunken appearance, and
bacterial cells lose their normal morphology (Yadav et al., 2015).
Additionally, it interferes with the intracellular interactions that are
crucial for the development of structured biofilms and the
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establishment of bacterial colonies. The perturbation of these
structures can lead to the separation of cells within the biofilm,
enabling their facile removal by washing (Yadav et al., 2015). The
findings suggested that eugenol’s antibiofilm effect may be attributed
to the suppression of cell-to-cell interactions and subsequent
cell lysis.

Notably, eugenol exhibited antibiofilm effectiveness against S.
aureus strains, particularly during the first stages of biofilm
development (Kim and Chin, 2023). Biofilm disposal is most
effective during the attachment phase of planktonic bacterial
cells, which lasts from 0 to 5 h. During this period, at
subinhibitory doses, eugenol demonstrated a substantial
inhibitory effect on the adhesion ability of S. aureus (Apolónio
et al., 2014; Kim and Chin, 2023). In addition, in the presence of
eugenol, a reduction in the expression of the sarA gene was detected
(Dunman et al., 2001; El-Far et al., 2021). As previously stated, this
gene influences several virulence genes of S. aureus and the
production of fibronectin, fibrinogen-binding proteins, and
toxins. Consequently, it decreases cell adherence to tissues
(Dunman et al., 2001; El-Far et al., 2021).

Moreover, the gene expression of clfA and fnbA, which
mediate the initial attachment of bacteria to surfaces, is
downregulated by eugenol (Mastoor et al., 2022). Additionally,
another study reported that the Cna gene’s expression decreases
in eugenol’s presence (Mastoor et al., 2022). The collagen-
binding protein, Collagen Adhesin (Cna), allows S. aureus to
adhere to collagen, a key component of the extracellular matrix in
host tissues (Patti et al., 1994; Montanaro et al., 1999). All these
events lead to a decrease in cell adhesion for biofilm formation.
The death of plankton cells and the reduction of cell attachment
for biofilm formation negatively affect the next stages of biofilm
formation, including biomass production and communication
between cells through QS. This property of eugenol can be used to
create antimicrobial coatings and polymer films that inhibit the
formation of bacterial biofilms on medical and industrial devices
(Nostro et al., 2013; Holban et al., 2014; Venkateswaran et al.,
2016). For example, one project involved the development of a
chitosan-based antimicrobial coating, including embedded
mesoporous silica nanoparticles (MSNs) to encapsulate and
transport eugenol. The objective was to prevent the formation
of biofilms on medical devices. The controlled release of eugenol
from the MSNs and coatings occurred sequentially, starting with
a low release, then reaching a peak, then decreasing, and finally
reaching a plateau. In contrast to coatings lacking eugenol, which
had minimal antibacterial properties and still permitted biofilm
development after 24 h, the coating containing eugenol not only
decreased biofilm formation but also effectively eliminated most
of the bacteria attached (Nguyen et al., 2024).

In another study, researchers prepared nanofibers of
polyvinylidene difluoride (PVDF) enriched with thymol and
eugenol. These nanofibers demonstrated antifouling activity,
suppressing biofilm formation by Escherichia coli and S. aureus,
with no aggregation of bacterial cells observed. As a result, this
method may address the disadvantage of the short lifespan of
nanofibers as a filtration membrane due to clogging by bacteria
in water treatment (Bartošová et al., 2022).

As mentioned, eugenol possesses both hydrophilic and
hydrophobic properties, facilitating its diffusion in the biofilm

matrix (Miladi et al., 2017; Kostoglou et al., 2020). As a result of
this diffusion, eugenol can exert its effects on mature biofilms; for
instance, the biomass of established biofilms was significantly
decreased by the eugenol treatment (Melo et al., 2019;
Wijesinghe et al., 2021; Kim and Chin, 2023). Furthermore, the
eugenol-treated biofilms substantially reduced the population of live
bacteria (Yadav et al., 2015; Melo et al., 2019; Kim and Chin, 2023).
In the presence of eugenol, the components of EPS, namely,
carbohydrates, protein, and nucleic acids, were significantly
decreased (Ni et al., 2022). Also, in one study, DNA/RNA
fragments, tryptophan, lipid, carotenoid, and amide of S. aureus
biofilm in the presence of eugenol were significantly reduced (Kim
and Chin, 2023). Furthermore, following eugenol treatment, a
significant downregulation occurs in the gene expression of sarA,
icaA, and icaD (Yadav et al., 2015; El-Far et al., 2021; Mastoor et al.,
2022). As previously mentioned, these genes are involved in
synthesizing PIA/PNAG, which is the main component of the
EPS matrix in S. aureus biofilm. As a result of these alters, the
integrity of the biofilm and its protective capacity and stability are
reduced, and the biofilm becomes more sensitive to other external
agents and antimicrobial substances.

In summary, eugenol influences the initial stages of biofilm
formation by decreasing the number of viable cells before biofilm
development and inhibiting their attachment to surfaces (Figure 2).
Also, even after biofilm formation, eugenol can disrupt it. Like other
natural compounds, eugenol has some disadvantages, such as low
water solubility, poor physicochemical properties, chemical
instability, and low bioavailability. These issues can be addressed
by combining eugenol with nanoparticles or other drug platforms.

Quercetin

Quercetin (3,5,7,3ʹ,4ʹ-pentahydroxy flavone) is classified under
the flavonol subclass of flavonoids. Quercetin is prevalent in
vegetables and fruits, including medicinal herbs like Hypericum
perforatum, also called Ginkgo (Dengler et al., 2015). Studies have
shown the antibacterial and antibiofilm properties of plant extracts
containing this compound against S. aureus (Sharma et al., 2018;
Radojević et al., 2023; de Oliveira et al., 2024). In a study, the MIC
value of quercetin against S. aureus was found to be 256 μg/mL, and
the MBIC value of this compound was determined to be 128 μg/mL
(Wu et al., 2023).

Quercetin effectively compromised bacterial cell membranes
and walls, resulting in deformation, cytoplasmic leakage, and
cellular cavitation while not impacting division and proliferation
(Kang et al., 2022; Nguyen and Bhattacharya, 2022). Additionally,
this compound demonstrated an inhibitory effect on nucleic acid
synthesis and the production of virulence factors in bacterial cells,
resulting in a significant antibacterial action (Wang et al., 2018). In
the presence of quercetin, both the biofilm thickness and the
bacterial count within the biofilm diminished, resulting in a
sheet-like dispersion of tiny clusters, with the biofilm manifesting
as a single-layer cell aggregation (Lee et al., 2024; Liu et al., 2024).

Studies have shown that quercetin affects cell adhesion for
biofilm formation (Kang et al., 2022; D’Arcangelo et al., 2024).
Molecular docking and kinetic simulation showed that quercetin
could bind ClfB (Kang et al., 2022). In addition, the expression of
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fnbA and fnbB altered and significantly downregulated when treated
with quercetin (Wu et al., 2023). Quercetin significantly reduced the
expression levels of srtA, which encodes sortase A enzyme, and the
expression of sigB (sigma factor B) (Lee et al., 2013; Li Y. et al., 2024).
σB is a product of the sigB operon and serves as the primary
regulator of S. aureus response to environmental stress. This
factor is crucial in developing bacterial drug resistance, the
regulatory expression of virulence-associated genes, and biofilm
formation (Peng et al., 2022). σB facilitates the synthesis of many
cell surface proteins associated with the initial adherence of biofilms,
including FnbA and ClfA. σB enhances the transcription of fnbA
during early growth and markedly increases the transcription of clfA
in late growth (Entenza et al., 2005). Therefore, by preventing the
expression and function of proteins related to cell adhesion in S.
aureus, one of the key stages of biofilm formation is affected and
disrupted by quercetin.

Quercetin significantly decreased EPS synthesis and secretion
(Li Y. et al., 2024; Liu et al., 2024). Additionally, the secretion of
eDNA was significantly inhibited with increasing quercetin
concentrations (Liu et al., 2024). Further study of the
polysaccharide and protein percentages in EPS revealed that
quercetin exerted a more pronounced influence on protein
secretion (Li Y. et al., 2024).

The transcription levels of extracellular metalloproteinase Aur
(aureolysin) and extracellular nuclease Nuc (nuclease) were
markedly elevated following quercetin therapy (Liu et al., 2024).
Extracellular proteases are crucial in the protein-dependent process.
The augmented release of extracellular proteases restricts biofilm
development, with metalloproteinase Aur exhibiting the most
significant inhibitory effect (Loughran et al., 2014). The
concentration of eDNA in the biofilm is modulated by Nuc,
which can destroy eDNA and diminish biofilm formation
(Kiedrowski et al., 2011). Also, it was reported that the
transcription of aur and nuc is negatively regulated by SarA,
while the expression of sarA is reduced by quercetin (Liu et al.,
2024). Besides, as mentioned earlier, the expression of σB is reduced
by quercetin, and on the other hand, σB affects the expression of
sarA (Bischoff et al., 2001).

In addition to EPS, surface proteins, and eDNA, functional
amyloids are one of the components of S. aureus biofilm matrix
(Schwartz et al., 2012; Karygianni et al., 2020). Biofilm-
associated protein (Bap) is a surface-associated protein that
assumes an amyloid-like structure under specific
environmental circumstances (Di Martino, 2016; Taglialegna
et al., 2016). The protein may manifest as amyloid-like clumps
on the bacterial surface, facilitating the formation of a robust
biofilm structure. These persistent aggregates enable bacteria to
cling to diverse surfaces and enhance their resistance to
environmental conditions, including antibiotic exposure
(Taglialegna et al., 2016). Quercetin inhibits S. aureus biofilm
development by affecting the production of Bap amyloid-like
aggregates without altering Bap expression (Matilla-Cuenca
et al., 2020).

Quercetin acts as a quorum-quenching inhibitor. It obstructs
bacterial communication by inhibiting the interaction between QS
signaling molecules and their receptors, consequently diminishing
bacterial motility, proliferation, and metabolic activity (Li Y. et al.,
2024). For S. aureus, quercetin significantly reduced the expression

levels of QS genes (agrA) (Lee et al., 2013; Wu et al., 2023; Li Y. et al.,
2024). Additionally, as discussed earlier, the expression of sarA
diminishes due to quercetin, and SarA can affect agr expression.
Quercetin functioned as an exogenous inhibitor, suppressing
interbacterial communication by modulating the expression of
the AGR receptor protein gene in S. aureus, thereby managing
the expression of downstream genes associated with biofilm
formation, bacterial growth and metabolism and effectively
diminishing biofilm secretion (Li Y. et al., 2024).

Simply inhibiting QS is insufficient to avert biofilm
development. Quercetin may be utilized alongside antibiotics or
other antibacterial agents to enhance their antibiofilm effectiveness
(Vipin et al., 2020). For example, a study created bi-functional
nanoparticles by co-assembling quercetin and copper ions. Copper
eradicated bacteria by compromising the cell membrane’s integrity,
whereas quercetin interfered with QS processes important for
biofilm formation by downregulating the expression of specific
genes, effectively inhibiting biofilm development (Cheng
et al., 2024).

Like other flavonoids, quercetin exhibits prevalent issues
associated with natural bioactive compounds, including
inadequate water solubility and diminished bioavailability (Sun
et al., 2015). Therefore, various types of drug delivery methods
have been studied to overcome this problem, such as hydrogels,
nano-micelles, nanoliposomes, and nanoparticles (Akhlaghi and
Najafpour-Darzi, 2023; Nain et al., 2023; Yang et al., 2025). For
instance, a study concentrated on synthesizing quercetin-
encapsulated chitosan sodium alginate nanoparticles (Q-CSNPs).
Q-CSNPs employed against E. coli and S. aureus. The findings
indicated that quercetin nanoparticles may suppress or eliminate the
bacterial biofilm, regardless of whether treatment occurred before or
following biofilm formation. Furthermore, Q-CSNPs demonstrated
significant antioxidant ability and notably affected planarians’
oxidative stress (Sun et al., 2024). In another study, hyaluronic
acid-modified azithromycin/quercetin micelles (HA-AZI/Qe-M)
were produced using thin film hydration. HA-AZI/Qe-M
exhibited remarkable antibacterial efficacy in vitro and showed
the capacity to penetrate deeply into the MRSA biofilm,
effectively inhibiting and eradicating it. Moreover, following
treatment with HA-AZI/Qe-M, the bacterial count in the thigh
muscle tissue of mice was dramatically diminished (Zhang et al.,
2024). In the end, the poly (ε-caprolactone)-monomethoxyl poly
(ethylene glycol) (PCL-mPEG) micelles, loaded with quercetin and
rifampicin (QRMs), were synthesized. The results indicated that the
small-sized QRMs may infiltrate the inside of MRSA biofilm to
disperse and eliminate it. Subsequently, antibiotics are discharged
and concentrated within the acidic biofilm milieu. QRMs may
eradicate germs by enhancing bacterial membrane permeability
and modifying membrane potential and fluidity. Furthermore,
QRMs enhanced drugs’ intracellular and cytoplasmic transport
efficiency to epithelial cells (Chen et al., 2022).

In short, quercetin exerts its inhibitory effect on S. aureus
biofilm by inhibiting bacterial growth, disrupting cell adhesion,
reducing the biofilm matrix, altering the expression of genes
involved in biofilm formation, and preventing the proper
function of QS. Additionally, to enhance its efficiency and reduce
its limitations, it can be combined with other drugs and incorporated
into drug delivery platforms.
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In the end, it is noteworthy that other natural compounds that
showed inhibitory effects against S. aureus biofilm are presented
in Table 3.

Conclusion

Using natural compounds as an anti-biofilm treatment for S.
aureus demonstrated significant potential for developing new
therapeutic approaches. These compounds affect various stages
of biofilm formation, including the QS system, biofilm matrix, the
attachment of S. aureus cells to surfaces and tissues, and the
viability of bacteria. Furthermore, these compounds exhibit
lower toxicity than traditional antibacterial agents, and
because they have multiple purposes, there is less chance of
resistance to them occurring. While natural compounds have
shown significant potential in laboratory tests, more research is
needed to determine their effectiveness in vivo. We should not
forget that in nature and several other habitats (e.g., the food
industry and healthcare), biofilms may be composed of different
types of microorganisms that interact with each other in
relatively complex ways. Exposure to multispecies biofilms
requires investigation. As mentioned, natural compounds have
disadvantages such as low bioavailability, insolubility in water,
and rapid metabolism and degradation; hence, further studies are
needed to optimize their delivery methods. For example, delivery
systems based on nanoparticles can improve their penetration
into biofilms and increase their stability in complex
environments. In addition, their combination with antibiotics
and other natural agents can lead to synergistic effects and
increase their ability to disrupt the biofilm. Finally, natural
compounds–based -photodynamic therapy should also be
considered by scientists as a promising approach for managing
the biofilm community of S. aureus. Therefore, natural
compounds are an effective and low-risk option promising to
manage S. aureus biofilm-related issues.
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